
Package ‘theiaR’
November 19, 2020

Title Download and Manage Data from Theia

Version 0.4.0

Description Provides a simple interface to search available data provided by
Theia (<https://theia.cnes.fr>), download it, and manage it. Data can be downloaded
based on a search result or from a cart file downloaded from Theia website.

Language en-US

Depends R (>= 3.5)

Imports askpass (>= 1.1), httr (>= 1.3), R6 (>= 2.3), raster (>= 2.6),
tools (>= 3.5), XML (>= 3.86)

License GPL (>= 3.0)

URL https://github.com/norival/theiaR

BugReports https://github.com/norival/theiaR/issues

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, gdalcubes

Collate 'TheiaAuth.R' 'TheiaTile.R' 'TheiaCollection.R' 'TheiaQuery.R'
'theiaR.R' 'utils.R'

VignetteBuilder knitr

NeedsCompilation no

Author Xavier Laviron [aut, cre] (<https://orcid.org/0000-0002-9882-3253>)

Maintainer Xavier Laviron <xavier@norival.dev>

Repository CRAN

Date/Publication 2020-11-19 09:30:02 UTC

1

https://github.com/norival/theiaR
https://github.com/norival/theiaR/issues

2 TheiaAuth

R topics documented:

TheiaAuth . 2
TheiaCollection . 3
TheiaQuery . 5
theiaR . 7
TheiaTile . 7

Index 9

TheiaAuth Authentication system to Theia website

Description

Generate and manage authentication to Theia website from login and password. It requests a token
to download tiles when created and automatically request a new one when it has expired (after 2h).
It is used to download tiles from TheiaTile and TheiaCollection objects.

Usage

a <- TheiaAuth$new(auth.file)

a$token()

Arguments

a: A TheiaAuth object

auth.file The path to the file containing login and password. It will be created if it does not exist.
See ‘Details‘ for more informations

Details

TheiaAuth$new(auth.file) Create a new instance of the class

a$token() Return the current token or generate a next one if it has expired

This class is used to manage authentication to Theia website, without intervention from the user.
Login and password must be stored in a separate text file with these two lines:

login password

File content is read each time authentication is needed (to request a new token), so login and pass-
word are not stored in R’s memory. If this file does not exist, R will prompt you to enter your login
and password and will create the file.

TheiaCollection 3

Examples

Not run:
create an authentication object
myauth <- TheiaAuth$new("path_to_auth_file.txt")

show the access token (and request a new one if needed)
myauth$token

End(Not run)

TheiaCollection A collection of tiles from Theia

Description

Generate and manage collection of tiles from Theia. This collection can be created either from a
cart file (’.meta4’) downloaded from Theia website, from a TheiaQuery object or from a list of
TheiaTile (not implemented yet).

Usage

c <- TheiaCollection$new(cart.path = NULL,
tiles = NULL,
query = NULL,
dir.path = NULL,
check = TRUE)
quiet = TRUE)

c$download(auth, overwrite = FALSE, check = TRUE, quiet = TRUE)
c$check()
c$status
c$extract(overwrite = FALSE, dest.dir = NULL)
c$read(bands)
c$as_gdalcube(out.file = "gdalcube_collection.sqlite")

Arguments

c: A TheiaCollection object

dir.path: The path to the directory containing zip files

check: Whether or not to check existing files on collection’s creation

quiet: Control verbose output

tiles: A list of TheiaTile objects

cart: An XML cart parsed from a ’meta4’ file downloaded from Theia website. Used only if
Collection is created from a cart

4 TheiaCollection

query: A TheiaQuery object, used only if collection is created from a TheiaQuery object. Can
also be a list with search terms. In this case, it will create a ‘TheiaQuery‘ object from it. See
TheiaQuery for details on query syntax

auth: A character string giving the file path to Theia credentials. Or a TheiaAuth object

overwrite: Overwrite existing tiles (default to ‘FALSE‘)

bands: A character vector of bands to load from tiles

out.file: Filename to store gdalcubes’ image collection

Details

TheiaCollection$new() Create a new instance of the class

c$download(overwrite = FALSE,check = TRUE) Download the tiles of the collection and check
the resulting files

$ccheck() Check the tiles of the collection

c$status Return the status of each tile of the collection

c$extract(overwrite = FALSE,dest.dir = NULL) Extract archives to dest.dir if supplied, or to
the same directory as the archives otherwise

c$read(bands) Read requested bands, apply corrections on values (as specified in Theia’s product
information), and return a list of RasterStack objects (one stack per tile)

c$as_gdalcube(out.file) Create a ‘gdalcubes‘ image collection from downloaded tiles. See
https://github.com/appelmar/gdalcubes_R for more details.

Examples

Create a collection from a query
Create a query to Theia database, looking for tiles from Sentinel2
satellite around Grenoble, between 2018-07-01 and 2018-07-06.

query <- list(collection = "SENTINEL2",
town = "Grenoble",
start.date = "2018-07-01",
end.date = "2018-07-06")

Create a collecion of tiles from this query
mycollection <- TheiaCollection$new(query = query, dir.path = ".")

print(mycollection)

Alternatively, you can create a collection from a cart file (that you can
download from Theia's website)
cart.path <- system.file("extdata", "cart.meta4", package = "theiaR")

mycollection <- TheiaCollection$new(cart.path = cart.path,
dir.path = ".")

https://github.com/appelmar/gdalcubes_R

TheiaQuery 5

print(mycollection)

Not run:
Download the tiles in the collection
mycollection$download()

End(Not run)

Not run:
Finally, you can extract zip archives containing the tiles
mycollection$extract(overwrite = FALSE)

End(Not run)

TheiaQuery A query to the Theia website

Description

Generate an send a query to Theia web API to get and download tiles based on input given by the
user.

Usage

q <- TheiaQuery$new(query)

q$update_token()
q$submit()

Arguments

q: A TheiaQuery object

query: list, the users’ request, see ‘Queries‘ for more informations

Details

TheiaQuery$new() Create a new instance of the class, parse ‘query‘ list and submit the query to
Theia to retrieve files catalog

q$submit() Submit the query to Theia and get a list of tiles corresponding to search criteria

Queries

Search criteria are given with a ‘list‘ accepting these fields:

• collection: The collection to look for. Accepted values are: ’SENTINEL2’, ’LANDSAT’,
’Landsat57’, ’SpotWorldHeritage’, ’Snow’. Defaults to ’SENTINEL2’

6 TheiaQuery

• platform: The platform to look for. Accepted values are: ’LANDSAT5’, ’LANDSAT7’,
’LANDSAT8’, ’SPOT1’, ’SPOT2’, ’SPOT3’, ’SPOT4’, ’SPOT5’, ’SENTINEL2A’, ’SEN-
TINEL2B’

• level: Processing level. Accepted values are: ’LEVEL1C’, ’LEVEL2A’, LEVEL3A’, ’N2A’.
Defaults to ’LEVEL2A’ (or ’N2A’ if querying Landsat57 collection).

• town: The location to look for. Give a common town name.

• tile: The tile identifier to retrieve.

• start.date: The first date to look for (format: YYYY-MM-DD).

• end.date: The last date to look for (format: YYYY-MM-DD). Must be after start.date. De-
faults to today’s date.

• latitude: The x coordinate of a point

• longitude: The y coordinate of a point

• latmin: The minimum latitude to search

• latmax: The maximum latitude to search

• lonmin: The minimum longitude to search

• lonmax: The maximum longitude to search

• orbit.number: The orbit number

• rel.orbit.number: The relative orbit number

• max.clouds: The maximum of cloud cover wanted (0-100)

• max.records: The maximum of tiles to search

See Also

https://github.com/olivierhagolle/theia_download for an alternative download method based
on Python. Inspiration for this function.

Examples

Create a query to Theia database, looking for tiles from Sentinel2
satellite around Grenoble, between 2018-07-01 and 2018-07-06.

query <- list(collection = "SENTINEL2",
town = "Grenoble",
start.date = "2018-07-01",
end.date = "2018-07-06")

q <- TheiaQuery$new(query)

Show informations on found tiles
print(q$tiles)

https://github.com/olivierhagolle/theia_download

theiaR 7

theiaR theiaR: search, download and manage theia data

Description

Search, manage and download data from Theia website

TheiaTile A tile from Theia

Description

Generate and manage a tile from Theia (download, check, load).

Usage

t <- TheiaTile$new(file.path,
url,
file.hash,
check = TRUE,
quiet = TRUE)

t$download(overwrite = FALSE, check = TRUE, quiet = TRUE)
t$check()
t$extract(overwrite = FALSE, dest.dir = NULL)
t$read(bands)

Arguments

t: A TheiaTile object

file.path: The path to the zip file containing the tile

url: The url to download the tile

file.hash: The md5sum used to check the zip file

check: Whether or not to check existing files on tile’s creation

quiet: Control verbose output

auth: A character string giving the file path to Theia credentials. Or a TheiaAuth object

overwrite: Overwrite existing tiles (default to ‘FALSE‘)

bands: A character vector of bands to load from tiles

8 TheiaTile

Details

TheiaTile$new(file.path,url,file.hash,check) Create a new instance of the class

t$download(auth,overwrite = FALSE,check = TRUE) Download the tiles of the collection and
check the resulting files

t$check() Check the tiles of the collection

t$extract(overwrite = FALSE,dest.dir = NULL) Extract archive to dest.dir if supplied, or to the
same directory as the archive otherwise

t$read(bands) Read requested bands, apply corrections on values (as specified in Theia’s product
information), and return a RasterStack

t$bands List bands available in the tile

Index

TheiaAuth, 2, 4, 7
TheiaCollection, 2, 3
TheiaQuery, 3, 4, 5
theiaR, 7
TheiaTile, 2, 3, 7

9

	TheiaAuth
	TheiaCollection
	TheiaQuery
	theiaR
	TheiaTile
	Index

