
Package ‘tidyxl’
November 16, 2020

Title Read Untidy Excel Files

Version 1.0.7

Description Imports non-tabular from Excel files into R. Exposes cell content,
position and formatting in a tidy structure for further manipulation.
Tokenizes Excel formulas. Supports '.xlsx' and '.xlsm' via the embedded
'RapidXML' C++ library <http://rapidxml.sourceforge.net>. Does not support
'.xlsb' or '.xls'.

Depends R (>= 3.2.0)

License GPL-3

Encoding UTF-8

LazyData true

LinkingTo Rcpp, piton (>= 1.0.0)

Imports Rcpp

URL https://github.com/nacnudus/tidyxl

BugReports https://github.com/nacnudus/tidyxl/issues

RoxygenNote 7.1.1

Suggests testthat, here, knitr, rmarkdown, readxl, dplyr, tidyr,
purrr, tibble, ggplot2, cellranger, openxlsx, rlang

VignetteBuilder knitr

NeedsCompilation yes

Author Duncan Garmonsway [aut, cre],
Hadley Wickham [ctb] (Author of included readxl fragments),
Jenny Bryan [ctb] (Author of included readxl fragments),
RStudio [cph] (Copyright holder of included readxl fragments),
Marcin Kalicinski [ctb, cph] (Author of included RapidXML code)

Maintainer Duncan Garmonsway <nacnudus@gmail.com>

Repository CRAN

Date/Publication 2020-11-16 09:20:03 UTC

1

https://github.com/nacnudus/tidyxl
https://github.com/nacnudus/tidyxl/issues

2 excel_functions

R topics documented:
excel_functions . 2
is_date_format . 3
is_range . 3
maybe_xlsx . 4
tidyxl . 5
tidy_xlsx . 5
xlex . 9
xlsx_cells . 13
xlsx_color_standard . 16
xlsx_color_theme . 17
xlsx_formats . 17
xlsx_names . 19
xlsx_sheet_names . 20
xlsx_validation . 20

Index 22

excel_functions Names of all Excel functions

Description

A dataset containing the names of all functions available in Excel. This is useful for identifying
user-defined functions in formulas tokenized by xlex().

Usage

excel_functions

Format

A character vector of length 600.

Details

Note that this includes future function names that are already reserved.

Source

Pages 26–27 of Microsoft’s document "Excel (.xlsx) extensions to the office openxml spreadsheetml
file format p.24" https://docs.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/
2c5dee00-eff2-4b22-92b6-0738acd4475e, revision 8.0 2017-06-20.

https://docs.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/2c5dee00-eff2-4b22-92b6-0738acd4475e
https://docs.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/2c5dee00-eff2-4b22-92b6-0738acd4475e

is_date_format 3

is_date_format Test that Excel number formats are date formats

Description

is_date_format() tests whether an Excel number format string would a resolve to a date in Excel.
For example, the number format string "yyyy-mm-dd" would resolve to a date, whereas the string
"0.0\\%" would not.

This is useful if a cell formula contains a number formatting string (e.g. TEXT(45678,"yyyy")),
and you need to know that the constant 45678 is a date in order to recover it at full resolution (rather
than parsing the character output "2025" as a year).

It is used internally to convert the value of a cell to the correct data type.

Usage

is_date_format(x)

Arguments

x character vector of number format strings

Examples

is_date_format(c("yyyy-mm-dd", "0.0%", "h:m:s", "£#,##0;[Red]-£#,##0"))

is_range Test that Excel formulas are ranges

Description

is_range() tests whether or not an Excel formula is a range. A formula like A1 is a range, whereas
a formula like MAX(A1,2) is not. Formulas are not evaluated, so it returns FALSE for formulas that
would eventually resolve to arrange (e.g. INDEX(A1:A10,2)) but that are not immediately a range.

Usage

is_range(x)

Arguments

x character vector of formulas

Examples

x <- c("A1", "Sheet1!A1", "[0]Sheet1!A1", "A1,A2", "A:A 3:3", "MAX(A1,2)")
is_range(x)

4 maybe_xlsx

maybe_xlsx Determine file format

Description

Whether a file may be be xlsx, xlsm, xltx or xltm (rather than xls or xlt), based on the file signature
or "magic number", rather than the filename extension.

Usage

maybe_xlsx(path)

Arguments

path File path

Details

Only ’maybe’, not ’is’, because the xlsx magic number is common to all zip files, not specific to
xlsx files. The inverse, ’is_xls’ isn’t possible either, because the xls magic number is common to
other Microsoft Office files such as .doc and .ppt.

This uses some logic from Jenny Bryan’s commit to the readxl package.

Value

Logicial

Examples

examples_xlsx <- system.file("extdata/examples.xlsx", package = "tidyxl")
examples_xlsm <- system.file("extdata/examples.xlsm", package = "tidyxl")
examples_xltx <- system.file("extdata/examples.xltx", package = "tidyxl")
examples_xltm <- system.file("extdata/examples.xltm", package = "tidyxl")
examples_xlsb <- system.file("extdata/examples.xlsb", package = "tidyxl")
examples_xls <- system.file("extdata/examples.xls", package = "tidyxl")

maybe_xlsx(examples_xlsx)
maybe_xlsx(examples_xlsm)
maybe_xlsx(examples_xltx)
maybe_xlsx(examples_xltm)
maybe_xlsx(examples_xlsb)
maybe_xlsx(examples_xls)

https://en.wikipedia.org/wiki/List_of_file_signatures
https://github.com/tidyverse/readxl/commit/ff071a4758da3677568362daff52e419c4e0cdfe

tidyxl 5

tidyxl tidyxl: Import xlsx (Excel) spreadsheet data and formatting into tidy
structures.

Description

Tidyxl imports data from spreadsheets without coercing it into a rectangle, and retains information
encoded in cell formatting (e.g. font/fill/border). This data structure is compatible with the ’unpiv-
otr’ package for recognising information expressed by relative cell positions and cell formatting,
and re-expressing it in a tidy way.

Details

• xlsx_cells() Import cells from an xlsx file.

• xlsx_formats() Import formatting from an xlsx file.

• xlsx_sheet_names() List the names of sheets in an xlsx file.

• xlsx_names() Import names and definitions of named ranges (aka ’named formulas’, ’defined
names’) from an xlsx file.

• is_range() Test whether a ’name’ from xlsx_names() refers to a range or not.

• xlsx_validation() Import cell input validation rules (e.g. ’must be from this drop-down
list’) from an xlsx file.

• xlsx_colour_standard() A data frame of standard colour names and their RGB values.

• xlsx_colour_theme() Imports a data frame of theme colour names and their RGB values
from an xlsx file.

• xlex() Tokenise (lex) an Excel formula.

tidy_xlsx Import xlsx (Excel) cell contents into a tidy structure.

Description

tidy_xlsx() is deprecated. Please use xlsx_cells() or xlsx_formats() instead.

tidy_xlsx() imports data from spreadsheets without coercing it into a rectangle. Each cell is
represented by a row in a data frame, giving the cell’s address, contents, formula, height, width,
and keys to look up the cell’s formatting in an adjacent data structure within the list returned by this
function.

Usage

tidy_xlsx(path, sheets = NA)

6 tidy_xlsx

Arguments

path Path to the xlsx file.

sheets Sheets to read. Either a character vector (the names of the sheets), an integer
vector (the positions of the sheets), or NA (default, all sheets).

Details

A cell has two ’values’: its content, and sometimes also a formula. It also has formatting applied at
the ’style’ level, which can be locally overridden.

Content: Depending on the cell, the content may be a numeric value such as 365 or 365.25,
it may represent a date/datetime in one of Excel’s date/datetime systems, or it may be an index
into an internal table of strings. tidy_xlsx() attempts to infer the correct data type of each cell,
returning its value in the appropriate column (error, logical, numeric, date, character). In case this
cleverness is unhelpful, the unparsed value and type information is available in the ’content’ and
’type’ columns.

Formula: When a cell has a formula, the value in the ’content’ column is the result of the formula
the last time it was evaluated.
Certain groups of cells may share a formula that differs only by addresses referred to in the
formula; such groups are identified by an index, the ’formula_group’. The xlsx (Excel) file format
only records the formula against one cell in any group, but tidy_xlsx() propagates the formula
to all the cells in the group, making the necessary changes to relative addresses in the formula.
Array formulas may also apply to a group of cells, identified by an address ’formula_ref’, but
xlsx (Excel) file format only records the formula against one cell in the group. Unlike ordinary
formulas, tidy_xlsx() does not propagate these to the other cells in the group.
Formulas that refer to other workbooks currently do not name the workbooks directly, instead via
indices such as [1]. It is planned to dereference these.

Formatting: Cell formatting is returned in x$formats. There are two types of formatting: ’style’
formatting, such as Excel’s built-in styles ’normal’, ’bad’, etc., and ’local’ formatting, which over-
rides the style. These are returned in x$formats$style and x$formats$local, with identical
structures. To look up the local formatting of a given cell, take the cell’s ’local_format_id’ value
(x$data$Sheet1[1,"local_format_id"]), and use it as an index into the format structure. E.g.
to look up the font size, x$formats$local$font$size[local_format_id]. To see all available
formats, type str(x$formats$local).

Value

A list of the data within each sheet ($data), and the formatting applied to each cell ($formats).

Each sheet’s data is returned as a data frames, one per sheet, by the sheet name. For example,
the data in a sheet named ’My Worksheet’ is in x$data$My Worksheet. Each data frame has the
following columns:

• address The cell address in A1 notation.

• row The row number of a cell address (integer).

• col The column number of a cell address (integer).

tidy_xlsx 7

• is_blank Whether or not the cell has a value

• data_type The type of a cell, referring to the following columns: error, logical, numeric,
date, character, blank.

• error The error value of a cell.

• logical The boolean value of a cell.

• numeric The numeric value of a cell.

• date The date value of a cell.

• character The string value of a cell.

• character_formatted A data frame of substrings and their individual formatting.

• formula The formula in a cell (see ’Details’).

• is_array Whether or not the formula is an array formula.

• formula_ref The address of a range of cells group to which an array formula or shared
formula applies (see ’Details’).

• formula_group The formula group to which the cell belongs (see ’Details’).

• comment The text of a comment attached to a cell.

• height The height of a cell’s row, in Excel’s units.

• width The width of a cell’s column, in Excel’s units.

• style_format An index into a table of style formats x$formats$style (see ’Details’).

• local_format_id An index into a table of local cell formats x$formats$local (see ’De-
tails’).

Formula: When a cell has a formula, the value in the ’content’ column is the result of the formula
the last time it was evaluated.
Certain groups of cells may share a formula that differs only by addresses referred to in the
formula; such groups are identified by an index, the ’formula_group’. The xlsx (Excel) file format
only records the formula against one cell in any group. xlsx_cells() propagates such formulas
to the other cells in a group, making the necessary changes to relative addresses in the formula.
Array formulas may also apply to a group of cells, identified by an address ’formula_ref’, but
xlsx (Excel) file format only records the formula against one cell in the group. xlsx_cells()
propagates such formulas to the other cells in a group. Unlike shared formulas, no changes to
addresses in array formulas are necessary.
Formulas that refer to other workbooks currently do not name the workbooks directly, instead via
indices such as [1]. It is planned to dereference these.

Formatting: Cell formatting is returned in x$formats. There are two types or scopes of format-
ting: ’style’ formatting, such as Excel’s built-in styles ’normal’, ’bad’, etc., and ’local’ formatting,
which overrides particular elements of the style, e.g. by making it bold. Both types of are returned
in x$formats$style and x$formats$local, with identical structures. To look up the local for-
matting of a given cell, take the cell’s ’local_format_id’ value (x$data$Sheet1[1,"local_format_id"]),
and use it as an index into the format structure. E.g. to look up the font size, x$formats$local$font$size[local_format_id].
To see all available formats, type str(x$formats$local).
Colours may be recorded in any of three ways: a hexadecimal RGB string with or without alpha,
an ’indexed’ colour, and an index into a ’theme’. tidy_xlsx dereferences ’indexed’ and ’theme’

8 tidy_xlsx

colours to their hexadecimal RGB string representation, and standardises all RGB strings to have
an alpha channel in the first two characters. The ’index’ and the ’theme’ name are still provided.
To filter by an RGB string, you could look up the RGB values in a spreadsheet program (e.g.
Excel, LibreOffice, Gnumeric), and use the grDevices::rgb() function to convert these to a
hexadecimal string. Put the alpha value in first, e.g.

A <- 1; R <- 0.5; G <- 0; B <- 0
rgb(A, R, G, B)
[1] "#FF800000"

Strings can be formatted within a cell, so that a single cell can contain substrings with different
formatting. This in-cell formatting is available in the column character_formatted, which is a
list-column of data frames. Each row of each data frame describes a substring and its formatting.
For cells without a character value, character_formatted is NULL, so for further processing you
might need to filter out the NULLs first.

Examples

Not run:
examples <- system.file("extdata/examples.xlsx", package = "tidyxl")

All sheets
str(tidy_xlsx(examples)$data)

Specific sheet either by position or by name
str(tidy_xlsx(examples, 2)$data)
str(tidy_xlsx(examples, "Sheet1")$data)

Data (cell values)
x <- tidy_xlsx(examples)
str(x$data$Sheet1)

Formatting
str(x$formats$local)

The formats of particular cells can be retrieved like this:

Sheet1 <- x$data$Sheet1
x$formats$style$font$bold[Sheet1$style_format]
x$formats$local$font$bold[Sheet1$local_format_id]

To filter for cells of a particular format, first filter the formats to get
the relevant indices, and then filter the cells by those indices.
bold_indices <- which(x$formats$local$font$bold)
Sheet1[Sheet1$local_format_id %in% bold_indices,]

In-cell formatting is available in the `character_formatted` column as a
data frame, one row per substring.
tidy_xlsx(examples)$data$Sheet1$character_formatted[77]

End(Not run)

xlex 9

xlex Parse xlsx (Excel) formulas into tokens

Description

xlex takes an Excel formula and separates it into tokens. The name is a bad pun on ’Excel’ and
’lexer’. It returns a dataframe, one row per token, giving the token itself, its type (e.g. number, or
error), and its level.

The level is a number to show the depth of a token within nested function calls. The token A2 in the
formula IF(A1=1,A2,MAX(A3,A4)) is at level 1. Tokens A3 and A4 are at level 2. The token IF is
at level 0, which is the outermost level.

The output isn’t enough to enable computation or validation of formulas, but it is enough to inves-
tigate the structure of formulas and spreadsheets. It has been tested on millions of formulas in the
Enron corpus.

Usage

xlex(x)

Arguments

x Character vector of length 1, giving the formula.

Details

The different types of tokens are:

• ref A cell reference/address e.g. A1 or $B2:C$14.

• sheetA sheet name, e.g. Sheet1! or 'My Sheet'!. If the sheet is from a different file, then the
file is included in this token – usually it has been normalized to the form [0].

• name A named range, or more properly a named formula.

• function An Excel or user-defined function, e.g. MAX or _xll.MY_CUSTOM_FUNCTION.
A complete list of official Excel functions is available in the vector excel_functions.

• error An error, e.g. #N/A or #REF!.

• bool TRUE or FALSE – note that there are also functions TRUE() and FALSE().

• number All forms of numbers, e.g. 1, 1.1, -1, 1.2E3.

• text Strings inside double quotes, e.g. "Hello,World!".

• operator The usual infix operators, +, -, *, /, ^, <, <=, <>, etc. and also the range operator :
when it is used with ranges that aren’t cell addresses, e.g. INDEX(something):A1. The union
operator , is the same symbol that is used to separate function arguments and array columns,
so it is only tagged operator when it is inside parentheses that are not function parentheses
or array curly braces (see the examples).

• paren_open An open parenthesis (indicating an increase in the level of nesting, but not
directly enclosing function arguments.

10 xlex

• paren_close As open, but reducing the level of nesting.

• open_array An open curly brace ’{’ indicating the start of an array of constants, and an
increase in the level of nesting.

• close_array As open_array, but ending the array of constants

• fun_open An open parenthesis (immediately after a function name, directly enclosing the
function arguments.

• fun_close As fun_open but immediately after the function arguments.

• separator A comma , separating function arguments or array columns, or a semicolon ;
separating array rows.

• DDE A call to a Dynamic Data Exchange server, usually normalized to the form [1]!'DDE_parameter=1',
but the full form is 'ABCD'|'EFGH'!'IJKL'.

• space Some old files haven’t stripped formulas of meaningless spaces. They are returned as
space tokens so that the original formula can always be reconstructed by concatenating all
tokens.

• other If you see this, then something has gone wrong – please report it at https://github.com/nacnudus/tidyxl/issues
with a reproducible example (e.g. using the reprex package).

Every part of the original formula is returned as a token, so the original formula can be reconstructed
by concatenating the tokens. If that doesn’t work, please report it at https://github.com/nacnudus/tidyxl/issues
with a reproducible example (e.g. using the reprex package).

The XLParser project was a great help in creating the grammar. https://github.com/spreadsheetlab/XLParser.

Value

A data frame (a tibble, if you use the tidyverse) one row per token, giving the token itself, its type
(e.g. number, or error), and its level.

A class attribute xlex is added, so that the base::print() generic can be specialised to print the
tree prettily.

Examples

All explicit cell references/addresses are returned as a single 'ref' token.
xlex("A1")
xlex("A$1")
xlex("$A1")
xlex("A1")
xlex("A1:B2")
xlex("1:1") # Whole row
xlex("A:B") # Whole column

If one part of an address is a name or a function, then the colon ':' is
regarded as a 'range operator', so is tagged 'operator'.
xlex("A1:SOME.NAME")
xlex("SOME_FUNCTION():B2")
xlex("SOME_FUNCTION():SOME.NAME")

Sheet names are recognised by the terminal exclamation mark '!'.
xlex("Sheet1!A1")

xlex 11

xlex("'Sheet 1'!A1") # Quoted names may contain some punctuation
xlex("'It''s a sheet'!A1") # Quotes are escaped by doubling

Sheets can be ranged together in so-called 'three-dimensional formulas'.
Both sheets are returned in a single 'sheet' token.
xlex("Sheet1:Sheet2!A1")
xlex("'Sheet 1:Sheet 2'!A1") # Quotes surround both (rather than each) sheet

Sheets from other files are prefixed by the filename, which Excel
normalizes the filenames into indexes. Either way, xlex() includes the
file/index in the 'sheet' token.
xlex("[1]Sheet1!A1")
xlex("'[1]Sheet 1'!A1") # Quotes surround both the file index and the sheet
xlex("'C:\\My Documents\\[file.xlsx]Sheet1'!A1")

Function names are recognised by the terminal open-parenthesis '('. There
is no distinction between custom functions and built-in Excel functions.
The open-parenthesis is tagged 'fun_open', and the corresponding
close-parenthesis at the end of the arguments is tagged 'fun_close'.
xlex("MAX(1,2)")
xlex("_xll.MY_CUSTOM_FUNCTION()")

Named ranges (properly called 'named formulas') are a last resort after
attempting to match a function (ending in an open parenthesis '(') or a
sheet (ending in an exclamation mark '!')
xlex("MY_NAMED_RANGE")

Some cell addresses/references, functions and names can look alike, but
xlex() should always make the right choice.
xlex("XFD1") # A cell in the maximum column in Excel
xlex("XFE1") # Beyond the maximum column, must be a named range/formula
xlex("A1048576") # A cell in the maximum row in Excel
xlex("A1048577") # Beyond the maximum row, must be a named range/formula
xlex("LOG10") # A cell address
xlex("LOG10()") # A log function
xlex("LOG:LOG") # The whole column 'LOG'
xlex("LOG") # Not a cell address, must be a named range/formula
xlex("LOG()") # Another log function
xlex("A1.2!A1") # A sheet called 'A1.2'

Text is surrounded by double-quotes.
xlex("\"Some text\"")
xlex("\"Some \"\"text\"\"\"") # Double-quotes within text are escaped by

Numbers are signed where it makes sense, and can be scientific
xlex("1")
xlex("1.2")
xlex("-1")
xlex("-1-1")
xlex("-1+-1")
xlex("MAX(-1-1)")
xlex("-1.2E-3")

12 xlex

Booleans can be constants or functions, and names can look like booleans,
but xlex() should always make the right choice.
xlex("TRUE")
xlex("TRUEISH")
xlex("TRUE!A1")
xlex("TRUE()")

Errors are tagged 'error'
xlex("#DIV/0!")
xlex("#N/A")
xlex("#NAME?")
xlex("#NULL!")
xlex("#NUM!")
xlex("#REF!")
xlex("#VALUE!")

Operators with more than one character are treated as single tokens
xlex("1<>2")
xlex("1<=2")
xlex("1<2")
xlex("1=2")
xlex("1&2")
xlex("1 2")
xlex("(1,2)")
xlex("1%") # postfix operator

The union operator is a comma ',', which is the same symbol that is used
to separate function arguments or array columns. It is tagged 'operator'
only when it is inside parentheses that are not function parentheses or
array curly braces. The curly braces are tagged 'array_open' and
'array_close'.
tidyxl::xlex("A1,B2") # invalid formula, defaults to 'union' to avoid a crash
tidyxl::xlex("(A1,B2)")
tidyxl::xlex("MAX(A1,B2)")
tidyxl::xlex("SMALL((A1,B2),1)")

Function arguments are separated by commas ',', which are tagged
'separator'.
xlex("MAX(1,2)")

Nested functions are marked by an increase in the 'level'. The level
increases inside parentheses, rather than at the parentheses. Curly
braces, for arrays, have the same behaviour, as do subexpressions inside
ordinary parenthesis, tagged 'paren_open' and 'paren_close'. To see the
levels explicitly (rather than by the pretty printing), print as a normal
data frame or tibble by specifying `pretty = FALSE`.
class with as.data.frame.
xlex("MAX(MIN(1,2),3)")
xlex("{1,2;3,4}")
xlex("1*(2+3)")
print(xlex("1*(2+3)"), pretty = FALSE)

Arrays are marked by opening and closing curly braces, with comma ','

xlsx_cells 13

between columns, and semicolons ';' between rows Commas and semicolons are
both tagged 'separator'. Arrays contain only constants, which are
booleans, numbers, text, and errors.
xlex("MAX({1,2;3,4})")
xlex("=MAX({-1E-2,TRUE;#N/A,\"Hello, World!\"})")

Structured references are surrounded by square brackets. Subexpressions
may also be surrounded by square brackets, but xlex() returns the whole
expression in a single 'structured_ref' token.
xlex("[@col2]")
xlex("SUM([col22])")
xlex("Table1[col1]")
xlex("Table1[[col1]:[col2]]")
xlex("Table1[#Headers]")
xlex("Table1[[#Headers],[col1]]")
xlex("Table1[[#Headers],[col1]:[col2]]")

DDE calls (Dynamic Data Exchange) are normalized by Excel into indexes.
Either way, xlex() includes everything in one token.
xlex("[1]!'DDE_parameter=1'")
xlex("'Quote'|'NYSE'!ZAXX")
Meaningless spaces that appear in some old files are returned as 'space'
tokens, so that the original formula can still be recovered by
concatenating all the tokens. Spaces between function names and their open
parenthesis have not been observed, so are not permitted.
xlex(" MAX(A1) ")

print.xlex() invisibly returns the original argument, so that it can be
used in magrittr pipelines.
str(print(xlex("ROUND(A1*2")))

xlsx_cells Import xlsx (Excel) cell contents into a tidy structure.

Description

xlsx_cells() imports data from spreadsheets without coercing it into a rectangle. Each cell is
represented by a row in a data frame, giving the cell’s address, contents, formula, height, width, and
keys to look up the cell’s formatting in the return value of xlsx_formats().

Usage

xlsx_cells(
path,
sheets = NA,
check_filetype = TRUE,
include_blank_cells = TRUE

)

14 xlsx_cells

Arguments

path Path to the xlsx file.
sheets Sheets to read. Either a character vector (the names of the sheets), an integer

vector (the positions of the sheets), or NA (default, all sheets).
check_filetype Logical. Whether to check that the filetype is xlsx (or xlsm) by looking at the

file itself, rather than using the filename extension.
include_blank_cells

Logical. Whether to include cells that have no value or formula (but might
have formatting or comments). Useful when a whole column of cells has been
formatted, but most are empty. Try setting this to FALSE if a spreadsheet seems
too large to load.

Details

A cell has two ’values’: its content, and sometimes also a formula. It also has formatting applied at
the ’style’ level, which can be locally overridden.

Content: Depending on the cell, the content may be a numeric value such as 365 or 365.25, it
may represent a date/datetime in one of Excel’s date/datetime systems, or it may be an index into
an internal table of strings. xlsx_cells() attempts to infer the correct data type of each cell,
returning its value in the appropriate column (error, logical, numeric, date, character). In case this
cleverness is unhelpful, the unparsed value and type information is available in the ’content’ and
’type’ columns.

Formula: When a cell has a formula, the value in the ’content’ column is the result of the formula
the last time it was evaluated.
Certain groups of cells may share a formula that differs only by addresses referred to in the
formula; such groups are identified by an index, the ’formula_group’. The xlsx (Excel) file format
only records the formula against one cell in any group. xlsx_cells() propagates such formulas
to the other cells in a group, making the necessary changes to relative addresses in the formula.
Array formulas may also apply to a group of cells, identified by an address ’formula_ref’, but
xlsx (Excel) file format only records the formula against one cell in the group. xlsx_cells()
propagates such formulas to the other cells in a group. Unlike shared formulas, no changes to
addresses in array formulas are necessary.
Formulas that refer to other workbooks currently do not name the workbooks directly, instead via
indices such as [1]. It is planned to dereference these.

Formatting: Cell formatting is returned by xlsx_formats(). There are two types of formatting:
’style’ formatting, such as Excel’s built-in styles ’normal’, ’bad’, etc., and ’local’ formatting,
which overrides the style. These are returned in the $style and $local sublists of xlsx_formats(),
with identical structures.
To look up the local formatting of a given cell, take the cell’s local_format_id value (my_cells$Sheet1[1,"local_format_id"]),
and use it as an index into the format structure. E.g. to look up the font size, my_formats$local$font$size[local_format_id].
To see all available formats, type str(my_formats$local).
Strings can be formatted within a cell, so that a single cell can contain substrings with different
formatting. This in-cell formatting is available in the column character_formatted, which is a
list-column of data frames. Each row of each data frame describes a substring and its formatting.
For cells without a character value, character_formatted is NULL, so for further processing you
might need to filter out the NULLs first.

xlsx_cells 15

Value

A data frame with the following columns.

• sheet The worksheet that the cell is from.

• address The cell address in A1 notation.

• row The row number of a cell address (integer).

• col The column number of a cell address (integer).

• is_blank Whether or not the cell has a value

• data_type The type of a cell, referring to the following columns: error, logical, numeric,
date, character, blank.

• error The error value of a cell.

• logical The boolean value of a cell.

• numeric The numeric value of a cell.

• date The date value of a cell.

• character The string value of a cell.

• formula The formula in a cell (see ’Details’).

• is_array Whether or not the formula is an array formula.

• formula_ref The address of a range of cells group to which an array formula or shared
formula applies (see ’Details’).

• formula_group The formula group to which the cell belongs (see ’Details’).

• comment The text of a comment attached to a cell.

• height The height of a cell’s row, in Excel’s units.

• width The width of a cell’s column, in Excel’s units.

• style_format An index into a table of style formats x$formats$style (see ’Details’).

• local_format_id An index into a table of local cell formats x$formats$local (see ’De-
tails’).

Cell formatting is returned in xlsx_formats(). There are two types or scopes of formatting: ’style’
formatting, such as Excel’s built-in styles ’normal’, ’bad’, etc., and ’local’ formatting, which over-
rides particular elements of the style, e.g. by making it bold. Both types are returned, in the $style
and $local sublists of xlsx_formats(), with identical structures. To look up the local formatting of
a given cell, take the cell’s ’local_format_id’ value (my_cells$data$Sheet1[1,"local_format_id"]),
and use it as an index into the format structure. E.g. to look up the font size, my_formats$local$font$size[local_format_id].
To see all available formats, type str(my_formats$local).

Examples

examples <- system.file("extdata/examples.xlsx", package = "tidyxl")

All sheets
str(xlsx_cells(examples))

Specific sheet either by position or by name
str(xlsx_cells(examples, 2))

16 xlsx_color_standard

str(xlsx_cells(examples, "Sheet1"))

The formats of particular cells can be retrieved like this:

Sheet1 <- xlsx_cells(examples, "Sheet1")
formats <- xlsx_formats(examples)

formats$local$font$bold[Sheet1$local_format_id]
formats$style$font$bold[Sheet1$style_format]

To filter for cells of a particular format, first filter the formats to get
the relevant indices, and then filter the cells by those indices.
bold_indices <- which(formats$local$font$bold)
Sheet1[Sheet1$local_format_id %in% bold_indices,]

In-cell formatting is available in the `character_formatted` column as a
data frame, one row per substring.
xlsx_cells(examples)$character_formatted[77]

xlsx_color_standard Names and RGB values of Excel standard colours

Description

A dataset containing the names and RGB colour values of Excel’s standard palette.

Usage

xlsx_color_standard

xlsx_colour_standard

Format

A data frame with 10 rows and 2 variables:

• name Name of the colour

• rgb RGB value of the colour

An object of class tbl_df (inherits from tbl, data.frame) with 10 rows and 2 columns.

xlsx_color_theme 17

xlsx_color_theme Import theme color definitions from xlsx (Excel) files

Description

xlsx_color_theme() (alias xlsx_colour_theme() returns the names and RGB values of theme
colours defined in xlsx (Excel) files. For example, "accent6" is the name of a theme colour in
Excel, which could resolve to any RGB colour defined by the author of the file. Themes are often
defined to comply with corporate standards.

Usage

xlsx_color_theme(path, check_filetype = TRUE)

xlsx_colour_theme(path, check_filetype = TRUE)

Arguments

path Path to the xlsx file.

check_filetype Logical. Whether to check that the filetype is xlsx (or xlsm) by looking at the
file itself, rather than using the filename extension.

Value

A data frame, one row per colour, with the following columns.

• name The name of the theme.

• rgb The RGB colour that has been set for the theme in this file.

Examples

examples <- system.file("extdata/examples.xlsx", package = "tidyxl")
xlsx_color_theme(examples)
xlsx_colour_theme(examples)

xlsx_formats Import xlsx (Excel) formatting definitions.

Description

xlsx_formats() imports formatting definitions from spreadsheets. The structure is a nested list,
e.g. bold is a vector within the list font, which is within the list local, which is within the list
returned by xlsx_formats(). You can look up a cell’s formatting by indexing the bottom-level
vectors. See ’Details’ for examples.

18 xlsx_formats

Usage

xlsx_formats(path, check_filetype = TRUE)

Arguments

path Path to the xlsx file.

check_filetype Logical. Whether to check that the filetype is xlsx (or xlsm) by looking at the
file itself, rather than using the filename extension.

Details

There are two types of formatting: ’style’ formatting, such as Excel’s built-in styles ’normal’, ’bad’,
etc., and ’local’ formatting, which overrides the style. These are returned in the $style and $local
sublists of xlsx_formats(), with identical structures.

To look up the local formatting of a given cell, take the cell’s local_format_id value (my_cells$Sheet1[1,"local_format_id"]),
and use it as an index into the format structure. E.g. to look up the font size, my_formats$local$font$size[local_format_id].
To see all available formats, type str(my_formats$local).

Colours may be recorded in any of three ways: a hexadecimal RGB string with or without alpha, an
’indexed’ colour, and an index into a ’theme’. xlsx_formats() dereferences ’indexed’ and ’theme’
colours to their hexadecimal RGB string representation, and standardises all RGB strings to have
an alpha channel in the first two characters. The ’index’ and the ’theme’ name are still provided. To
filter by an RGB string, you could look up the RGB values in a spreadsheet program (e.g. Excel,
LibreOffice, Gnumeric), and use the grDevices::rgb() function to convert these to a hexadecimal
string.

A <- 1; R <- 0.5; G <- 0; B <- 0
rgb(A, R, G, B)
[1] "#FF800000"

Value

A nested list of vectors, beginning at the top level with $style and $local, then drilling down to the
vectors that hold the definitions. E.g. my_formats$local$font$size.

Examples

examples <- system.file("extdata/examples.xlsx", package = "tidyxl")
str(xlsx_formats(examples))

The formats of particular cells can be retrieved like this:

cells <- xlsx_cells(examples)
formats <- xlsx_formats(examples)

formats$local$font$bold[cells$local_format_id]
formats$style$font$bold[cells$style_format]

To filter for cells of a particular format, first filter the formats to get
the relevant indices, and then filter the cells by those indices.

xlsx_names 19

bold_indices <- which(formats$local$font$bold)
cells[cells$local_format_id %in% bold_indices,]

xlsx_names Import named formulas from xlsx (Excel) files

Description

xlsx_names() returns the names and definitions of named formulas (aka named ranges) in xlsx
(Excel) files.

Most names refer to ranges of cells, but they can also be defined as formulas. xlsx_names() tells
you whether or not they are a range, using is_range() to work this out.

Names are scoped either globally (used only once in the file), or locally to each sheet (can be reused
with different definitions in different sheets). For sheet-scoped names, xlsx_names() provides the
name of the sheet.

Usage

xlsx_names(path, check_filetype = TRUE)

Arguments

path Path to the xlsx file.

check_filetype Logical. Whether to check that the filetype is xlsx (or xlsm) by looking at the
file itself, rather than using the filename extension.

Value

A data frame, one row per name, with the following columns.

• sheet If the name is defined only for a specific sheet, the name of the sheet. Otherwise NA for
names defined globally.

• name

• formula Usually a range of cells, but sometimes a whole formula, e.g. MAX(A2,1).

• comment A description given by the spreadsheet author.

• hidden Whether or not the name is visible to the user in spreadsheet applications. Hidden
names are usually ones that were created automatically by the spreadsheet application.

• is_range Whether or not the formula is a range of cells. This is handy for joining to the
set of cells referred to by a name. In this context, commas between cell addresses are always
regarded as union operators – this differs from xlex(), see that help file for details.

Examples

examples <- system.file("extdata/examples.xlsx", package = "tidyxl")
xlsx_names(examples)

20 xlsx_validation

xlsx_sheet_names List sheets in an xlsx (Excel) file

Description

xlsx_sheets() returns the names of the sheets in a workbook, as a character vector. They are in
the same order as they appear in the spreadsheet when it is opened with a spreadsheet application
like Excel or LibreOffice.

Usage

xlsx_sheet_names(path, check_filetype = TRUE)

Arguments

path Path to the xlsx file.

check_filetype Logical. Whether to check that the filetype is xlsx (or xlsm) by looking at the
file itself, rather than using the filename extension.

Value

A character vector of the names of the worksheets in the file.

Examples

examples <- system.file("extdata/examples.xlsx", package = "tidyxl")
xlsx_sheet_names(examples)

xlsx_validation Import data validation rules of cells in xlsx (Excel) files

Description

xlsx_validation() returns the data validation rules applied to cells in xlsx (Excel) files. Data
validation rules control what constants can be entered into a cell, e.g. any whole number between 0
and 9, or one of several values from another part of the spreadsheet.

Usage

xlsx_validation(path, sheets = NA)

Arguments

path Path to the xlsx file.

sheets Sheets to read. Either a character vector (the names of the sheets), an integer
vector (the positions of the sheets), or NA (default, all sheets).

xlsx_validation 21

Value

A data frame with the following columns.

• sheet The worksheet that a validation rule cell is from.

• ref Comma-delimited cell addresses to which the rules apply, e.g. A106 or A115,A121:A122‘.
• type Data type of input, one of whole, decimal, list, date, time, textLength, custom, and whole‘.

• operator Unless type is list or custom, then operator is one of between, notBetween,
equal, notEqual, greaterThan, lessThan, greaterThanOrEqual, lessthanOrEqual.

• formula1 If type is list, then a range of cells whose values are allowed by the rule. If
type is custom, then a formula to determine allowable values. Otherwise, a cell address or
constant, coerced to character. Dates and times are formatted like "2017-01-27 13:30:45".
Times without dates are formatted like "13:30:45".

• formula2 If operator is between or notBetween, then a cell address or constant as with
formula1, otherwise NA.

• allow_blank Boolean, whether or not the rule allows blanks.

• show_input_message Boolean, whether or not the rule shows a message when the user begins
entering a value.

• prompt_title Text to appear in the title bar of a popup message box when the user begins
entering a value.

• prompt_body Text to appear in a popup message box when the user begins entering a value.
When NA, then some default text is shown.

• show_error_message Boolean, whether or not the rule shows a message when the user has
entered a forbidden value. When NA, then some default text is shown.

• error_title Text to appear in the title bar of a popup message box when the user enters a
forbidden value. When NA, then some default text is shown.

• error_body Text to appear in a popup message box when the user enters a forbidden value.
When NA, then some default text is shown.

• error_symbol Name of a symbol to appear in the popup error message when the user enters
a forbidden value.

Examples

examples <- system.file("extdata/examples.xlsx", package = "tidyxl")
xlsx_validation(examples)
xlsx_validation(examples, 1)
xlsx_validation(examples, "Sheet1")

Index

∗ datasets
excel_functions, 2
xlsx_color_standard, 16

base::print(), 10

excel_functions, 2, 9

grDevices::rgb(), 8, 18

is_date_format, 3
is_range, 3
is_range(), 5, 19

maybe_xlsx, 4

tidy_xlsx, 5
tidyxl, 5

xlex, 9
xlex(), 2, 5, 19
xlsx_cells, 13
xlsx_cells(), 5
xlsx_color_standard, 16
xlsx_color_theme, 17
xlsx_colour_standard

(xlsx_color_standard), 16
xlsx_colour_standard(), 5
xlsx_colour_theme (xlsx_color_theme), 17
xlsx_colour_theme(), 5
xlsx_formats, 17
xlsx_formats(), 5, 13–15
xlsx_names, 19
xlsx_names(), 5
xlsx_sheet_names, 20
xlsx_sheet_names(), 5
xlsx_validation, 20
xlsx_validation(), 5

22

	excel_functions
	is_date_format
	is_range
	maybe_xlsx
	tidyxl
	tidy_xlsx
	xlex
	xlsx_cells
	xlsx_color_standard
	xlsx_color_theme
	xlsx_formats
	xlsx_names
	xlsx_sheet_names
	xlsx_validation
	Index

