
Package ‘this.path’
July 11, 2022

Version 0.8.0

License MIT + file LICENSE

Title Get Executing Script's Path, from 'RStudio', 'Rgui', 'Rscript'
(Shells Including Windows Command-Line / / Unix Terminal), and
'source'

Description Determine the full path of the executing script. Works when
running a line or selection from a script in 'RStudio' and 'Rgui', when
using 'source', 'sys.source', 'debugSource' in 'RStudio', and
'testthat::source_file', and when running R from a shell.

Author Andrew Simmons

Maintainer Andrew Simmons <akwsimmo@gmail.com>

Suggests utils, essentials, microbenchmark

Enhances testthat

URL https://github.com/ArcadeAntics/this.path

BugReports https://github.com/ArcadeAntics/this.path/issues

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2022-07-11 08:20:02 UTC

R topics documented:
this.path-package . 2
as.relative.path . 3
check.path . 4
here . 5
R.from.shell . 6
shFILE . 8
this.path . 9
this.path-deprecated . 12

Index 14

1

https://github.com/ArcadeAntics/this.path
https://github.com/ArcadeAntics/this.path/issues

2 this.path-package

this.path-package Get Executing Script’s Path, from ’RStudio’, ’Rgui’, ’Rscript’ (Shells
Including Windows Command-Line / / Unix Terminal), and ’source’

Description

Determine the full path of the executing script. Works when running a line or selection from a
script in ’RStudio’ and ’Rgui’, when using ’source’, ’sys.source’, ’debugSource’ in ’RStudio’, and
’testthat::source_file’, and when running R from a shell.

Details

The three most important functions from this package are this.path, this.dir, and here.

this.path() returns the normalized path of the executing script.

this.dir() returns the normalized path of the directory in which the executing script is located.

here() constructs file paths relative to the executing script’s directory.

Note

This package started from a stack overflow posting, found at:

https://stackoverflow.com/questions/1815606/determine-path-of-the-executing-script

If you like this package, please consider upvoting my answer so that more people will see it! If
you have an issue with this package, please use utils::bug.report(package = "this.path") to
report your issue.

Author(s)

Andrew Simmons

Maintainer: Andrew Simmons <akwsimmo@gmail.com>

See Also

The main functions from this.path: this.path, this.dir, here

Check this.path() is functioning correctly: check.path, check.dir

Extract ‘FILE’ from command line arguments: shFILE, normalized.shFILE

source, sys.source, debugSource, testthat::source_file

R.from.shell

https://stackoverflow.com/questions/1815606/determine-path-of-the-executing-script
https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE

as.relative.path 3

as.relative.path Make a Path Relative to Another Path

Description

When working with this.path, you will be dealing with a lot of absolute paths. These paths are no
good for saving within files, so you’ll need to use as.relative.path() to turn your absolute paths
into relative paths.

Usage

as.relative.path(path, relative.to = this.dir(verbose = FALSE))
as.rel.path (path, relative.to = this.dir(verbose = FALSE))

Arguments

path character vector of file / / URL paths.

relative.to character string; the file / / URL path to make path relative to.

Details

Tilde-expansion (see path.expand) is first done on path and relative.to.

If path and relative.to are equivalent, "." will be returned. If path and relative.to have no
base in common, the normalized path will be returned.

Value

character vector of the same length as path.

Examples

Windows example

as.relative.path(
c(
paths which are equivalent will return "."
"C:/Users/effective_user/Documents/this.path/man",
#
#
paths which have no base in common return as themselves
"https://raw.githubusercontent.com/ArcadeAntics/this.path/main/tests/this.path_w_URLs.R",
"D:/",
"//host-name/share-name/path/to/file",
#
#
"C:/Users/effective_user/Documents/testing",
"C:\\Users\\effective_user",

4 check.path

"C:/Users/effective_user/Documents/R/this.path.R"
),
relative.to = "C:/Users/effective_user/Documents/this.path/man"
)

Unix-alikes example

as.relative.path(
c(
paths which are equivalent will return "."
"/home/effective_user/Documents/this.path/man",
#
#
paths which have no base in common return as themselves
"https://raw.githubusercontent.com/ArcadeAntics/this.path/main/tests/this.path_w_URLs.R",
"//host-name/share-name/path/to/file",
#
#
"/home/effective_user/Documents/testing",
"/home/effective_user",
"/home/effective_user/Documents/R/this.path.R"
),
relative.to = "/home/effective_user/Documents/this.path/man"
)

check.path Check this.path() is Functioning Correctly

Description

Add check.path("path/to/file") to the beginning of your script to initialize this.path(), and
check that this.path() is returning the path you expect.

Usage

check.path(...)
check.dir(...)

Arguments

... further arguments passed to file.path which must return a character string;
the path you expect this.path() or this.dir() to return. The specified path
can be as deep as necessary (just the basename, the last directory name and the
basename, the last two directory names and the basename, . . .), but using an
absolute path is not intended (recommended against). this.path() makes R
scripts portable, but using an absolute path in check.path or check.dir makes
an R script non-portable, defeating the whole purpose of this package.

here 5

Value

If the expected path / / directory matches this.path() / / this.dir(), then TRUE invisibly.

Otherwise, an error is raised.

Examples

I have a project called 'EOAdjusted'
#
Within this project, I have a folder called 'code'
where I place all of my scripts.
#
One of these scripts is called 'provrun.R'
#
So, at the top of that R script, I could write:

this.path::check.path("EOAdjusted", "code", "provrun.R")
#
or
#
this.path::check.path("EOAdjusted/code/provrun.R")

here Construct Path to File, Beginning with this.dir()

Description

Construct the path to a file from components in a platform-independent way, starting with this.dir().

Usage

here(..., .. = 0)
ici(..., .. = 0)

Arguments

... further arguments passed to file.path().

.. the number of directories to go back.

Details

The path to a file begins with a base. The base is .. number of directories back from the executing
script’s directory (this.dir()). The argument is named .. because ".." refers to the parent
directory in Windows, Unix, and URL paths alike.

Value

A character vector of the arguments concatenated term-by-term, beginning with the executing
script’s directory.

6 R.from.shell

Examples

this.path:::write.code(file = FILE <- tempfile(), {

this.path::here()
this.path::here(.. = 1)
this.path::here(.. = 2)

use 'here' to read input from a file located nearby
this.path::here(.. = 1, "input", "file1.csv")

or maybe to run another script
this.path::here("script2.R")

})

source(FILE, echo = TRUE, verbose = FALSE)

R.from.shell Using R From a Shell

Description

How to use R from a shell (including the Windows command-line / / Unix terminal).

Details

For the purpose of running R scripts, there are four ways to do it. Suppose our R script has filename
‘script1.R’, we could write any of:
R -f script1.R
R --file=script1.R
R CMD BATCH script1.R
Rscript script1.R

The first two are different ways of writing equivalent statements. The third statement is the first
statement plus options ‘--restore’ ‘--save’ (plus option ‘--no-readline’ under Unix-alikes),
and it also saves the stdout and stderr in a file of your choosing. The fourth statement is the
second statement plus options ‘--no-echo’ ‘--no-restore’. You can try:
R --help
R CMD BATCH --help
Rscript --help

for a help message that describes what these options mean. In general, Rscript is the one you want
to use. It should be noted that Rscript has some exclusive environment variables (not used by
the other executables) that will make its behaviour different from R.

R.from.shell 7

For the purpose of making packages, R CMD is what you’ll need to use. Most commonly, you’ll use:
R CMD build
R CMD INSTALL
R CMD check

R CMD build will turn an R package (specified by a directory) into tarball. This allows for easy shar-
ing of R packages with other people, including submitting a package to CRAN . R CMD INSTALL will
install an R package (specified by a directory or tarball), and is used by utils::install.packages.
R CMD check will check an R package (specified by a tarball) for possible errors in code, documen-
tation, tests, and much more.

If, when you execute one of the previous commands, you see the following error message: “‘R’
is not recognized as an internal or external command, operable program or batch file.”, see section
Ease of Use on Windows.

Ease of Use on Windows

Under Unix-alikes, it is easy to invoke an R session from a shell by typing the name of the R
executable you wish to run. On Windows, you should see that typing the name of the R executable
you wish to run does not run that application, but instead signals an error. Instead, you will have to
type the full path of the directory where your R executables are located (see section Where are my
R executable files located?), followed by the name of the R executable you wish to run.

This is not very convenient to type everytime something needs to be run from a shell, plus it has
another issue of being computer dependent. The solution is to add the path of the directory where
your R executables are located to the Path environment variable. The Path environment variable
is a list of directories where executable programs are located. When you type the name of an
executable program you wish to run, Windows looks for that program through each directory in the
Path environment variable. When you add the full path of the directory where your R executables
are located to your Path environment variable, you should be able to run any of those executable
programs by their basenames (‘R’, ‘Rcmd’, ‘Rscript’, and ‘Rterm’) instead of their full paths.

To add a new path to your Path environment variable:

1. Open the Control Panel
2. Open category User Accounts
3. Open category User Accounts (again)

4. Open Change my environment variables
5. Click the variable Path

6. Click the button Edit...
7. Click the button New
8. Type (or paste) the full path of the directory where your R executables are located, and press

OK

This will modify your environment variable Path, not the systems. If another user wishes to run R
from a shell, they will have to add the directory to their Path environment variable as well.

If you wish to modify the system environment variable Path (you will need admin permissions):

1. Open the Control Panel
2. Open category System and Security

https://cran.r-project.org/submit.html

8 shFILE

3. Open category System
4. Open Advanced system settings
5. Click the button Environment Variables...
6. Modify Path same as before, just select Path in System variables instead of User variables

To check that this worked correctly, open a shell and execute the following commands:
R --help
R --version

You should see that the first prints the usage message for the R executable while the second prints
information about the version of R currently being run. If you have multiple versions of R installed,
make sure this is the version of R you wish to run.

Where are my R executable files located?

In an R session, you can find the location of your R executable files with the following command:
cat(sQuote(normalizePath(R.home("bin"))), "\n")

On Windows, for me, this is:

‘C:\Program Files\R\R-4.2.0\bin\x64’

On Linux, for me, this is:

‘/usr/lib/R/bin’

shFILE Get Argument ‘FILE’ Provided to R by a Shell

Description

Look through the command line arguments, extracting ‘FILE’ from either of the following: ‘--file=FILE’
or ‘-f’ ‘FILE’

Usage

shFILE(default)
normalized.shFILE(default)

Arguments

default if ‘FILE’ was not found, this value is returned.

Value

character string, or default if the command line argument ‘FILE’ was not found.

Note

Both functions will save their return values; this makes them faster when called subsequent times.

For normalized.shFILE, the path on Windows will use / as the file separator.

this.path 9

See Also

this.path, here

Examples

this.path:::write.code(file = FILE <- tempfile(), {

withAutoprint({

shFILE()
normalized.shFILE()
normalized.shFILE(default = {

stop("interestingly enough, because 'FILE' will be found,\n",
" argument 'default' won't be evaluated, and so this\n",
" error won't actually print, isn't that neat? you can\n",
" use this to your advantage in a similar manner, doing\n",
" arbitrary things only if 'FILE' isn't found")

})

}, width.cutoff = 60L)

})
this.path:::.Rscript(c("--default-packages=this.path", "--vanilla", FILE))

for (expr in c("shFILE()",
"shFILE(default = NULL)",
"normalized.shFILE()",
"normalized.shFILE(default = NULL)"))

this.path:::.Rscript(c("--default-packages=this.path", "--vanilla", "-e", expr))

this.path Determine Executing Script’s Filename

Description

this.path() returns the normalized path of the executing script.

this.dir() returns the normalized path of the directory in which the executing script is located.

this.path2(), this.dir2(), and this.dir3() are from an old release that did not include default
as an argument in this.path() or this.dir(). They should not be used in future code develop-
ment and should be removed from older code.

10 this.path

Usage

this.path(verbose = getOption("verbose"), default)
this.dir(..., default)

this.path2(...) # deprecated, use this.path(..., default = NULL) instead
this.dir2(...) # deprecated, use this.dir(..., default = NULL) instead

this.dir3(...) # deprecated, use this.dir(..., default = getwd()) instead

Arguments

verbose TRUE or FALSE; should the method in which the path was determined be printed?

default if there is no executing script, this value is returned. This facilitates retrieving
the execting script’s path / / directory and checking whether it exists and setting
it separately if not.

... arguments passed to this.path.

Details

There are three ways in which R code is typically run; in ‘RStudio’ or ‘Rgui’ by running the current
line or selection with the Run button (or appropriate keyboard shortcut), through a source call (a
call to function source, sys.source, debugSource in ‘RStudio’, or testthat::source_file),
and from a shell (including the Windows command-line / / Unix terminal).

To retrieve the executing script’s filename, first an attempt is made to find a source call. The calls
are searched in reverse order so as to grab the most recent source call in the case of nested source
calls. If a source call was found, the argument file (fileName in the case of debugSource, path
in the case of testthat::source_file) is returned from the function’s evaluation environment.
If you have your own source-like function that you’d like to be recognized by this.path, please
contact the package maintainer so that it can be implemented.

If no source call is found up the calling stack, then an attempt is made to figure out how R is
currently being used.

If R is being run from a shell, the shell arguments are searched for ‘-f’ ‘FILE’ or ‘--file=FILE’
(the two methods of taking input from ‘FILE’). If exactly one of either type of argument is supplied,
the text ‘FILE’ is returned. It is an error to use this.path when none or multiple arguments of
either type are supplied.

If R is being run from a shell under Unix-alikes with ‘-g’ ‘Tk’ or ‘--gui=Tk’, this.path() will
signal an error. This is because ‘Tk’ does not make use of its ‘-f’ ‘FILE’, ‘--file=FILE’ argument.

If R is being run from ‘RStudio’, the active document’s filename (the document in which the cursor
is active) is returned (at the time of evaluation). If the active document is the R console, the source
document’s filename (the document open in the current tab) is returned (at the time of evaluation).
Please note that the source document will NEVER be a document open in another window (with
the Show in new window button). It is important to not leave the current tab (either by closing or
switching tabs) while any calls to this.path have yet to be evaluated in the run selection. It is an
error for no documents to be open or for a document to not exist (not saved anywhere).

If R is being run from ‘Rgui’, the source document’s filename (the document most recently inter-
acted with besides the R Console) is returned (at the time of evaluation). Please note that minimized

https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE

this.path 11

documents will be INCLUDED when looking for the most recently used document. It is important
to not leave the current document (either by closing the document or interacting with another doc-
ument) while any calls to this.path have yet to be evaluated in the run selection. It is an error for
no documents to be open or for a document to not exist (not saved anywhere).

If R is being run from ‘AQUA’, the executing script’s path cannot be determined. Unlike ‘RStudio’
and ‘Rgui’, there is currently no way to request the path of an open document. Until such a time
that there is a method for requesting the path of an open document, consider using ‘RStudio’.

If R is being run in another manner, it is an error to use this.path.

If your GUI of choice is not implemented with this.path, please contact the package maintainer
so that it can be implemented.

Value

character string; the executing script’s filename.

Note

The first time this.path is called within a script, it will normalize the script’s path, check that
the script exists (throwing an error if it does not), and save it in the appropriate environment. When
this.path is called subsequent times within the same script, it returns the saved path. This will be
faster than the first time, will not check for file existence, and will be independent of the working
directory.

As a side effect, this means that a script can delete itself using file.remove or unlink but still
know its own path for the remainder of the script.

Within a script that contains calls to both this.path and setwd, this.path MUST be used AT
LEAST once before the first call to setwd. This isn’t always necessary; for instance if you ran a
script using its absolute path as opposed to its relative path, changing the working directory has no
effect. However, it is still advised against.

The following is NOT an example of bad practice:

setwd(this.path::this.dir())

setwd is most certainly written before this.path(), but this.path() will be evaluated first. It is
not the written order that is bad practice, but the order of evaluation. Do not change the working
directory before calling this.path at least once.

See Also

here

shFILE

this.path-package

source, sys.source, debugSource, testthat::source_file

R.from.shell

https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE

12 this.path-deprecated

Examples

this.path:::write.code(file = FILE <- tempfile(), {

withAutoprint({

cat(sQuote(this.path::this.path(verbose = TRUE, default = {
stop("interestingly enough, because the executing script's\n",

" path will be found, argument 'default' won't be evaluated,\n",
" and so this error won't actually print, isn't that\n",
" neat? you can use this to your advantage in a similar\n",
" manner, doing arbitrary things only if the executing\n",
" script does not exist")

})), "\n\n")

}, verbose = FALSE)

})

source(FILE, verbose = FALSE)
sys.source(FILE, envir = environment())
if (.Platform$GUI == "RStudio")

get("debugSource", "tools:rstudio", inherits = FALSE)(FILE)
if (requireNamespace("testthat"))

testthat::source_file(FILE, chdir = FALSE, wrap = FALSE)

this.path:::.Rscript(c("--default-packages=NULL", "--vanilla", FILE))

this.path also works when source-ing a URL
(included tryCatch in case an internet connection is not available)
tryCatch({

source("https://raw.githubusercontent.com/ArcadeAntics/this.path/main/tests/this.path_w_URLs.R")
}, condition = base::message)

for (expr in c("this.path()",
"this.path(default = NULL)",
"this.dir()",
"this.dir(default = NULL)",
"this.dir(default = getwd())"))

this.path:::.Rscript(c("--default-packages=this.path", "--vanilla", "-e", expr))

this.path-deprecated Deprecated Functions in Package this.path

this.path-deprecated 13

Description

These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as the next release.

Usage

this.path2(...)
this.dir2(...)

this.dir3(...)

Arguments

... arguments passed to this.path.

See Also

this.path2-deprecated

this.dir2-deprecated

this.dir3-deprecated

Index

∗ package
this.path-package, 2

as.rel.path (as.relative.path), 3
as.relative.path, 3

check.dir, 2
check.dir (check.path), 4
check.path, 2, 4

file.path, 4, 5
file.remove, 11

here, 2, 5, 9, 11

ici (here), 5

normalize, 11
normalized, 2, 3, 9
normalized.shFILE, 2
normalized.shFILE (shFILE), 8

path.expand, 3

R.from.shell, 2, 6, 11

setwd, 11
shFILE, 2, 8, 11
source, 2, 10, 11
stderr, 6
stdout, 6
sys.source, 2, 10, 11

testthat::source_file, 2, 10, 11
this.dir, 2, 5
this.dir (this.path), 9
this.dir2 (this.path-deprecated), 12
this.dir2-deprecated (this.path), 9
this.dir3 (this.path-deprecated), 12
this.dir3-deprecated (this.path), 9
this.path, 2, 9, 9, 13

this.path-deprecated, 12
this.path-package, 2
this.path2 (this.path-deprecated), 12
this.path2-deprecated (this.path), 9

unlink, 11
utils::bug.report, 2
utils::install.packages, 7

14

	this.path-package
	as.relative.path
	check.path
	here
	R.from.shell
	shFILE
	this.path
	this.path-deprecated
	Index

