
Package ‘timeDate’
July 19, 2022

Title Rmetrics - Chronological and Calendar Objects

Date 2022-07-19

Version 4021.104

Description The 'timeDate' class fulfils the conventions of the ISO 8601
standard as well as of the ANSI C and POSIX standards. Beyond
these standards it provides the ``Financial Center'' concept
which allows to handle data records collected in different time
zones and mix them up to have always the proper time stamps with
respect to your personal financial center, or alternatively to the GMT
reference time. It can thus also handle time stamps from historical
data records from the same time zone, even if the financial
centers changed day light saving times at different calendar
dates.

Depends R (>= 2.15.1)

Imports graphics, utils, stats, methods

Suggests date, RUnit

License GPL (>= 2)

URL https://r-forge.r-project.org/scm/viewvc.php/pkg/timeDate/?root=rmetrics
(devel), https://www.rmetrics.org

BugReports https://r-forge.r-project.org/projects/rmetrics

NeedsCompilation no

Author Diethelm Wuertz [aut] (original code),
Tobias Setz [aut],
Yohan Chalabi [aut],
Martin Maechler [ctb] (<https://orcid.org/0000-0002-8685-9910>),
Joe W. Byers [ctb],
Georgi N. Boshnakov [cre, ctb]

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>

Repository CRAN

Date/Publication 2022-07-19 13:30:02 UTC

1

https://r-forge.r-project.org/scm/viewvc.php/pkg/timeDate/?root=rmetrics
https://www.rmetrics.org
https://r-forge.r-project.org/projects/rmetrics
https://orcid.org/0000-0002-8685-9910

2 R topics documented:

R topics documented:
timeDate-package . 3
.endpoints . 13
align . 14
as.timeDate . 15
blockStart . 16
c . 17
currentYear . 18
DaylightSavingTime . 19
dayOfWeek . 20
dayOfYear . 20
diff . 21
difftimeDate . 22
Easter . 23
finCenter . 24
firstDay . 25
format-methods . 26
holiday . 27
holidayDate . 29
holidayLONDON . 32
holidayNERC . 33
holidayNYSE . 34
holidayTSX . 34
holidayZURICH . 35
is.na-methods . 36
isBizday . 36
isRegular . 37
isWeekday . 38
julian . 39
kurtosis . 40
length . 41
listFinCenter . 42
listHolidays . 43
midnightStandard . 43
myFinCenter . 44
myUnits . 45
names-methods . 45
nDay . 46
onOrAfter . 47
periods . 48
plot-methods . 49
rep . 50
rev . 51
RmetricsOptions . 52
round . 52
rulesFinCenter . 53
sample . 54

timeDate-package 3

show-methods . 54
skewness . 55
sort . 56
start . 57
subset . 58
summary-methods . 59
Sys.timeDate . 59
timeCalendar . 60
timeDate . 61
timeDate-class . 62
timeDateMathOps . 66
timeSequence . 68
unique . 69
whichFormat . 70
window . 71

Index 72

timeDate-package Utilities and Tools Package

Description

Package of calendar, date, time tools and utilities for Rmetrics.

Overview of Topics

This help file describes the concepts and methods behind the S4 ’timeDate’ class used in Rmetrics
for financial data and time management together with the management of public and ecclesiastical
holidays.

The ’timeDate’ class fulfils the conventions of the ISO 8601 standard as well as of the ANSI C and
POSIX standards. Beyond these standards it provides the "Financial Center" concept which allows
to handle data records collected in different time zones and mix them up to have always the proper
time stamps with respect to your personal financial center, or alternatively to the GMT reference
time. It can thus also handle time stamps from historical data records from the same time zone,
even if the financial centers changed day light saving times at different calendar dates.

Moreover ’timeDate’ is almost compatible with the ’timeDate’ class in Insightful’s SPlus ’timeDate’
class. If you move between the two worlds of R and SPlus, you will not have to rewrite your code.
This is important for business applications.

The ’timeDate’ class offers not only date and time functionality but it also offers sophisticated
calendar manipulations for business days, weekends, public and ecclesiastical holidays.

This help page is presented in four sections:

1. S4 ’timeDate’ Class and Functions
2. Operations on ’timeDate’ Objects
3. Daylight Saving Time and Financial Centers
4. Holidays and Holiday Calendars

4 timeDate-package

1. S4 ’timeDate’ Class and Generator Functions

Date and time stamps are represented by an S4 object of class ’timeDate’.

setClass("timeDate",
representation(
Data = "POSIXct",
format = "character",
FinCenter = "character"
))

They have three slots. The @Data slot holds the time stamps which are POSIXct formatted as
specified in the @format slot. The time stamps are local and belong to the financial center expressed
through the slot @FinCenter.

There are several possibilities to generate a ’timeDate’ object. The most forward procedure is to
use one of the following functions:

timeDate – Creates a ’timeDate’ object from scratch,
timeSequence – creates a sequence of ’timeDate’ objects,
timeCalendar – creates a ’timeDate’ object from calendar atoms,
Sys.timeDate – returns the current date and time as a ’timeDate’ object.

With the function timeDate you can create ’timeDate’ objects from scratch by specifying a charac-
ter vector of time stamps and a financial center which the character vector belongs to. "GMT"
is used by default as the reference for all date/time operations. But you can set the variable
myFinCenter to your local financial center reference if you want to reference dates/time to it.

Examples:

Show My local Financial Center - Note, by Default this is "GMT"
getRmetricsOptions("myFinCenter")

Compose Character Vectors of Dates and Times:
Dates <- c("1989-09-28","2001-01-15","2004-08-30","1990-02-09")
Times <- c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
charvec = paste(Dates, Times)

Create a 'timeDate' object
timeDate(charvec)

Create a 'timeDate' object with my financial center set to Zurich
myFinCenter <- "Zurich"
timeDate(charvec)

if the 'timeDate' was recorded in a different financial center, it
will be automatically converted to your financial center,
i.e. "Zurich".

timeDate-package 5

timeDate(charvec, zone = "Tokyo")

You can also convert a recorded 'timeDate' from your financial
center "Zurich" to another one, for example "NewYork".
timeDate(charvec, FinCenter = "NewYork")

NOTE: Rmetrics has implemented an automated date/time format identifier for many common
date/time formats which tries to automatically recognise the format for the character vector of dates
and times. You can have a look at
whichFormat(charvec).

NOTE: Rmetrics always uses the midnight standard on dates and times. You can see it with
.midnightStandard("2008-01-31 24:00:00")

Alternatively we can create a sequence of ’timeDate’ objects with the help of the function timeSequence.
This can be done in several ways, either by specifying the range of the data through the arguments
from and to, or when from is missing, by setting the argument length.out of the desired series.
Note in the case of a monthly sequence, you have further options. For example you can generate
the series with the first or last day in each month, or use more complex rules like the last or n-th
Friday in every month.

Examples:

Lets work in an international environment:
setRmetricsOptions(myFinCenter = "GMT")

Your 'timeDate' is now in the Financial Center "GMT"
timeDate(charvec)

Daily January 2008 Sequence:
timeSequence(from = "2008-01-01", to = "2008-01-31", by = "day")

Monthly 2008 Sequence:
tS = timeSequence(from = "2008-01-01", to = "2008-12-31", by = "month")
tS

Do you want the last Day or the last Friday in Month Data ?
timeLastDayInMonth(tS)
timeLastNdayInMonth(tS, nday = 5)

A third possibility is to create ’timeDate’ objects from calendar atoms. You can specify values or
vectors of equal length of integers denoting year, month, day, hour, minute and seconds. If every
day has the same time stamp, you can just add an offset.

6 timeDate-package

Examples:

Monthly calendar for Current Year
getRmetricsOptions("currentYear")
timeCalendar()

Daily 'timeDate' for January data from Tokyo local time 16:00
timeCalendar(2008, m=1, d=1:31, h=16, zone="Tokyo", FinCenter="Zurich")

Or add16 hours in seconds ...
timeCalendar(2008, m=1, d=1:31, zone="Tokyo", FinCenter="Zurich") + 16*3600

2. Operations on ’timeDate’ Objects

Many operations can be performed on ’timeDate’ objects. You can add and subtract, round and
truncate, subset, coerce or transform them to other objects. These are only few options among
many others.

Math Operations

Math operations can add and subtract dates and times, and perform logical operations on ’timeDate’
objects.

Examples:

Date and Time Now:
now = Sys.timeDate()

One Hour Later:
now + 3600

Which date/time is earlier or later ?
tC = timeCalendar()
tR = tC + round(3600*rnorm(12))
tR > tC

Lagging

You can generate suitable lagged and iterated differences:

diff.timeDate – Returns suitably lagged and iterated differences.

Examples:

timeDate-package 7

Monthly Dates 2008 and January 2009:
tC = c(timeCalendar(2008), timeCalendar(2009)[1])

Number of days in months and total 2008:
diff(tC)
sum(as.integer(diff(tC)))

Rounding and Truncating

Dates and times can be rounded or truncated. This is useful lower frequencies than seconds, for
example hourly.

round – rounds objects of class ’timeDate’,
trunc – truncates objects of class ’timeDate’.

Examples:

Round the Random Time Stamps to the Nearest Hour:
tC = timeCalendar()
tR = tC + round(3600*rnorm(12))
tR
round(tR, "h")

Truncate by Hour or to the Next Full Hour::
trunc(tR, "h")
trunc(tR + 3600, "h")

Subsetting

Subsetting a ’timeDate’ is a very important issue in the management of dates and times. Rmetrics
offers several functions which are useful in this context:

"[" – Extracts or replaces subsets from ’timeDate’ objects,
window, cut – extract a piece from a ’timeDate’ object,

In this context it is also important to know the start and the end time stamp together with the total
number of time stamps.

start – extracts the first entry of a ’timeDate’ object,
end – extracts the last entry of a ’timeDate’ object,
length – returns the length of a ’timeDate’ object.

Examples:

8 timeDate-package

Create Monthly Calendar for next year
tC = timeCalendar(getRmetricsOptions("currentYear") + 1)
tC

Start, end and length of 'timeDate' objects
start(tC)
end(tC)
length(tC)

The first Quarter - Several Alternative Solutions:
tC[1:3]
tC[-(4:length(tC))]
window(tC, start = tC[1], end = tC[3])
cut(tC, from = tC[1], to = tC[3])
tC[tC < tC[4]]

The Quarterly Series:
tC[seq(3, 12, by = 3)]

Weekdays, weekends, business days, and holidays can be easily obtained with the following func-
tions:

isWeekday – tests if a date is a weekday or not,
isWeekend – tests if a date is a weekend day or not,
isBizday – tests if a date is a business day or not,
isHoliday – tests if a date is a holiday day or not.

Examples:

A 'timeDate' Sequence around Easter 2008
Easter(2008)
tS <- timeSequence(Easter(2008, -14), Easter(2008, +14))
tS

Subset weekdays and business days:
tW <- tS[isWeekday(tS)]; tW
dayOfWeek(tW)
tB <- tS[isBizday(tS, holidayZURICH())]; tB
dayOfWeek(tB)

timeDate-package 9

The functions blockStart and blockEnd gives time stamps for equally sized blocks.

blockStart – Creates start dates for equally sized blocks,
blockEnd – Creates end dates for equally sized blocks.

Examples:

'timeDate' object for the last 365 days:
tS = timeSequence(length.out = 360)
tS

Subset Pointers for blocks of exactly 30 days:
blockStart(tS, 30)
blockEnd(tS, 30)
Sys.timeDate()

Coercions and Transformations

’timeDate’ objects are not living in an isolated world. Coercions and transformations allow ’time-
Date’ objects to communicate with other formatted time stamps. Be aware that in most cases infor-
mation can be lost if the other date.time classes do not support this functionality. There exist several
methods to coerce and transform timeDate objects into other objects.

as.timeDate – Implements Use Method,
as.timeDate.default – default Method,
as.timeDate.POSIXt – returns a ’POSIX’ object as ’timeDate’ object,
as.timeDate.Date – returns a ’POSIX’ object as ’timeDate’ object.

as.character.timeDate – Returns a ’timeDate’ object as ’character’ string,
as.double.timeDate – returns a ’timeDate’ object as ’numeric’ object,
as.data.frame.timeDate – returns a ’timeDate’ object as ’data.frame’ object,
as.POSIXct.timeDate – returns a ’timeDate’ object as ’POSIXct’ object,
as.POSIXlt.timeDate – returns a ’timeDate’ object as ’POSIXlt’ object,
as.Date.timeDate – returns a ’timeDate’ object as ’Date’ object.

Users or maintainers of other date/time classes can add their own generic functions. For example
as.timeDate.zoo and as.zoo.timeDate.

Concatenations and Reorderings

It might be sometimes useful to concatenate or reorder ’timeDate’ objects. The generic functions to
concatenate, replicate, sort, re-sample, unify and revert a ’timeDate’ objects are :

10 timeDate-package

c – Concatenates ’timeDate’ objects,
rep – replicates a ’timeDate’ object,
sort – sorts a ’timeDate’ object,
sample – resamples a ’timeDate’ object,
unique – makes a ’timeDate’ object unique,
rev – reverts a ’timeDate’ object.

NOTE: The function c of a ’timeDate’ objects takes care of possible different financial centers spe-
cific to each object to be concatenated. In such cases, all time stamps will be transformed to the
financial center of the first time stamp used in the concatenation:

Examples:

Concatenate the local time stamps to Zurich time ...
ZH = timeDate("2008-01-01 16:00:00", zone = "GMT", FinCenter = "Zurich")
NY = timeDate("2008-01-01 18:00:00", zone = "GMT", FinCenter = "NewYork")
c(ZH, NY)
c(NY, ZH)

Rordering:
tC = timeCalendar(); tC
tS = sample(tC); tS
tO = sort(tS); tO
tV = rev(tO); tV
tU = unique(c(tS, tS)); tU

3. Daylight Saving Time and Financial Centers

Each financial center worldwide has a function which returns Daylight Saving Time Rules. Almost
400 prototypes are made available through the Olson time zone data base. The cities and regions
can be listed using the command listFinCenter. The DST rules for specific financial center can
be viewed by their name, e.g. Zurich(). Additional financial centers can be added by the user
taking care of the format specification of the DST functions.

Setting Financial Centers
All time stamps are handled according to the time zone and daylight saving time rules specified by
the center through the variable myFinCenter. This variable is set by default to "GMT" but can be
changed to your local financial center or to any other financial center you want to use.

NOTE: By setting the financial center to a continent/city which lies outside of the time zone used by
your computer does not change any time settings or environment variables used by your computer.

To change the name of a financial center from one setting to another just assign to the variable
myFinCenter the desired name of the city:

Examples:

timeDate-package 11

What is my current Financial Center ?
getRmetricsOptions("myFinCenter")

Change to Zurich:
setRmetricsOptions(myFinCenter = "Zurich")
getRmetricsOptions("myFinCenter")

From now on, all dates and times are handled within the middle European time zone and the DST
rules which are valid for Zurich.

List of Financial Centers
There are many other financial centers supported by Rmetrics. They can be displayed by the func-
tion listFinCenter. You can also display partial lists with wildcards and regular expressions:

Examples:

List all supported Financial Centers Worldwide:
listFinCenter()

List European Financial Centers:
listFinCenter("Europe/*")

DST Rules
For each financial center a function is available. It keeps the information of the time zones and the
DST rules. The functions return a data.frame with 4Columns :

Zurich offSet isdst TimeZone
...
62 2008-03-30 01:00:00 7200 1 CEST
63 2008-10-26 01:00:00 3600 0 CET
...

The first column describes when the time was changed, the second gives the offset to "GMT", the
third returns the daylight savings time flag which is positive if in force, zero if not, and negative if
unknown. The last column gives the name of the time zone. You can have a look at the function
Zurich() :

Examples:

Show the DST Rules for Zurich:
Zurich()

List European Financial Centers:
listFinCenter("Europe/*")

12 timeDate-package

3. Holidays and Holiday Calendars

It is non-trivial to implement function for business days, weekends and holidays. It is not difficult in
an algorithmic sense, but it can become tedious to implement the rules of the calendar themselves,
for example the date of Easter.

In the following section we briefly summarise the functions which can calculate dates of ecclesias-
tical and public holidays. With the help of these functions we can also create business and holiday
calendars.

Special Dates:
The implemented functions can compute the last day in a given month and year, the dates in a month
that is a n-day (e.g. n- = Sun) on or after a given date, the dates in a month that is a n-day on or
before a specified date, the n-th occurrences of a n-day for a specified year/month vectors, or the
last n-day for a specified year/month value or vector.

NOTE: n-days are numbered from 0 to 6 where 0 correspond to the Sunday and 6 to the Saturday.

timeFirstDayInMonth – Computes the first day in a given month and year,
timeLastDayInMonth – Computes the last day in a given month and year,
timeFirstDayInQuarter – Computes the first day in a given quarter and year,
timeLastDayInQuarter – Computes the last day in a given quarter and year,

timeNdayOnOrAfter – Computes date that is a "on-or-after" n-day,
timeNdayOnOrBefore –b Computes date that is a "on-or-before" n-day,

timeNthNdayInMonth – Computes n-th occurrence of a n-day in year/month,
timeLastNdayInMonth – Computes the last n-day in year/month.

Holidays:
Holidays may have two origins: ecclesiastical or public/federal. The ecclesiastical calendars of
Christian churches are based on cycles of movable and immovable feasts. Christmas, December
25, is the principal immovable feast. Easter is the principal movable feast, and dates of most of
the other movable feasts are determined with respect to Easter. However, the movable feasts of the
Advent and Epiphany seasons are Sundays reckoned from Christmas and the Feast of the Epiphany,
respectively.

Examples:

List Holidays available in Rmetrics
listHolidays()

The date of Easter for the next 5 years:
currentYear <- getRmetricsOptions("currentYear")
Easter(currentYear:(currentYear+5))

Holiday Calendars:

.endpoints 13

holidayZURICH – Zurich Business Calendar,
holidayNYSE – NYSE Stock Exchange Holiday Calendar,
holidayZURICH – TSX Holiday Calendar.

We would like to thanks all Rmetrics users who gave us many additional information concerning
local holidays.

References

Bateman R., (2000); Time Functionality in the Standard C Library, Novell AppNotes, September
2000 Issue, 73–85.

Becker R.A., Chambers J.M., Wilks A.R. (1988); The New S Language, Wadsworth & Brooks/Cole.

ISO-8601, (1988); Data Elements and Interchange Formats - Information Interchange, Represen-
tation of Dates and Time, International Organization for Standardization, Reference Number ISO
8601, 14 pages.

James D.A., Pregibon D. (1992), Chronological Objects for Data Analysis, Reprint.

Ripley B.D., Hornik K. (2001); Date-Time Classes, R-News, Vol. 1/2 June 2001, 8–12.

Zivot, E., Wang J. (2003); Modeling Financial Time Series with S-Plus, Springer, New-York.

.endpoints Endpoints Indexes

Description

Returns endpoint indexes from a ’timeDate’ object.

Usage

.endpoints(x, on = c("months", "years", "quarters", "weeks", "days",
"hours", "minutes", "seconds"), k=1)

Arguments

x a timeDate object.

on the periods endpoints to find as a character string. Select from: "months",
"years", "quarters", "weeks", "days", "hours", "minutes", "seconds".

k along every k-th element.

Details

endpoints returns an integer vector corresponding to the last observation in each period specified
by on, with a zero added to the beginning of the vector, and the index of the last observation in x at
the end.

14 align

Value

returns an intege vector of endpoints beginning with 0 and ending with the a value equal to the
length of the x argument.

Author(s)

Jeff Ryan, modified by Diethelm Wuertz for timeDate objects.

Examples

endpoints -

Weekly Endpoints:
.endpoints(timeCalendar(), on="w")

align Making a ’timeDate’ object unique

Description

Aligns a ’timeDate’ object to regular date/time stamps.

Usage

S4 method for signature 'timeDate'
align(x, by = "1d", offset = "0s")

alignDaily(x, include.weekends=FALSE)
alignMonthly(x, include.weekends=FALSE)
alignQuarterly(x, include.weekends=FALSE)

Arguments

x an object of class timeDate.

by a character string formed from an integer length and a period identifyer. Valid
values are "w", "d", "h", "m", "s", for weeks, days, hours, minutes and seconds.
For example a bi-weekly period is expressed as "2w".

offset a character string to set an offset formed from an integer length and a period
identifyer in the same way as for the argument by.

include.weekends

logical value indicating whether ’weekends’ should be included.

Details

The functions alignDaily, alignMonthly, alignMonthly are simple to use functions which gen-
erate end-of-day, end-of-month, and end-of quarter timeDate objects. Weekends are excluded by
default. Optionally they can be added setting the argument include.weekends=TRUE.

as.timeDate 15

Value

returns an object of class timeDate.

Examples

align -

Align Bi-Weekly with a 3 Days Offset:
(tC <- timeCalendar())
align(tC, by = "2w", offset = "3d")

alignDaily -

Simple to use Functions:
alignDaily(tC)
alignDaily(tC, include.weekends=TRUE)

Align to end-of-month Dates:
alignMonthly(tC)

as.timeDate Any to ’timeDate’ Coercion

Description

Coerce and transform objects of class ’timeDate’.

Usage

S3 method for class 'timeDate'
as.character(x, ...)

S3 method for class 'timeDate'
as.double(x,

units = c("auto", "secs", "mins", "hours", "days", "weeks"), ...)
S3 method for class 'timeDate'
as.data.frame(x, ...)

S3 method for class 'timeDate'
as.POSIXct(x, tz = "", ...)

S3 method for class 'timeDate'
as.POSIXlt(x, tz = "", ...)

S3 method for class 'timeDate'
as.Date(x, method = c("trunc", "round", "next"), ...)

16 blockStart

Default S3 method:
as.timeDate(x, zone = "", FinCenter = "")

S3 method for class 'POSIXt'
as.timeDate(x, zone = "", FinCenter = "")

S3 method for class 'Date'
as.timeDate(x, zone = "", FinCenter = "")
S3 method for class 'timeDate'
as.timeDate(x, zone = x@FinCenter, FinCenter = "")

Arguments

FinCenter a character with the the location of the financial center named as "continent/city".

method a character string denoting the method how to determine the dates.

tz inputs the time zone to POSIX objects, i.e. the time zone, zone, or financial
center string, FinCenter, as used by timeDate objects.

units a character string denoting the date/time units in which the results are desired.

x an object of class timeDate.

zone the time zone or financial center where the data were recorded.

... arguments passed to other methods.

Value

as.timeDate.POSIXt returns an object of class timeDate.

as.timeDate.Date returns an object of class timeDate.

Examples

timeDate -
tC = timeCalendar()

Convert 'timeDate' to a character strings:
as.character(tC)

Coerce a 'Date' object into a 'timeDate' object:
as.timeDate(Sys.Date())

blockStart Equally sized ’timeDate’ Blocks

Description

Creates start (end) dates for equally sized ’timeDate’ blocks.

c 17

Usage

blockStart(x, block = 20)
blockEnd(x, block = 20)

Arguments

block an integer value specifying the length in number of records for numerically sized
blocks of dates.

x an object of class timeDate.

Details

The functions blockStart and blockEnd create vectors of start and end values for equally sized
’timeDate’ blocks. Note, the functions are event counters and not a time counter between measuring
time intervals between start and end dates! For equally sized blocks in time one has before to align
the time stamps in equal time differences.

Value

returns an object of class "timeDate".

Examples

timeSequence
360 Days Series:
tS <- timeSequence(length.out = 360)

blockStart | blockEnd -
Start <- blockStart(tS, 30)
End <- blockEnd(tS, 30)
Start
End
End-Start

c Concatenating ’timeDate’ Objects

Description

Concatenates ’timeDate’ objects.

Usage

S3 method for class 'timeDate'
c(..., recursive = FALSE)

18 currentYear

Arguments

recursive a logical. If recursive is set to TRUE, the function recursively descends through
lists combining all their elements into a vector.

... arguments passed to other methods.

Value

returns an object of class "timeDate".

Examples

timeCalendar -
Create Character Vectors:
GMT = timeCalendar(zone = "GMT", FinCenter = "GMT") + 16*3600
ZUR = timeCalendar(zone = "GMT", FinCenter = "Zurich") + 16*3600

c -
Concatenate and Replicate timeDate Objects:
sort(c(GMT, ZUR))
sort(c(ZUR, GMT))

currentYear Current Year

Description

A variable with the current year.

Note

It is not allowed to change this variable.

Examples

currentYear -
getRmetricsOptions("currentYear")

DaylightSavingTime 19

DaylightSavingTime Daylight Saving Time Rules

Description

Functions for about 400 cities and regions which return daylight saving time rules and time zone
offsets.

Details

As a selection of these functions:

Adelaide Algiers Amsterdam Anchorage Andorra Athens Auckland Bahrain Bangkok Beirut Belfast
Belgrade Berlin Bogota Bratislava Brisbane Brussels Bucharest Budapest BuenosAires Cairo Cal-
cutta Caracas Casablanca Cayman Chicago Copenhagen Darwin Denver Detroit Dubai Dublin East-
ern Edmonton Frankfurt Helsinki HongKong Honolulu Indianapolis Istanbul Jakarta Jerusalem
Johannesburg Kiev KualaLumpur Kuwait Lagos Lisbon Ljubljana London LosAngeles Luxem-
bourg Madrid Manila Melbourne MexicoCity Monaco Montreal Moscow Nairobi Nassau NewYork
Nicosia Oslo Pacific Paris Perth Prague Riga Riyadh Rome Seoul Shanghai Singapore Sofia Stock-
holm Sydney Taipei Tallinn Tehran Tokyo Tunis Vaduz Vancouver Vienna Vilnius Warsaw Win-
nipeg Zagreb Zurich, ...

Note

There are currently two synonyms available "Pacific" for Los Angeles and "Eastern" for New York.

Specific time zones (AST, CET, CST, EET, EST, MST and PST) are also available.

Note we leave the space in all double named cities like New York or Hong Kong and use an under-
score for it.

All the entries are retrieved from the tzdata library which is available under GNU GPL licence.

Examples

DST Rules for Zurich:
head(Zurich())
tail(Zurich())

list all available centers
listFinCenter()

20 dayOfYear

dayOfWeek Day of the Week

Description

returns the day of the year from a ’timeDate’ object.

Usage

dayOfWeek(x)

Arguments

x an object of class timeDate.

Value

returns a three letter character string with the names in English of the day of the week,

See Also

dayOfYear

Examples

timeCalendar -
tC = timeCalendar()

The days of the Year:
dayOfWeek(tC)

dayOfYear Day of the Year

Description

returns the day of the year from a ’timeDate’ object.

Usage

dayOfYear(x)

Arguments

x an object of class timeDate.

diff 21

Value

returns the day count as integer value starting January, 1st.

See Also

dayOfWeek

Examples

timeCalendar -
tC = timeCalendar()

The days of the Year:
dayOfYear(tC)

diff Lagged ’timeDate’ Differences

Description

Returns suitably lagged and iterated differences.

Usage

S3 method for class 'timeDate'
diff(x, lag = 1, differences = 1, ...)

Arguments

x an object of class timeDate.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

... arguments passed to other methods.

Value

For the function, diff.timeDate, if x is a vector of length n and differences=1, then the com-
puted result is equal to the successive differences x[(1+lag):n] - x[1:(n-lag)]. If difference
is larger than one this algorithm is applied recursively to x. Note that the returned value is a vector
which is shorter than x.

22 difftimeDate

Examples

Create Character Vectors:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

timeDate -
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT") + 24*3600
GMT
ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")
ZUR

diff -
Suitably Lagged and Iterated Differences:
diff(GMT)
diff(GMT, lag = 2)
diff(GMT, lag = 1, diff = 2)

difftimeDate Difference of two ’timeDate’ Objects

Description

Returns a difference of two ’timeDate’ objects.

Usage

difftimeDate(time1, time2,
units = c("auto", "secs", "mins", "hours", "days", "weeks"))

Arguments

time1, time2 two objects objects of class timeDate.

units a character string denoting the date/time units in which the results are desired.

Value

The function, difftimeDate, takes a difference of two timeDate objects and returns an object of
class "difftime" with an attribute indicating the units.

Examples

Create Character Vectors:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts

timeDate -
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT")

Easter 23

GMT

diff -
Suitably Lagged and Iterated Differences:
difftimeDate(GMT[1:2], GMT[-(1:2)])

Easter Date of Easter

Description

Returns the date of Easter.

Usage

Easter(year = getRmetricsOptions("currentYear"), shift = 0)

Arguments

year an integer value or integer vector for the year(s).

shift an integer value, the number of days shifted from the Easter date. Negative
integers are allowed.

Details

Holidays may have two origins, ecclesiastical and public/federal. The ecclesiastical calendars of
Christian churches are based on cycles of moveable and immoveable feasts. Christmas, December
25th, is the principal immoveable feast. Easter is the principal moveable feast, and dates of most
other moveable feasts are determined with respect to Easter.

The date of Easter is evaluated by a complex procedure whose detailed explanation goes beyond
this description. The reason that the calculation is so complicate is, because the date of Easter is
linked to (an inaccurate version of) the Hebrew calendar. But nevertheless a short answer to the
question "When is Easter?" is the following: Easter Sunday is the first Sunday after the first full
moon after vernal equinox. For the long answer we refer to Toendering (1998).

The algorithm computes the date of Easter based on the algorithm of Oudin (1940). It is valid for
any Gregorian Calendar year.

Value

returns the date of Easter as an object of class timeDate.

Note

Doesn’t have options to compute Eastern Orthodox Easter dates.

24 finCenter

Examples

Easter -

Current Year:
Easter()

From 2001 to 2010:
Easter(2001:2010)

finCenter Financial Center of a timeDate object

Description

Print or assign new financial center to a timeDate object.

Usage

S4 method for signature 'timeDate'
finCenter(x)
S4 replacement method for signature 'timeDate'
finCenter(x) <- value

Arguments

x a timeSeries object.

value a character with the the location of the financial center named as "continent/city".

See Also

listFinCenter

Examples

date <- timeDate("2008-01-01")
finCenter(date) <- "GMT"
date

finCenter(date) <- "Zurich"
date

firstDay 25

firstDay First and Last Days

Description

Computes the first/last day in a given month/quarter.

Usage

timeFirstDayInMonth(charvec, format = "%Y-%m-%d", zone = "",
FinCenter = "")

timeLastDayInMonth(charvec, format = "%Y-%m-%d", zone = "",
FinCenter = "")

timeFirstDayInQuarter(charvec, format = "%Y-%m-%d", zone = "",
FinCenter = "")

timeLastDayInQuarter(charvec, format = "%Y-%m-%d", zone = "",
FinCenter = "")

Arguments

charvec a character vector of dates and times.

format the format specification of the input character vector.

zone the time zone or financial center where the data were recorded.

FinCenter a character with the the location of the financial center named as "continent/city".

Value

returns an object of class timeDate.

For the functions timeLastDayInMonth and timeLastDayInMonth return the last or first day re-
spectively in a given month and year.

The same functionality for quarterly time horizons is returned by the functions timeLastDayInQuarter
and timeLastDayInQuarter.

Examples

Date as character String:
charvec = "2006-04-16"
myFinCenter = getRmetricsOptions("myFinCenter")

timeLastDayInMonth-
What date has the last day in a month for a given date ?
timeLastDayInMonth(charvec, format = "%Y-%m-%d",

zone = myFinCenter, FinCenter = myFinCenter)
timeLastDayInMonth(charvec)
timeLastDayInMonth(charvec, FinCenter = "Zurich")

26 format-methods

timeFirstDayInMonth -
What date has the first day in a month for a given date ?
timeFirstDayInMonth(charvec)

timeLastDayInQuarter -
What date has the last day in a quarter for a given date ?
timeLastDayInQuarter(charvec)

timeFirstDayInQuarter -
What date has the first day in a quarter for a given date ?
timeFirstDayInQuarter(charvec)

timeNdayOnOrAfter
What date has the first Monday on or after March 15, 1986 ?
timeNdayOnOrAfter("1986-03-15", 1)

timeNdayOnOrBefore
What date has Friday on or before April 22, 1977 ?
timeNdayOnOrBefore("1986-03-15", 5)

timeNthNdayInMonth -
What date is the second Monday in April 2004 ?
timeNthNdayInMonth("2004-04-01", 1, 2)

timeLastNdayInMonth -
What date has the last Tuesday in May, 1996 ?
timeLastNdayInMonth("1996-05-01", 2)

format-methods Format Methods

Description

Formats ’timeDate’ objects as ISO conform character strings.

Usage

S3 method for class 'timeDate'
format(x, format = "", tz = "", usetz = FALSE, ...)

Arguments

format a character string describing the format.

tz a timezone specification to be used for the conversion.

usetz a logical.

x an object of class timeDate.

... arguments passed to other methods.

holiday 27

Value

returns an ISO conform formatted character string.

Note

This S3 method will become in the future a S4 method

See Also

as.character.

Examples

timeCalendar -
Time Calebdar 16:00
tC = timeCalendar() + 16*3600
tC

Format as ISO Character String:
format(tC)

holiday Holiday Dates

Description

Returns the date of a holiday.

Usage

holiday(year = getRmetricsOptions("currentYear"), Holiday = "Easter")

Arguments

Holiday the unquoted function name of an ecclestial or public holiday in the G7 countries
or Switzerland, see the list below.

year an integer value or vector of years, formatted as YYYY.

Details

Easter is the central ecclestial holiday. Many other holidays are related to this feast. The func-
tion Easter computes the dates of Easter and related ecclestial holidays for the requested year
vector. holiday calculates the dates of ecclestial or publich holidays in the G7 countries, e.g.
holiday(2003, "GoodFriday"). Rmetrics contains holiday functions automatically loaded at startup
time. The user can add easily additional holiday functions. The information for the holidays is
collected from several web pages about holiday calendars. The following ecclestial and public
[HOLIDAY] functions in the G7 countries and Switzerland are available:

28 holiday

Holidays Related to Easter:

Septuagesima, Quinquagesima, AshWednesday, PalmSunday, GoodFriday, EasterSunday, Easter,
EasterMonday, RogationSunday, Ascension, Pentecost, PentecostMonday, TrinitySunday CorpusChristi.

Holidays Related to Christmas:

ChristTheKing, Advent1st, Advent1st, Advent3rd, Advent4th, ChristmasEve, ChristmasDay, Box-
ingDay, NewYearsDay.

Other Ecclestical Feasts:

SolemnityOfMary, Epiphany, PresentationOfLord, Annunciation, TransfigurationOfLord, Assump-
tionOfMary, AssumptionOfMary, BirthOfVirginMary, CelebrationOfHolyCross, MassOfArchangels,
AllSaints, AllSouls.

CHZurich - Public Holidays:

CHBerchtoldsDay, CHSechselaeuten, CHAscension, CHConfederationDay, CHKnabenschiessen.

GBLondon - Public Holidays:

GBMayDay, GBBankHoliday, GBSummerBankHoliday, GBNewYearsEve.

DEFrankfurt - Public Holidays:

DEAscension, DECorpusChristi, DEGermanUnity, DEChristmasEve, DENewYearsEve.

FRParis - Public Holidays:

FRFetDeLaVictoire1945, FRAscension, FRBastilleDay, FRAssumptionVirginMary, FRAllSaints,
FRArmisticeDay.

ITMilano - Public Holidays:

ITEpiphany, ITLiberationDay, ITRepublicAnniversary, ITAssumptionOfVirginMary, ITAllSaints,
ITWWIVictoryAnniversary, ITStAmrose, ITImmaculateConception.

USNewYork/USChicago - Public Holidays:

USNewYearsDay, USInaugurationDay, USMLKingsBirthday, USLincolnsBirthday, USWashing-
tonsBirthday, USMemorialDay, USIndependenceDay, USLaborDay, USColumbusDay, USElec-
tionDay, USVeteransDay, USThanksgivingDay, USChristmasDay, USCPulaskisBirthday, USGood-
Friday.

CAToronto/CAMontreal - Public Holidays:

CAVictoriaDay, CACanadaDay, CACivicProvincialHoliday, CALabourDay, CAThanksgivingDay,
CaRemembranceDay.

JPTokyo/JPOsaka - Public Holidays:

holidayDate 29

JPNewYearsDay, JPGantan, JPBankHolidayJan2, JPBankHolidayJan3, JPComingOfAgeDay, JP-
SeijinNoHi, JPNatFoundationDay, JPKenkokuKinenNoHi, JPGreeneryDay, JPMidoriNoHi, JPCon-
stitutionDay, JPKenpouKinenBi, JPNationHoliday, JPKokuminNoKyujitu, JPChildrensDay, JPKodomoNoHi,
JPMarineDay, JPUmiNoHi, JPRespectForTheAgedDay, JPKeirouNoHi, JPAutumnalEquinox, JPShuubun-
no-hi, JPHealthandSportsDay, JPTaiikuNoHi, JPNationalCultureDay, JPBunkaNoHi, JPThanks-
givingDay, JPKinrouKanshaNohi, JPKinrou-kansha-no-hi, JPEmperorsBirthday, JPTennou-tanjyou-
bi, JPTennou-tanjyou-bi.

Value

The function holiday returns an object of class timeDate.

Examples

holiday -
Dates for GoodFriday from 2000 until 2010:
holiday(2000:2010, "GoodFriday")

Easter -
Easter(2000:2010)

GoodFriday -
GoodFriday(2000:2010)
Easter(2000:2010, -2)

holidayDate Public and Ecclesiastical Holidays

Description

A collection and description of functions and methods dealing with holiday dates in the G7 coun-
tries and Switzerland.

Usage

Septuagesima(year = getRmetricsOptions("currentYear"))
Quinquagesima(year = getRmetricsOptions("currentYear"))
AshWednesday(year = getRmetricsOptions("currentYear"))
PalmSunday(year = getRmetricsOptions("currentYear"))
GoodFriday(year = getRmetricsOptions("currentYear"))
EasterSunday(year = getRmetricsOptions("currentYear"))
EasterMonday(year = getRmetricsOptions("currentYear"))
RogationSunday(year = getRmetricsOptions("currentYear"))
Ascension(year = getRmetricsOptions("currentYear"))
Pentecost(year = getRmetricsOptions("currentYear"))
PentecostMonday(year = getRmetricsOptions("currentYear"))

30 holidayDate

TrinitySunday(year = getRmetricsOptions("currentYear"))
CorpusChristi(year = getRmetricsOptions("currentYear"))
ChristTheKing(year = getRmetricsOptions("currentYear"))
Advent1st(year = getRmetricsOptions("currentYear"))
Advent2nd(year = getRmetricsOptions("currentYear"))
Advent3rd(year = getRmetricsOptions("currentYear"))
Advent4th(year = getRmetricsOptions("currentYear"))
ChristmasEve(year = getRmetricsOptions("currentYear"))
ChristmasDay(year = getRmetricsOptions("currentYear"))
BoxingDay(year = getRmetricsOptions("currentYear"))
NewYearsDay(year = getRmetricsOptions("currentYear"))
SolemnityOfMary(year = getRmetricsOptions("currentYear"))
Epiphany(year = getRmetricsOptions("currentYear"))
PresentationOfLord(year = getRmetricsOptions("currentYear"))
Annunciation(year = getRmetricsOptions("currentYear"))
TransfigurationOfLord(year = getRmetricsOptions("currentYear"))
AssumptionOfMary(year = getRmetricsOptions("currentYear"))
BirthOfVirginMary(year = getRmetricsOptions("currentYear"))
CelebrationOfHolyCross(year = getRmetricsOptions("currentYear"))
MassOfArchangels(year = getRmetricsOptions("currentYear"))
AllSaints(year = getRmetricsOptions("currentYear"))
AllSouls(year = getRmetricsOptions("currentYear"))
LaborDay(year = getRmetricsOptions("currentYear"))
CHBerchtoldsDay(year = getRmetricsOptions("currentYear"))
CHSechselaeuten(year = getRmetricsOptions("currentYear"))
CHAscension(year = getRmetricsOptions("currentYear"))
CHConfederationDay(year = getRmetricsOptions("currentYear"))
CHKnabenschiessen(year = getRmetricsOptions("currentYear"))
GBMayDay(year = getRmetricsOptions("currentYear"))
GBBankHoliday(year = getRmetricsOptions("currentYear")) # see note in details section
GBSummerBankHoliday(year = getRmetricsOptions("currentYear"))
GBMilleniumDay(year = getRmetricsOptions("currentYear"))
DEAscension(year = getRmetricsOptions("currentYear"))
DECorpusChristi(year = getRmetricsOptions("currentYear"))
DEGermanUnity(year = getRmetricsOptions("currentYear"))
DEChristmasEve(year = getRmetricsOptions("currentYear"))
DENewYearsEve(year = getRmetricsOptions("currentYear"))
FRFetDeLaVictoire1945(year = getRmetricsOptions("currentYear"))
FRAscension(year = getRmetricsOptions("currentYear"))
FRBastilleDay(year = getRmetricsOptions("currentYear"))
FRAssumptionVirginMary(year = getRmetricsOptions("currentYear"))
FRAllSaints(year = getRmetricsOptions("currentYear"))
FRArmisticeDay(year = getRmetricsOptions("currentYear"))
ITEpiphany(year = getRmetricsOptions("currentYear"))
ITLiberationDay(year = getRmetricsOptions("currentYear"))
ITAssumptionOfVirginMary(year = getRmetricsOptions("currentYear"))
ITAllSaints(year = getRmetricsOptions("currentYear"))
ITStAmrose(year = getRmetricsOptions("currentYear"))

holidayDate 31

ITImmaculateConception(year = getRmetricsOptions("currentYear"))
USDecorationMemorialDay(year = getRmetricsOptions("currentYear"))
USPresidentsDay(year = getRmetricsOptions("currentYear"))
USNewYearsDay(year = getRmetricsOptions("currentYear"))
USInaugurationDay(year = getRmetricsOptions("currentYear"))
USMLKingsBirthday(year = getRmetricsOptions("currentYear"))
USLincolnsBirthday(year = getRmetricsOptions("currentYear"))
USWashingtonsBirthday(year = getRmetricsOptions("currentYear"))
USMemorialDay(year = getRmetricsOptions("currentYear"))
USIndependenceDay(year = getRmetricsOptions("currentYear"))
USLaborDay(year = getRmetricsOptions("currentYear"))
USColumbusDay(year = getRmetricsOptions("currentYear"))
USElectionDay(year = getRmetricsOptions("currentYear"))
USVeteransDay(year = getRmetricsOptions("currentYear"))
USThanksgivingDay(year = getRmetricsOptions("currentYear"))
USChristmasDay(year = getRmetricsOptions("currentYear"))
USCPulaskisBirthday(year = getRmetricsOptions("currentYear"))
USGoodFriday(year = getRmetricsOptions("currentYear"))
USJuneteenthNationalIndependenceDay(year = getRmetricsOptions("currentYear"))
CAVictoriaDay(year = getRmetricsOptions("currentYear"))
CACanadaDay(year = getRmetricsOptions("currentYear"))
CACivicProvincialHoliday(year = getRmetricsOptions("currentYear"))
CALabourDay(year = getRmetricsOptions("currentYear"))
CAThanksgivingDay(year = getRmetricsOptions("currentYear"))
CaRemembranceDay(year = getRmetricsOptions("currentYear"))
JPVernalEquinox (year = getRmetricsOptions("currentYear"))
JPNewYearsDay(year = getRmetricsOptions("currentYear"))
JPGantan(year = getRmetricsOptions("currentYear"))
JPBankHolidayJan2(year = getRmetricsOptions("currentYear"))
JPBankHolidayJan3(year = getRmetricsOptions("currentYear"))
JPComingOfAgeDay(year = getRmetricsOptions("currentYear"))
JPSeijinNoHi(year = getRmetricsOptions("currentYear"))
JPNatFoundationDay(year = getRmetricsOptions("currentYear"))
JPKenkokuKinenNoHi(year = getRmetricsOptions("currentYear"))
JPGreeneryDay(year = getRmetricsOptions("currentYear"))
JPMidoriNoHi(year = getRmetricsOptions("currentYear"))
JPConstitutionDay(year = getRmetricsOptions("currentYear"))
JPKenpouKinenBi(year = getRmetricsOptions("currentYear"))
JPNationHoliday(year = getRmetricsOptions("currentYear"))
JPKokuminNoKyujitu(year = getRmetricsOptions("currentYear"))
JPChildrensDay(year = getRmetricsOptions("currentYear"))
JPKodomoNoHi(year = getRmetricsOptions("currentYear"))
JPMarineDay(year = getRmetricsOptions("currentYear"))
JPUmiNoHi(year = getRmetricsOptions("currentYear"))
JPRespectForTheAgedDay(year = getRmetricsOptions("currentYear"))
JPKeirouNOhi(year = getRmetricsOptions("currentYear"))
JPAutumnalEquinox(year = getRmetricsOptions("currentYear"))
JPShuubunNoHi(year = getRmetricsOptions("currentYear"))

32 holidayLONDON

JPHealthandSportsDay(year = getRmetricsOptions("currentYear"))
JPTaiikuNoHi(year = getRmetricsOptions("currentYear"))
JPNationalCultureDay(year = getRmetricsOptions("currentYear"))
JPBunkaNoHi(year = getRmetricsOptions("currentYear"))
JPThanksgivingDay(year = getRmetricsOptions("currentYear"))
JPKinrouKanshaNoHi(year = getRmetricsOptions("currentYear"))
JPEmperorsBirthday(year = getRmetricsOptions("currentYear"))
JPTennouTanjyouBi(year = getRmetricsOptions("currentYear"))
JPBankHolidayDec31(year = getRmetricsOptions("currentYear"))

Arguments

year an integer value or vector of year numbers including the century. These are
integers of the form CCYY, e.g. 2000.

Details

Note that GBBankHoliday() returns GB Spring bank holiday. For GB holiday calender see holidayGB().

Value

The function listHolidays returns a character vector with the names of the supported holidays.

The holiday functions return an ISO-8601 formatted ’timeDate’ of the requested holiday.

Examples

listHolidays -
listHolidays()

CHSechselaeuten -
Sechselaeuten a half Day Bank Holiday in Switzerland
CHSechselaeuten(2000:2010)
CHSechselaeuten(getRmetricsOptions("currentYear"))

German Unification Day:
DEGermanUnity(getRmetricsOptions("currentYear"))

holidayLONDON London Bank Holidays

Description

Returns bank holidays in London.

Usage

holidayLONDON(year = getRmetricsOptions("currentYear"))

holidayNERC 33

Arguments

year an integer value or vector of years, formatted as YYYY.

Details

There are 8 bank holidays in Britain every year: New Year’s Day, Good Friday, Easter Monday,
Spring (May), Last Monday of May, End of Summer (Last Monday) August, Christmas Eve, Christ-
mas Day.

Value

returns an object of class timeDate.

Author(s)

Function contributed by Menon Murali

Examples

holidayLONDON -
holidayLONDON()
holidayLONDON(2008:2010)

holidayNERC NERC Holiday Calendar

Description

Returns a holiday calendar for NERC, the North American Reliability Council.

Usage

holidayNERC(year = getRmetricsOptions("currentYear"), FinCenter = "Eastern")

Arguments

year an integer value or vector of years, formatted as YYYY.

FinCenter a character value, the name of the financial center to use.

Value

returns an object of class timeDate.

Author(s)

Joe W. Byers

34 holidayTSX

References

http://www.nerc.com/~oc/offpeaks.html

Examples

holidayNERC -
holidayNERC()
holidayNERC(2008:2010)

holidayNYSE NYSE Holiday Calendar

Description

Returns a holiday calendar for the New York Stock Exchange.

Usage

holidayNYSE(year = getRmetricsOptions("currentYear"))

Arguments

year an integer value or vector of years, formatted as YYYY.

Value

returns an object of class timeDate.

Examples

holidayNYSE -
holidayNYSE()
holidayNYSE(2008:2010)

holidayTSX TSX Holiday Calendar

Description

Returns a holiday calendar for the Toronto Stock Exchange.

Usage

holidayTSX(year = getRmetricsOptions("currentYear"))

holidayZURICH 35

Arguments

year an integer value or vector of years, formatted as YYYY.

Value

returns an object of class timeDate.

Examples

holidayTSX -
holidayTSX()
holidayTSX(2008:2010)

holidayZURICH Zurich Holiday Calendar

Description

Returns a holiday calendar for Zurich.

Usage

holidayZURICH(year = getRmetricsOptions("currentYear"))

Arguments

year an integer value or vector of years, formatted as YYYY.

Details

The Zurich holiday calendar includes the following holidays: NewYearsDay, GoodFriday, Easter-
Monday, LaborDay, PentecostMonday, ChristmasDay, BoxingDay, CHBerchtoldsDay, CHSechse-
laeuten, CHAscension, CHConfederationDay, CHKnabenschiessen.

Value

returns an object of class timeDate.

Examples

holidayZURICH -
holidayZURICH()
holidayZURICH(2008:2010)

36 isBizday

is.na-methods is.na Methods

Description

is.na methods for ’timeDate’ objects.

Examples

Create a timeCalendar sequence
(td <- timeCalendar())
is.na(td)

insert NA's
is.na(td) <- 2:3
td

test of NA's
is.na(td)

isBizday Business and Holidays

Description

Tests if a date is a business day or not.

Usage

isBizday(x, holidays = holidayNYSE(), wday = 1:5)
isHoliday(x, holidays = holidayNYSE(), wday = 1:5)

Arguments

x an object of class timeDate.

holidays holiday dates from a holiday calendar. An object of class timeDate.

wday Specify which days should be considered as weekdays. By default from Mon-
days to Fridays.

Value

a logical vector of the same length as x indicating if a date is a business day, or a holiday, respec-
tively.

isRegular 37

Examples

Dates in April, currentYear:
currentYear = getRmetricsOptions("currentYear")
tS = timeSequence(

from = paste(currentYear, "-03-01", sep = ""),
to = paste(currentYear, "-04-30", sep = ""))

tS

Subset Business Days at NYSE:
holidayNYSE()
isBizday(tS, holidayNYSE())
tS[isBizday(tS, holidayNYSE())]

isRegular Checks if a date/time vector is regular

Description

Checks if a date/time vector is regular. i.e. if it is a daily, a monthly, or a quarterly date/time vector.
If the date/time vector is regular the frequency can determined calling the function frequency.

Usage

S4 method for signature 'timeDate'
isDaily(x)
S4 method for signature 'timeDate'
isMonthly(x)
S4 method for signature 'timeDate'
isQuarterly(x)

S4 method for signature 'timeDate'
isRegular(x)

S4 method for signature 'timeDate'
frequency(x, ...)

Arguments

x an R object of class timeDate.

... arguments to be passed

Details

A date/time vector is defined as daily if the vector has not more than one date/time stamp per day.

A date/time vector is defined as monthly if the vector has not more than one date/time stamp per
month.

38 isWeekday

A date/time vector is defined as quarterly if the vector has not more than one date/time stamp per
quarter.

A monthly date/time vector is also a daily vector, a quarterly date/time vector is also a monthly
vector.

A regular date/time vector is either a monthly or a quarterly vector.

NOT yet implemented is the case of weekly vectors.

Value

The is* functions return TRUE or FALSE depending on whether the date/time vector fulfills the
condition or not.

The function frequency returns in general 1, for quarterly date/time vectors 4, and for monthly
vectors 12.

Examples

None

isWeekday Weekdays and Weekends

Description

Tests if a date is a weekday or not.

Usage

isWeekday(x, wday = 1:5)
isWeekend(x, wday = 1:5)

Arguments

x an object of class timeDate.

wday Specify which days should be considered as weekdays. By default from Mon-
days to Fridays.

Value

the functions return logical vectors indicating if a date is a weekday, or a weekend day.

julian 39

Examples

Dates in April, currentYear:
currentYear = getRmetricsOptions("currentYear")
tS = timeSequence(

from = paste(currentYear, "-03-01", sep = ""),
to = paste(currentYear, "-04-30", sep = ""))

tS

Subset of Weekends:
isWeekend(tS)
tS[isWeekend(tS)]

julian Julian Counts and Calendar Atoms

Description

Returns Julian day counts, date/time atoms from a ’timeDate’ object, and extracts month atoms
from a ’timeDate’ object.

Usage

S4 method for signature 'timeDate'
julian(x, origin = timeDate("1970-01-01"),

units = c("auto", "secs", "mins", "hours", "days", "weeks"),
zone = NULL, FinCenter = NULL, ...)

S4 method for signature 'timeDate'
atoms(x, ...)

S4 method for signature 'timeDate'
months(x, abbreviate = NULL)

Arguments

x an object of class timeDate.

origin a length-one object inheriting from class "timeDate" setting the origin for the
julian counter.

units a character string denoting the date/time units in which the results are desired.

zone the time zone or financial center where the data were recorded.

FinCenter a character with the the location of the financial center named as "continent/city".

abbreviate currently not used.

... arguments passed to other methods.

40 kurtosis

Value

julian returns a timeDate object as a Julian count.

atoms and months extrac from a timeDate object the calendar atoms, i.e. the year, month, day, and
optionally hour, minute and second.

Examples

julian -
tC = timeCalendar()
julian(tC)[1:3]

atoms -
atoms(tC)

months -
months(tC)

kurtosis Kurtosis

Description

Functions to compute kurtosis.

Usage

kurtosis(x, ...)

Default S3 method:
kurtosis(x, na.rm = FALSE, method = c("excess", "moment", "fisher"), ...)
S3 method for class 'data.frame'
kurtosis(x, ...)
S3 method for class 'POSIXct'
kurtosis(x, ...)
S3 method for class 'POSIXlt'
kurtosis(x, ...)

Arguments

na.rm a logical. Should missing values be removed?

method a character string which specifies the method of computation. These are either
"moment", "fisher", or "excess". If "excess" is selected, then the value
of the kurtosis is computed by the "moment" method and a value of 3 will be
subtracted. The "moment" method is based on the definitions of kurtosis for dis-
tributions; these forms should be used when resampling (bootstrap or jackknife).
The "fisher" method correspond to the usual "unbiased" definition of sample
variance, although in the case of kurtosis exact unbiasedness is not possible.

length 41

x a numeric vector or object.

... arguments to be passed.

Value

kurtosis

returns the value of the statistics, a numeric value. An attribute which reports the used method is
added.

See Also

link{skewness}.

Examples

mean -
var -

Mean, Variance:
r = rnorm(100)
mean(r)
var(r)

kurtosis -
kurtosis(r)

length Length of a ’timeDate’ Object

Description

Returns the length of a ’timeDate’ object.

Usage

S3 method for class 'timeDate'
length(x)

Arguments

x an object of class timeDate.

Value

returns an integer of length 1.

42 listFinCenter

Examples

timCalendar -
tC = timeCalendar()

length -
length(tC)

listFinCenter List of Financial Centers

Description

Lists supported financial centers.

Usage

listFinCenter(pattern = ".*")

Arguments

pattern a pattern character string as required by the grep function.

Details

The function rulesFinCenter, lists the daylight saving rules for a selected financial center.

There is no dependency on the POSIX implementation of your operating system because all time
zone and day light saving time information is stored locally in ASCII files.

Value

returns a list of supported financial centers.

Examples

myFinCenter - the global setting currently used:
getRmetricsOptions("myFinCenter")

Other Financial Centers:
listFinCenter("Asia/")
listFinCenter("^A") # all beginning with "A"
listFinCenter("^[^A]") # all *not* beginning with "A"
listFinCenter(".*/L") # cities with L*

stopifnot(identical(sort(listFinCenter()), ## 'A' and 'not A' == everything:
sort(union(listFinCenter("^A"),

listFinCenter("^[^A]")))))

listHolidays 43

listHolidays List of Holidays

Description

Returns the list of holidays.

Usage

listHolidays(pattern = ".*")

Arguments

pattern a pattern character string as required by the grep function.

Value

returns a list of holidays as a character vector.

Examples

listHolidays -

All Holidays:
listHolidays()

Local Swiss Holidays:
listHolidays("CH")

midnightStandard Midnight Standard

Description

Corrects ’timeDate’ objects if they do not fulfill the ISO8601 midnight standard.

midnightStandard2() relies on strptime wherever possible, and there simply returns as.POSIXct(strptime(charvec,
format, tz = "GMT")).

Usage

midnightStandard (charvec, format)
midnightStandard2(charvec, format)

Arguments

charvec a character string or vector of dates and times.

format a string, the format specification of the input character vector.

44 myFinCenter

Value

midnightStandard returns a character and midnightStandard2 a POSIXct object.

Examples

ch <- "2007-12-31 24:00"
midnightStandard(ch)
(ms2 <- midnightStandard2(ch))
class(ms2)

myFinCenter myFinCenter Variable

Description

A character string with the name of my financial center.

Note

Can be modified by the user to his own or any other financial center. The default is "GMT". To list
all supported financial center use the function listFinCenter.

See Also

listFinCenter

Examples

myFinCenter - the global setting currently used:
getRmetricsOptions("myFinCenter")

Change to another Financiel Center:
setRmetricsOptions(myFinCenter = "Zurich")

Do not take care about DST ...
setRmetricsOptions(myFinCenter = "GMT")

myUnits 45

myUnits Frequency of date/time Units

Description

A variable with the frequency of date/units.

Value

returns the the date/time units, a acharacter value. By default "days".

Examples

myUnits -
getRmetricsOptions("myUnits")

names-methods The Names of a timeDate Object

Description

Functions to get or set the names of a timeDate object.

Usage

S4 method for signature 'timeDate'
names(x)
S4 replacement method for signature 'timeDate'
names(x) <- value

Arguments

x an object of class timeDate.

value a character vector of up to the same length as ’x’, or ’NULL’.

Examples

td <- timeCalendar()
td
names(td) <- LETTERS[seq_along(td)]
td

46 nDay

nDay n-th n-day Dates

Description

Computes the date for the n-th or last ocurrance of a n-day in year/month.

Usage

timeNthNdayInMonth(charvec, nday = 1, nth = 1, format = "%Y-%m-%d",
zone = "", FinCenter = "")

timeLastNdayInMonth(charvec, nday = 1, format = "%Y-%m-%d",
zone = "", FinCenter = "")

Arguments

charvec a character vector of dates and times.

nday an integer vector with entries ranging from 0 (Sunday) to 6 (Saturday).

nth an integer vector numbering the n-th occurence.

format the format specification of the input character vector.

zone the time zone or financial center where the data were recorded.

FinCenter a character with the the location of the financial center named as "continent/city".

Value

returns an object of class timeDate.

For function timeNthNdayInMonth the nth ocurrance of a n-day (nth = 1,...,5) in year, month, and
for timeLastNdayInMonth the last nday in year, month will be returned.

Examples

timeNthNdayInMonth -
What date is the second Monday in April 2004 ?
timeNthNdayInMonth("2004-04-01", 1, 2)

timeLastNdayInMonth -
What date has the last Tuesday in May, 1996 ?
timeLastNdayInMonth("1996-05-01", 2)

onOrAfter 47

onOrAfter OnOrAfter/Before Dates

Description

Compute the date that is a "on-or-after" or "on-or-before" ans n-day.

Usage

timeNdayOnOrAfter(charvec, nday = 1, format = "%Y-%m-%d",
zone = "", FinCenter = "")

timeNdayOnOrBefore(charvec, nday = 1, format = "%Y-%m-%d",
zone = "", FinCenter = "")

Arguments

charvec a character vector of dates and times.

nday an integer vector with entries ranging from 0 (Sunday) to 6 (Saturday).

format the format specification of the input character vector.

zone the time zone or financial center where the data were recorded.

FinCenter a character with the the location of the financial center named as "continent/city".

Value

returns an object of class timeDate.

timeNdayOnOrAfter returns the date in the specified month that is a n-day (e.g. Sun-day) on or
after the given date. Month and date are given through the argument charvec.

For the function timeNdayOnOrBefore the date that is a n-day on or before the given date will be
returned.

Examples

Date as character String:
charvec = "2006-04-16"

timeNdayOnOrAfter
What date has the first Monday on or after March 15, 1986 ?
timeNdayOnOrAfter("1986-03-15", 1)

timeNdayOnOrBefore
What date has Friday on or before April 22, 1977 ?
timeNdayOnOrBefore("1986-03-15", 5)

48 periods

periods Rolling periods

Description

Returns start and end dates for a rolling periods

Usage

periods(x, period = "12m", by = "1m", offset = "0d")
periodicallyRolling(x, period = "52w", by = "4w", offset = "0d")
monthlyRolling(x, period = "12m", by = "1m")

Arguments

x an object of class timeDate.

period a span string, consisting of a length integer and a unit value, e.g. "52w" for 52
weeks.

by a span string, consisting of a length integer and a unit value, e.g. "4w" for 4
weeks.

offset a span string, consisting of a length integer and a unit value, e.g. "0d" for no
offset.

Details

Periodically Rolling - Allowed unit values are "m" for 4 weeks, "w" for weeks, "d" for days, "H"
for hours, "M" for minutes, and "S" for seconds.

Monthly Calendar Rolling - The only allowed allowed unit value is "m" for monthly periods. Ex-
press a quarterly period by "3m", a semester by "6m", a year by "12m" etc.

Examples

Create Time Sequence -
x <- timeSequence(from = "2001-01-01", to = "2009-01-01", by = "day")

Generate Periods -
periods(x, "12m", "1m")
periods(x, "52w", "4w")

Roll Periodically -
periodicallyRolling(x)

Roll Monthly -
monthlyRolling(x)

plot-methods 49

plot-methods Plot Methods

Description

Plot methods for timeDate objects.

Usage

S4 method for signature 'timeDate'
plot(x, y, ...)
S4 method for signature 'timeDate'
lines(x, y, ...)
S4 method for signature 'timeDate'
points(x, y, ...)

axis.timeDate(side, x, at, format = NULL, labels = TRUE, ...)

S3 method for class 'timeDate'
pretty(x, n=5, min.n=n%/%3, shrink.sml=0.75,

high.u.bias=1.5, u5.bias=0.5+1.5*high.u.bias,
eps.correct=0, ...)

Arguments

x, y, at an object of class timeDate.

side an integer specifying which side of the plot the axis is to be drawn on. The axis
is placed as follows: 1=below, 2=left, 3=above and 4=right.

format a POSIX format string, e.g. "%Y-%m-%d".

labels either a logical value specifying whether annotations are to be made at the tick-
marks, or a vector of character strings to be placed at the tickpoints.

n an integer giving the desired number of intervals.

min.n a nonnegative integer giving the minimal number of intervals.

shrink.sml a positive numeric by a which a default scale is shrunk in the case when range(x)
is very small.

high.u.bias a non-negative numeric, typically > 1. Larger high.u.bias values favor larger
units.

u5.bias a non-negative numeric multiplier favoring factor 5 over 2.

eps.correct an integer code, one of 0,1,2. If non-0, a correction is made at the boundaries.

... arguments passed to other methods.

Value

returns a summary report of the details of a timeDate object. This includes the starting and end
date, the number of dates the format and the financial center in use.

50 rep

Note

These S3 methods will become S4 methods in the future.

Examples

timeCalendar -
x <- timeCalendar()
y <- rnorm(12)

Plotting :

plot(x, y, type = "l")
points(x, y, pch = 19, col = "red")

plot(x, y, type = "l", xaxt = "n")
axis.timeDate(1, at = x[c(1, 3, 5, 7, 9, 11)], format = "%b")
axis.timeDate(1, at = x[12], format = "%Y")

rep Replicating ’timeDate’ Objects

Description

replicates a ’timeDate’ object.

Usage

S3 method for class 'timeDate'
rep(x, ...)

Arguments

x an object of class timeDate.

... arguments passed to other methods.

Value

returns an object of class "timeDate".

Examples

c -
Create Character Vectors:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

rev 51

"+/-" -
Add One Day to a Given timeDate Object:
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT")
GMT
ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")
ZUR

c -
Concatenate and Replicate timeDate Objects:
c(GMT[1:2], ZUR[1:2])
c(ZUR[1:2], GMT[1:2])

rep -
rep(ZUR[2], times = 3)
rep(ZUR[2:3], times = 2)

rev Reverting ’timeDate’ Objects

Description

Reverts a ’timeDate’ object.

Usage

S3 method for class 'timeDate'
rev(x)

Arguments

x an object of class timeDate.

Value

returns an object of class "timeDate".

Examples

c -
Create Character Vectors:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

"+/-" -
Add One Day to a Given timeDate Object:
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT")
GMT
ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")

52 round

ZUR

c -
Concatenate and Replicate timeDate Objects:
c(GMT[1:2], ZUR[1:2])
c(ZUR[1:2], GMT[1:2])

rep -
rep(ZUR[2], times = 3)
rep(ZUR[2:3], times = 2)

RmetricsOptions Rmetrics Option Settings

Description

Allow the user to set and examine a variety of global options which affect the way in which Rmetrics
functions compute and display their results.

Usage

setRmetricsOptions(...)
getRmetricsOption(x, unset = "")

Arguments

unset a character string holding the return value is x is not set.

x a character string holding an option name.

... any options can be defined, using name = value or by passing a list of such
tagged values.

round Rounding and Truncating ’timeDate’ Objects

Description

Rounds and truncates objects of class ’timeDate’.

Usage

S3 method for class 'timeDate'
round(x, digits = c("days", "hours", "mins"))

S3 method for class 'timeDate'
trunc(x, units = c("days", "hours", "mins"), ...)

rulesFinCenter 53

Arguments

digits, units a character string denoting the date/time units in which the results are desired.

x an object of class timeDate.

... arguments passed to other methods.

Value

The two functions round and trunc allow to round or to truncate timeDate objects to the specified
unit and return them as timeDate objects. - Note, ther is an inconsistency round uses digits as
argument and not units.

Examples

round -

truncate -

rulesFinCenter Financial Centers DST Rules

Description

Returns DST rules for a financial center.

Usage

rulesFinCenter(FinCenter = "")

Arguments

FinCenter a character with the the location of the financial center named as "continent/city".

Details

The function rulesFinCenter, lists the daylight saving rules for a selected financial center.

There is no dependency on the POSIX implementation of your operating system because all time
zone and day light saving time information is stored locally in ASCII files.

Value

returns a list of time zones and DST rules available in the database.

Examples

rulesFinCenter -
rulesFinCenter("Zurich")

54 show-methods

sample Resampling ’timeDate’ Objects

Description

Resamples a ’timeDate’ object.

Value

returns an object of class "timeDate".

Examples

c -
Create Character Vectors:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

"+/-" -
Add One Day to a Given timeDate Object:
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT")
GMT
ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")
ZUR

c -
Concatenate and Replicate timeDate Objects:
c(GMT[1:2], ZUR[1:2])
c(ZUR[1:2], GMT[1:2])

rep -
rep(ZUR[2], times = 3)
rep(ZUR[2:3], times = 2)

show-methods Show Methods

Description

Show methods for ’timeDate’ objects.

Methods

object = "ANY" Generic function.

object = "timeDate" Print function for objects of class "timeDate".

skewness 55

Examples

print | show -
print(timeCalendar())

skewness Skewness

Description

Functions to compute skewness.

Usage

skewness(x, ...)

Default S3 method:
skewness(x, na.rm = FALSE, method = c("moment", "fisher"), ...)
S3 method for class 'data.frame'
skewness(x, ...)
S3 method for class 'POSIXct'
skewness(x, ...)
S3 method for class 'POSIXlt'
skewness(x, ...)

Arguments

na.rm a logical. Should missing values be removed?

method a character string which specifies the method of computation. These are either
"moment" or "fisher" The "moment" method is based on the definitions of
skewnessfor distributions; these forms should be used when resampling (boot-
strap or jackknife). The "fisher" method correspond to the usual "unbiased"
definition of sample variance, although in the case of skewness exact unbiased-
ness is not possible.

x a numeric vector or object.

... arguments to be passed.

Value

skewness

returns the value of the statistics, a numeric value. An attribute which reports the used method is
added.

See Also

link{kurtosis}.

56 sort

Examples

mean -
var -

Mean, Variance:
r = rnorm(100)
mean(r)
var(r)

skewness -
skewness(r)

sort Sorting ’timeDate’ Objects

Description

Sorts a ’timeDate’ object.

Usage

S3 method for class 'timeDate'
sort(x, ...)

Arguments

x an object of class timeDate.

... arguments passed to other methods.

Value

returns an object of class "timeDate".

Examples

c -
Create Character Vectors:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

"+/-" -
Add One Day to a Given timeDate Object:
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT")
GMT
ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")
ZUR

start 57

c -
Concatenate and Replicate timeDate Objects:
c(GMT[1:2], ZUR[1:2])
c(ZUR[1:2], GMT[1:2])

rep -
rep(ZUR[2], times = 3)
rep(ZUR[2:3], times = 2)

start Terminal Times and Range

Description

Extracts the time the first or last observation was taken, or computes the range.

Usage

S3 method for class 'timeDate'
start(x, ...)

S3 method for class 'timeDate'
end(x, ...)

S3 method for class 'timeDate'
min(..., na.rm = FALSE)

S3 method for class 'timeDate'
max(..., na.rm = FALSE)

S3 method for class 'timeDate'
range(..., na.rm = FALSE)

Arguments

x an object of class timeDate.

... [start][end] -
not used,
[min][max] - ’timeDates’ objects.

na.rm not used.

Details

Note, the series will be time ordered before the start or end time stamps are extracted. Sorting is
done in the way that the first observation appears in time before the last observation.

58 subset

Value

returns an object of class timeDate.

Examples

timeCalendar -
Random Calendar Dates:
tR = sample(timeCalendar())
sort(tR)
tR

start | end -
start(tR)
end(tR)

The First and Last Time Stamp:
tR[1]
tR[length(tR)]
rev(tR)[1]

The Range:
c(start(tR), end(tR))
range(tR)

subset Subsetting a ’timeDate’ Object

Description

Extracts or replaces subsets from ’timeDate’ objects.

Value

returns an object of class timeDate.

Examples

timeCalendar -
tS = timeCalendar()

[-
Subsetting Second Quarter:
tS[4:6]

[<-
Replacing:

summary-methods 59

summary-methods Summary Method

Description

Summarizes details of a ’timeDate’ object.

Usage

S3 method for class 'timeDate'
summary(object, ...)

Arguments

object an object of class timeDate.

... arguments passed to other methods.

Value

returns a summary report of the details of a timeDate object. This includes the starting and end
date, the number of dates the format and the financial center in use.

Note

This S3 method will become in the future a S4 method

Examples

summary -
tC = timeCalendar()
summary(tC)

Sys.timeDate System Time as ’timeDate’ Object

Description

Returns system time as an object of class ’timeDate’.

Usage

Sys.timeDate(FinCenter = "")

Arguments

FinCenter a character with the the location of the financial center named as "continent/city".

60 timeCalendar

Value

returns the system time as class "timeDate" object.

Examples

Sys.time -

direct
Sys.timeDate()

transformed from "POSIX(c)t"
timeDate(Sys.time())

Local Time in Zurich
timeDate(Sys.time(), FinCenter = "Zurich")

timeCalendar ’timeDate’ from Calendar Atoms

Description

Create a ’timeDate’ object from calendar atoms.

Usage

timeCalendar(y = getRmetricsOptions("currentYear"), m = 1:12, d = 1,
h = 0, min = 0, s = 0,
zone = "", FinCenter = "")

Arguments

y, m, d calendar years (e.g. 1997), defaults are 1960, calendar months (1-12), defaults
are 1, and calendar days (1-31), defaults are 1,

h, min, s hours of the days (0-23), defaults are 0, minutes of the days (0-59), defaults are
0, and seconds of the days (0-59), defaults are 0.

zone a character string, denoting the time zone or financial center where the data were
recorded.

FinCenter a character with the the location of the financial center named as "continent/city".

Value

returns a S4 object of class "timeDate".

timeDate 61

Examples

timeCalendar -

Current Year:
getRmetricsOptions("currentYear")

12 months of current year
timeCalendar()

timeCalendar(m = c(9, 1, 8, 2), d = c(28, 15, 30, 9),
y = c(1989, 2001, 2004, 1990), FinCenter = "GMT")

timeCalendar(m = c(9, 1, 8, 2), d = c(28, 15, 30, 9),
y = c(1989, 2001, 2004, 1990), FinCenter = "Europe/Zurich")

timeCalendar(h = c(9, 14), min = c(15, 23))

timeDate ’timeDate’ Objects from Scratch

Description

Create a ’timeDate’ object from scratch using a character vector.

Usage

timeDate(charvec, format = NULL, zone = "", FinCenter = "")

strptimeDate(x, format = whichFormat(x), tz = "")

Arguments

charvec a character string or vector of dates and times.

format the format specification of the input character vector.

tz a character with the the location of the financial center named as "continent/city",
or short "city".

zone the time zone or financial center where the data were recorded.

x a character string or vector of dates and times.

FinCenter a character with the the location of the financial center named as "continent/city".

Value

returns an object of class timeDate.

62 timeDate-class

Examples

timeDate -

Character Vector Strings:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")

dts; tms

t1 <- timeDate(dts, format = "%Y-%m-%d", FinCenter = "GMT")
t1

stopifnot(identical(t1, timeDate(dts, FinC = "GMT"))) # auto-format

timeDate(dts, format = "%Y-%m-%d", FinCenter = "Europe/Zurich")

timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S",
zone = "GMT", FinCenter = "GMT")

timeDate(paste(dts, tms),
zone = "Europe/Zurich", FinCenter = "Europe/Zurich")

timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S",
zone = "GMT", FinCenter = "Europe/Zurich")

Non Standard Format:
timeDate(paste(20:31, "03.2005", sep="."), format = "%d.%m.%Y")

Note, ISO and American Formats are Auto-Detected:
timeDate("2004-12-31", FinCenter = "GMT")
timeDate("12/11/2004", FinCenter = "GMT")
timeDate("1/31/2004") # auto-detect American format

From POSIX?t, and using NAs
lsec <- as.POSIXlt(.leap.seconds) ; lsec[c(2,4:6)] <- NA
timeDate(lsec)

dtms <- paste(dts,tms)
dtms[2:3] <- NA
timeDate(dtms, FinCenter = "Europe/Zurich") # but in GMT

timeDate-class Class "timeDate"

timeDate-class 63

Description

The class ’timeDate’ represents date and time objects.

Details

For the management of chronological objects under R three concepts are available: The first is the
implementation of date and time in R’s chron package neglecting locals, time zones and day light
saving times. This approach is in most cases appropriate for economic time series. The second
approach, available in R’s base package implements the POSIX standard to date and time objects,
named "POSIXt".

Unfortunately, the representation of these objects is in some cases operating system dependent and
especially under MS Windows several problems appeared over the time in the management of time
zones and day light saving times. Rmetrics overcomes these difficulties with POSIX objects and
introduce a new S4 class of ’timeDate’ objects which allow for powerful methods to represent dates
and times in different financial centers around the world.

Many of the basic functionalities of these objects are in common with S-Plus’ timeDate objects
and thus many of your privately written functions for SPlus/FinMetrics may also be used within the
R/Rmetrics environment.

A major difference is the time zone concept which is replaced by the "Financial Center" concept.
The FinCenter character variable specifies where you are living and at which financial center
you are working. With the variable myFinCenter you can overwrite the default setting with your
personal settings. With the specification of the FinCenter your system knows what rules rules for
day light saving times should be applied, what is your holiday calendar, what is your currency, what
are your interest rate conventions. (Not all specifications are already implemented.) Many other
aspects can be easily accessed when a financial center is named. So we can distinguish between
Frankfurt and Zurich, which both belong to the same time zone, but differed in DST changes in
the eighties and have different holiday calendars. Futhermore, since the underlying time refers to
"GMT" and DST rules and all other information is available in local (ASCII) databases, we are
sure, that R/Rmetrics delivers with such a date/time concept on every computer independent of the
operating systemin use, identical results.

Another important feature of the "timeDate" concept used here is the fact that we don’t rely on
American or European ways to write dates. We use consequently the ISO-8601 standard for date
and time notations.

Generation of ’timeDate’ Objects

We have defined a timeDate class which is in many aspects similar to the S-Plus class with the
same name, but has also some important advantageous differeneces. The S4 class has four Slots,
the Data slot which holds date and time as ’POSIXct’ objects in the standard ISO-8601 format, the
Dim slot which gives the dimension of the data object (i.e. its length), the format specification slot
and the FinCenter slot which holds the name of the financial center. By default this is the value

Three functions allow to cgenerate date/time objects: timeDate from character vectors, timeCalendar
from date and time atoms, and timeSequence from a "from/to" or from a "from/length" sequence
specification. Note, time zone transformations are easily handled by by the timeDate functions
which can also take timeDate and POSIXt objects as inputs, while transforming them between
financial centers and/or time zones specified by the arguments zone and FinCenter. Finally the

64 timeDate-class

function Sys.timeDate returns current system time in form of a timeDate object.

Tests and Representation of timeDate Objects:

Rmetrics has implemented several methods to represent timeDate objects. For example, the print
method returns the date/time in square "[]" brackets to distinguish the output from other date and
time objects. On top of the date and time output the name of the FinCenter is printed. The sum-
mary method returns a printed report with information about the timeDate object. Finally, the
format methods allows to transform objects into a ISO conform formatted character strings.

Mathematical Operations:

Rmetrics supports methods to perform many mathematical operations. Included are methods to
extract or to replace subsets from timeDate objects, to perform arithmetic "+" and "-" operations,
to group Ops generic functions, to return suitably lagged and iterated differences diff, to return
differences difftimeDate of two timeDate objects, to concatenate objects, to replicate objects, to
round objects, to truncate objects using trunc, to extract the first or last entry of a vector, to sort
the objects of the elements of a date/time vector, and to revert ’timeDate’ vector objects, among
other functions.

Transformation of Objects:

Rmetrics has also functions to transform dat/time objects between different representations. In-
cluded are methods to transform timeDate objects to character strings, to data frames, to POSIXct
or POSIXlt objects, to julian counts. One can extract date/time atoms from calendar dates, and
the months atoms from a timeDate object.

Objects from the Class

Objects can be created for example by calls of the functions timeDate, timeCalender and timeCalendar
among others.

Slots

Data: Object of class "POSIXct": a vector of POSIXct dates and times always related to "GMT".

format: Object of class "character": a character string denoting the format specification of the
input Data character vector.

FinCenter: Object of class "character": a character string with the the location of the financial
center named as "continent/city", or just "city".

Methods

show signature(object = "timeDate"): prints an object of class ’timeDate’.

Note

Originally, these functions were written for Rmetrics users using R and Rmetrics under Microsoft’s
Windows XP operating system where time zones, daylight saving times and holiday calendars are
not or insuffeciently supported.

timeDate-class 65

The usage of the Ical Library and the introduction of the FinCenter concept was originally devel-
loped for R Version 1.5. The timeDate and timeSeries objects were added for R Version 1.8.1.
Minor changes were made to adapt the functions for R Version 1.9.1. As a consequence, newer con-
cepts like the Date objects were not yet considered and included in this collection of date and time
concepts. With R Version 2.3.0 a major update has been made adding many new generic functions
and renaming a few already existing functions, please be aware of this.

Note, the date/time conversion from an arbitry time zone to GMT cannot be unique, since date/time
objects appear twice during the hour when DST changes and the isdt flag was not recorded. A
bookkeeping which takes care if DST is effective or not is not yet included. However, in most
applications this is not necessary since the markets are closed on weekends, especially at times
when DST usually changes. It is planned for the future to implement the DST supporting this
facility.

The ISO-8601 midnight standard has been implemented. Note, that for example "2005-01-01
24:00:00" is accepted as a valid date/time string.

Also available is an automated format recognition, so the user has not longer specify the format
string for the most common date/time formats.

Examples

Examples for Objects of class 'timeDate':

timeDate -

Sys.timeDate() # direct
timeDate(Sys.time()) # transformed from "POSIX(c)t"

Local Time in Zurich
timeDate(Sys.time(), FinCenter = "Zurich")

Character Vector Strings:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

t1 <- timeDate(dts, format = "%Y-%m-%d", FinCenter = "GMT")
t1

stopifnot(identical(t1, timeDate(dts, FinC = "GMT"))) # auto-format

timeDate(dts, format = "%Y-%m-%d", FinCenter = "Europe/Zurich")

timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S",
zone = "GMT", FinCenter = "GMT")

timeDate(paste(dts, tms),
zone = "Europe/Zurich", FinCenter = "Europe/Zurich")

timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S",
zone = "GMT", FinCenter = "Europe/Zurich")

66 timeDateMathOps

Non Standard Format:
timeDate(paste(20:31, "03.2005", sep="."), format = "%d.%m.%Y")

Note, ISO and American Formats are Auto-Detected:
timeDate("2004-12-31", FinCenter = "GMT")
timeDate("12/11/2004", FinCenter = "GMT")
timeDate("1/31/2004") # auto-detect American format

... from POSIX?t, and Using NAs:
lsec <- as.POSIXlt(.leap.seconds)
lsec[c(2,4:6)] <- NA
timeDate(lsec)

dtms <- paste(dts,tms)
dtms[2:3] <- NA
timeDate(dtms, FinCenter = "Europe/Zurich") # but in GMT

timeCalendar -

getRmetricsOptions("currentYear")
timeCalendar() # 12 months of current year
timeCalendar(m = c(9, 1, 8, 2), d = c(28, 15, 30, 9),

y = c(1989, 2001, 2004, 1990), FinCenter = "GMT")
timeCalendar(m = c(9, 1, 8, 2), d = c(28, 15, 30, 9),

y = c(1989, 2001, 2004, 1990), FinCenter = "Europe/Zurich")
timeCalendar(h = c(9, 14), min = c(15, 23))

timeSequence -

timeSequence(from = "2004-03-12", to = "2004-04-11",
format = "%Y-%m-%d", FinCenter = "GMT")

timeSequence(from = "2004-03-12", to = "2004-04-11",
format = "%Y-%m-%d", FinCenter = "Europe/Zurich")

print | summary | format -

tC = timeCalendar()
print(tC)
summary(tC)
format(tC)

timeDateMathOps timeDate Mathematical Operations

timeDateMathOps 67

Description

Functions for mathematical and logical operations on ’timeDate’ objects.

The functions are:

Ops,timeDate Group ’Ops’ generic functions for ’timeDate’ objects,
+,timeDate Performs arithmetic + operation on ’timeDate’ objects,
-,timeDate Performs arithmetic - operation on ’timeDate’ objects.

Usage

S4 method for signature 'timeDate,timeDate'
Ops(e1, e2)

Arguments

e1, e2 usually objects of class timeDate, in the case of addition and subtraction e2
may be of class numeric.

Value

Ops.timeDate
these are functions for mathematical operations. Group Ops are generic functions which manage
mathematical operations.

+.timeDate
-.timeDate
The plus operator "+" performs arithmetic "+" operation on timeDate objects, and the minus oper-
ator "-" returns a difftime object if both arguments e1 and e2 are "timeDate" objects, or returns
a "timeDate" object e2 seconds earlier than e1.

Examples

Create Character Vectors:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

"+/-" -
Add One Day to a Given timeDate Object:
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT")
GMT
ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")

68 timeSequence

ZUR
GMT + 24*3600
ZUR[2] - ZUR[1]

timeSequence Regularly spaced ’timeDate’ objects

Description

Create a regularly spaced object of class timeDate.

Usage

timeSequence(from, to = Sys.timeDate(), by, length.out = NULL,
format = NULL, zone = "", FinCenter = "")

S3 method for class 'timeDate'
seq(from, to, by, length.out = NULL, along.with = NULL, ...)

Arguments

from, to starting date, required, and end date, optional. If supplied, to must be after (later
than) from.

by • a character string, containing one of "sec", "min", "hour", "day", "week",
"month" or "year". This can optionally be preceded by an integer and a
space, or followed by "s".

• character string "quarter" that is equivalent to "3 months".
• A number, taken to be in seconds.
• A object of class ’difftime’

length.out length.out integer, optional. Desired length of the sequence, if specified "to"
will be ignored.

along.with Take the length from the length of this argument.

format the format specification of the input character vector.

zone the time zone or financial center where the data were recorded.

FinCenter a character with the the location of the financial center named as "continent/city".

... arguments passed to other methods.

Value

an object of class "timeDate".

Note

timeSequence() is a wrapper for the "timeDate" method of seq(), and that has been closely
modeled after base R’s POSIXt method, seq.POSIXt.

unique 69

Examples

timeSequence -

autodetection of format :
(t1 <- timeSequence(from = "2004-03-12", to = "2004-04-11"))

stopifnot(## different formats even:
identical(t1, timeSequence(from = "2004-03-12", to = "11-Apr-2004")),
identical(t1, ## explicit format and FinCenter :

timeSequence(from = "2004-03-12", to = "2004-04-11",
format = "%Y-%m-%d", FinCenter = "GMT")))

observe "switch to summer time":
timeSequence(from = "2004-03-12", to = "2004-04-11",

FinCenter = "Europe/Zurich")

unique Making a ’timeDate’ object unique

Description

Makes a ’timeDate’ object unique.

Usage

S3 method for class 'timeDate'
unique(x, ...)

Arguments

x an object of class timeDate.

... arguments passed to other methods.

Value

returns an object of class "timeDate".

Examples

c -
Create Character Vectors:
dts = c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
dts
tms = c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
tms

"+/-" -
Add One Day to a Given timeDate Object:
GMT = timeDate(dts, zone = "GMT", FinCenter = "GMT")

70 whichFormat

GMT
ZUR = timeDate(dts, zone = "GMT", FinCenter = "Europe/Zurich")
ZUR

c -
Concatenate and Replicate timeDate Objects:
c(GMT[1:2], ZUR[1:2])
c(ZUR[1:2], GMT[1:2])

rep -
rep(ZUR[2], times = 3)
rep(ZUR[2:3], times = 2)

whichFormat Format Recognation

Description

Tries to recognize the date/time format.

Usage

whichFormat(charvec, silent = FALSE)

Arguments

charvec a character string or vector of dates and times.

silent a logical flag. Should a warning be printed if the format cannot be recognized?

Value

returns a format string.

Examples

midnightStandard -
whichFormat("2007-12-31 24:00")

window 71

window Time Windows

Description

Extract the subset of a ’timeDate’ object observed between two time stamps.

Usage

S3 method for class 'timeDate'
window(x, start , end, ...)

S3 method for class 'timeDate'
cut(x, from , to, ...)

Arguments

from, to starting date, required, and end date, ptional. If supplied to must be after from.

start, end starting date, required, and end date, ptional. If supplied to must be after from.

x an object of class timeDate.

... arguments passed to other methods.

Value

returns an object of class timeDate.

Examples

timeCalendar -
Monthly Dates in Current Year:
tS = timeCalendar()
tS

window -
2nd Quarter Window:
tS[4:6]
window(tS, tS[4], tS[6])

Index

∗ chron
align, 14
as.timeDate, 15
blockStart, 16
c, 17
currentYear, 18
dayOfWeek, 20
dayOfYear, 20
diff, 21
difftimeDate, 22
Easter, 23
firstDay, 25
format-methods, 26
holiday, 27
holidayDate, 29
holidayLONDON, 32
holidayNERC, 33
holidayNYSE, 34
holidayTSX, 34
holidayZURICH, 35
is.na-methods, 36
isBizday, 36
isRegular, 37
isWeekday, 38
julian, 39
length, 41
listFinCenter, 42
listHolidays, 43
midnightStandard, 43
myFinCenter, 44
myUnits, 45
nDay, 46
onOrAfter, 47
plot-methods, 49
rep, 50
rev, 51
round, 52
rulesFinCenter, 53
sample, 54

show-methods, 54
sort, 56
start, 57
subset, 58
summary-methods, 59
Sys.timeDate, 59
timeCalendar, 60
timeDate, 61
timeDate-class, 62
timeDateMathOps, 66
timeSequence, 68
unique, 69
whichFormat, 70
window, 71

∗ data
DaylightSavingTime, 19

∗ hplot
plot-methods, 49

∗ package
timeDate-package, 3

∗ programming
.endpoints, 13

∗ univar
kurtosis, 40
skewness, 55

+,numeric,timeDate-method
(timeDateMathOps), 66

+,timeDate,numeric-method
(timeDateMathOps), 66

+,timeDate,timeDate-method
(timeDateMathOps), 66

-,numeric,timeDate-method
(timeDateMathOps), 66

-,timeDate,numeric-method
(timeDateMathOps), 66

-,timeDate,timeDate-method
(timeDateMathOps), 66

.endpoints, 13
[,timeDate,ANY,missing-method (subset),

72

INDEX 73

58
[,timeDate,character,missing-method

(subset), 58
[,timeDate,logical,missing-method

(subset), 58
[,timeDate,missing,missing-method

(subset), 58
[,timeDate,numeric,missing-method

(subset), 58
[<-.timeDate (subset), 58

Abidjan (DaylightSavingTime), 19
abline,ANY,ANY,ANY,timeDate-method

(plot-methods), 49
Accra (DaylightSavingTime), 19
Adak (DaylightSavingTime), 19
Addis_Ababa (DaylightSavingTime), 19
Adelaide (DaylightSavingTime), 19
Aden (DaylightSavingTime), 19
Advent1st (holidayDate), 29
Advent2nd (holidayDate), 29
Advent3rd (holidayDate), 29
Advent4th (holidayDate), 29
Algiers (DaylightSavingTime), 19
align, 14
align,ANY-method (align), 14
align,timeDate-method (align), 14
alignDaily (align), 14
alignMonthly (align), 14
alignQuarterly (align), 14
AllSaints (holidayDate), 29
AllSouls (holidayDate), 29
Almaty (DaylightSavingTime), 19
Amman (DaylightSavingTime), 19
Amsterdam (DaylightSavingTime), 19
Anadyr (DaylightSavingTime), 19
Anchorage (DaylightSavingTime), 19
Andorra (DaylightSavingTime), 19
Anguilla (DaylightSavingTime), 19
Annunciation (holidayDate), 29
Antananarivo (DaylightSavingTime), 19
Antigua (DaylightSavingTime), 19
Any to ’timeDate’ Coercion

(as.timeDate), 15
Apia (DaylightSavingTime), 19
Aqtau (DaylightSavingTime), 19
Aqtobe (DaylightSavingTime), 19
Araguaina (DaylightSavingTime), 19
Aruba (DaylightSavingTime), 19

as.character.timeDate (as.timeDate), 15
as.data.frame.timeDate (as.timeDate), 15
as.Date.timeDate (as.timeDate), 15
as.double.timeDate (as.timeDate), 15
as.list.timeDate (as.timeDate), 15
as.POSIXct, 43
as.POSIXct.timeDate (as.timeDate), 15
as.POSIXlt.timeDate (as.timeDate), 15
as.timeDate, 15
Ascension (holidayDate), 29
Ashgabat (DaylightSavingTime), 19
AshWednesday (holidayDate), 29
Asmara (DaylightSavingTime), 19
AssumptionOfMary (holidayDate), 29
AST (DaylightSavingTime), 19
Asuncion (DaylightSavingTime), 19
Athens (DaylightSavingTime), 19
Atikokan (DaylightSavingTime), 19
atoms (julian), 39
atoms,ANY-method (julian), 39
atoms,timeDate-method (julian), 39
Auckland (DaylightSavingTime), 19
axis.timeDate (plot-methods), 49
Azores (DaylightSavingTime), 19

Baghdad (DaylightSavingTime), 19
Bahia (DaylightSavingTime), 19
Bahrain (DaylightSavingTime), 19
Baku (DaylightSavingTime), 19
Bamako (DaylightSavingTime), 19
Bangkok (DaylightSavingTime), 19
Bangui (DaylightSavingTime), 19
Banjul (DaylightSavingTime), 19
Barbados (DaylightSavingTime), 19
Beirut (DaylightSavingTime), 19
Belem (DaylightSavingTime), 19
Belgrade (DaylightSavingTime), 19
Belize (DaylightSavingTime), 19
Berlin (DaylightSavingTime), 19
Bermuda (DaylightSavingTime), 19
BirthOfVirginMary (holidayDate), 29
Bishkek (DaylightSavingTime), 19
Bissau (DaylightSavingTime), 19
Blanc-Sablon (DaylightSavingTime), 19
Blantyre (DaylightSavingTime), 19
blockEnd (blockStart), 16
blockStart, 16
Boa_Vista (DaylightSavingTime), 19
Bogota (DaylightSavingTime), 19

74 INDEX

Boise (DaylightSavingTime), 19
BoxingDay (holidayDate), 29
Bratislava (DaylightSavingTime), 19
Brazzaville (DaylightSavingTime), 19
Brisbane (DaylightSavingTime), 19
Broken_Hill (DaylightSavingTime), 19
Brunei (DaylightSavingTime), 19
Brussels (DaylightSavingTime), 19
Bucharest (DaylightSavingTime), 19
Budapest (DaylightSavingTime), 19
Buenos_Aires (DaylightSavingTime), 19
BuenosAires (DaylightSavingTime), 19
Bujumbura (DaylightSavingTime), 19

c, 17
CACanadaDay (holidayDate), 29
CACivicProvincialHoliday (holidayDate),

29
CAFamilyDay (holidayDate), 29
Cairo (DaylightSavingTime), 19
CALabourDay (holidayDate), 29
Calcutta (DaylightSavingTime), 19
Cambridge_Bay (DaylightSavingTime), 19
Campo_Grande (DaylightSavingTime), 19
Canary (DaylightSavingTime), 19
Cancun (DaylightSavingTime), 19
Cape_Verde (DaylightSavingTime), 19
Caracas (DaylightSavingTime), 19
CaRemembranceDay (holidayDate), 29
Casablanca (DaylightSavingTime), 19
Casey (DaylightSavingTime), 19
Catamarca (DaylightSavingTime), 19
CAThanksgivingDay (holidayDate), 29
CAVictoriaDay (holidayDate), 29
Cayenne (DaylightSavingTime), 19
Cayman (DaylightSavingTime), 19
CelebrationOfHolyCross (holidayDate), 29
Center (DaylightSavingTime), 19
CET (DaylightSavingTime), 19
Ceuta (DaylightSavingTime), 19
Chagos (DaylightSavingTime), 19
CHAscension (holidayDate), 29
Chatham (DaylightSavingTime), 19
CHBerchtoldsDay (holidayDate), 29
CHConfederationDay (holidayDate), 29
Chicago (DaylightSavingTime), 19
Chihuahua (DaylightSavingTime), 19
Chisinau (DaylightSavingTime), 19
CHKnabenschiessen (holidayDate), 29

Choibalsan (DaylightSavingTime), 19
Chongqing (DaylightSavingTime), 19
Christmas (DaylightSavingTime), 19
ChristmasDay (holidayDate), 29
ChristmasEve (holidayDate), 29
ChristTheKing (holidayDate), 29
CHSechselaeuten (holidayDate), 29
class, 60, 68
Cocos (DaylightSavingTime), 19
coerce,ANY,timeDate-method

(as.timeDate), 15
coerce,Date,timeDate-method

(as.timeDate), 15
coerce,POSIXt,timeDate-method

(as.timeDate), 15
coerce,timeDate,character-method

(as.timeDate), 15
coerce,timeDate,data.frame-method

(as.timeDate), 15
coerce,timeDate,Date-method

(as.timeDate), 15
coerce,timeDate,list-method

(as.timeDate), 15
coerce,timeDate,numeric-method

(as.timeDate), 15
coerce,timeDate,POSIXct-method

(as.timeDate), 15
coerce,timeDate,POSIXlt-method

(as.timeDate), 15
Colombo (DaylightSavingTime), 19
Comoro (DaylightSavingTime), 19
Conakry (DaylightSavingTime), 19
Copenhagen (DaylightSavingTime), 19
Cordoba (DaylightSavingTime), 19
CorpusChristi (holidayDate), 29
Costa_Rica (DaylightSavingTime), 19
CST (DaylightSavingTime), 19
Cuiaba (DaylightSavingTime), 19
Curacao (DaylightSavingTime), 19
currentYear, 18
Currie (DaylightSavingTime), 19
cut.timeDate (window), 71

Dakar (DaylightSavingTime), 19
Damascus (DaylightSavingTime), 19
Danmarkshavn (DaylightSavingTime), 19
Dar_es_Salaam (DaylightSavingTime), 19
Darwin (DaylightSavingTime), 19
Davis (DaylightSavingTime), 19

INDEX 75

Dawson (DaylightSavingTime), 19
Dawson_Creek (DaylightSavingTime), 19
DaylightSavingTime, 19
dayOfWeek, 20, 21
dayOfYear, 20, 20
DEAscension (holidayDate), 29
DEChristmasEve (holidayDate), 29
DECorpusChristi (holidayDate), 29
DEGermanUnity (holidayDate), 29
DENewYearsEve (holidayDate), 29
Denver (DaylightSavingTime), 19
Detroit (DaylightSavingTime), 19
Dhaka (DaylightSavingTime), 19
diff, 21, 64
difftimeDate, 22, 64
Dili (DaylightSavingTime), 19
Djibouti (DaylightSavingTime), 19
Dominica (DaylightSavingTime), 19
Douala (DaylightSavingTime), 19
Dubai (DaylightSavingTime), 19
Dublin (DaylightSavingTime), 19
DumontDUrville (DaylightSavingTime), 19
Dushanbe (DaylightSavingTime), 19

Easter, 23
EasterMonday (holidayDate), 29
Eastern (DaylightSavingTime), 19
EasterSunday (holidayDate), 29
Edmonton (DaylightSavingTime), 19
EET (DaylightSavingTime), 19
Efate (DaylightSavingTime), 19
Eirunepe (DaylightSavingTime), 19
El_Aaiun (DaylightSavingTime), 19
El_Salvador (DaylightSavingTime), 19
end (start), 57
Enderbury (DaylightSavingTime), 19
Epiphany (holidayDate), 29
EST (DaylightSavingTime), 19
Eucla (DaylightSavingTime), 19

Fakaofo (DaylightSavingTime), 19
Faroe (DaylightSavingTime), 19
Fiji (DaylightSavingTime), 19
finCenter, 24
finCenter,timeDate-method (finCenter),

24
finCenter<- (finCenter), 24
finCenter<-,timeDate-method

(finCenter), 24

firstDay, 25
format (format-methods), 26
format-methods, 26
Fortaleza (DaylightSavingTime), 19
FRAllSaints (holidayDate), 29
Frankfurt (DaylightSavingTime), 19
FRArmisticeDay (holidayDate), 29
FRAscension (holidayDate), 29
FRAssumptionVirginMary (holidayDate), 29
FRBastilleDay (holidayDate), 29
Freetown (DaylightSavingTime), 19
frequency (isRegular), 37
frequency,timeDate-method (isRegular),

37
FRFetDeLaVictoire1945 (holidayDate), 29
Funafuti (DaylightSavingTime), 19

Gaborone (DaylightSavingTime), 19
Galapagos (DaylightSavingTime), 19
Gambier (DaylightSavingTime), 19
Gaza (DaylightSavingTime), 19
GBBankHoliday (holidayDate), 29
GBMayDay (holidayDate), 29
GBMilleniumDay (holidayDate), 29
GBSummerBankHoliday (holidayDate), 29
getDataPart,timeDate-method (timeDate),

61
getRmetricsOption (RmetricsOptions), 52
getRmetricsOptions (RmetricsOptions), 52
Gibraltar (DaylightSavingTime), 19
Glace_Bay (DaylightSavingTime), 19
Godthab (DaylightSavingTime), 19
GoodFriday (holidayDate), 29
Goose_Bay (DaylightSavingTime), 19
Grand_Turk (DaylightSavingTime), 19
Grenada (DaylightSavingTime), 19
grep, 42, 43
Guadalcanal (DaylightSavingTime), 19
Guadeloupe (DaylightSavingTime), 19
Guam (DaylightSavingTime), 19
Guatemala (DaylightSavingTime), 19
Guayaquil (DaylightSavingTime), 19
Guernsey (DaylightSavingTime), 19
Guyana (DaylightSavingTime), 19

Halifax (DaylightSavingTime), 19
Harare (DaylightSavingTime), 19
Harbin (DaylightSavingTime), 19
Havana (DaylightSavingTime), 19

76 INDEX

Helsinki (DaylightSavingTime), 19
Hermosillo (DaylightSavingTime), 19
Hobart (DaylightSavingTime), 19
holiday, 27
holidayDate, 29
holidayLONDON, 32
holidayNERC, 33
holidayNYSE, 34
holidayTSX, 34
holidayZURICH, 35
Hong_Kong (DaylightSavingTime), 19
HongKong (DaylightSavingTime), 19
Honolulu (DaylightSavingTime), 19
Hovd (DaylightSavingTime), 19

Indianapolis (DaylightSavingTime), 19
initialize,timeDate-method (timeDate),

61
Inuvik (DaylightSavingTime), 19
Iqaluit (DaylightSavingTime), 19
Irkutsk (DaylightSavingTime), 19
is.na,timeDate-method (is.na-methods),

36
is.na-methods, 36
isBizday, 36
isDaily (isRegular), 37
isDaily,timeDate-method (isRegular), 37
isHoliday (isBizday), 36
Isle_of_Man (DaylightSavingTime), 19
isMonthly (isRegular), 37
isMonthly,timeDate-method (isRegular),

37
isQuarterly (isRegular), 37
isQuarterly,timeDate-method

(isRegular), 37
isRegular, 37
isRegular,timeDate-method (isRegular),

37
Istanbul (DaylightSavingTime), 19
isWeekday, 38
isWeekend (isWeekday), 38
ITAllSaints (holidayDate), 29
ITAssumptionOfVirginMary (holidayDate),

29
ITEpiphany (holidayDate), 29
ITImmaculateConception (holidayDate), 29
ITLiberationDay (holidayDate), 29
ITStAmrose (holidayDate), 29

Jakarta (DaylightSavingTime), 19
Jamaica (DaylightSavingTime), 19
Jayapura (DaylightSavingTime), 19
Jersey (DaylightSavingTime), 19
Jerusalem (DaylightSavingTime), 19
Johannesburg (DaylightSavingTime), 19
Johnston (DaylightSavingTime), 19
JPAutumnalEquinox (holidayDate), 29
JPBankHolidayDec31 (holidayDate), 29
JPBankHolidayJan2 (holidayDate), 29
JPBankHolidayJan3 (holidayDate), 29
JPBunkaNoHi (holidayDate), 29
JPChildrensDay (holidayDate), 29
JPComingOfAgeDay (holidayDate), 29
JPConstitutionDay (holidayDate), 29
JPEmperorsBirthday (holidayDate), 29
JPGantan (holidayDate), 29
JPGreeneryDay (holidayDate), 29
JPHealthandSportsDay (holidayDate), 29
JPKeirouNOhi (holidayDate), 29
JPKenkokuKinenNoHi (holidayDate), 29
JPKenpouKinenBi (holidayDate), 29
JPKinrouKanshaNoHi (holidayDate), 29
JPKodomoNoHi (holidayDate), 29
JPKokuminNoKyujitu (holidayDate), 29
JPMarineDay (holidayDate), 29
JPMidoriNoHi (holidayDate), 29
JPNatFoundationDay (holidayDate), 29
JPNationalCultureDay (holidayDate), 29
JPNationHoliday (holidayDate), 29
JPNewYearsDay (holidayDate), 29
JPRespectForTheAgedDay (holidayDate), 29
JPSeijinNoHi (holidayDate), 29
JPShuubunNoHi (holidayDate), 29
JPTaiikuNoHi (holidayDate), 29
JPTennouTanjyouBi (holidayDate), 29
JPThanksgivingDay (holidayDate), 29
JPUmiNoHi (holidayDate), 29
JPVernalEquinox (holidayDate), 29
Jujuy (DaylightSavingTime), 19
julian, 39, 64
julian,timeDate-method (julian), 39
Juneau (DaylightSavingTime), 19

Kabul (DaylightSavingTime), 19
Kaliningrad (DaylightSavingTime), 19
Kamchatka (DaylightSavingTime), 19
Kampala (DaylightSavingTime), 19
Karachi (DaylightSavingTime), 19

INDEX 77

Kashgar (DaylightSavingTime), 19
Katmandu (DaylightSavingTime), 19
Kerguelen (DaylightSavingTime), 19
Khartoum (DaylightSavingTime), 19
Kiev (DaylightSavingTime), 19
Kigali (DaylightSavingTime), 19
Kinshasa (DaylightSavingTime), 19
Kiritimati (DaylightSavingTime), 19
Knox (DaylightSavingTime), 19
Kosrae (DaylightSavingTime), 19
Krasnoyarsk (DaylightSavingTime), 19
Kuala_Lumpur (DaylightSavingTime), 19
KualaLumpur (DaylightSavingTime), 19
Kuching (DaylightSavingTime), 19
kurtosis, 40
Kuwait (DaylightSavingTime), 19
Kwajalein (DaylightSavingTime), 19

La_Paz (DaylightSavingTime), 19
La_Rioja (DaylightSavingTime), 19
LaborDay (holidayDate), 29
Lagos (DaylightSavingTime), 19
lastDay (firstDay), 25
length, 41
Libreville (DaylightSavingTime), 19
Lima (DaylightSavingTime), 19
Lindeman (DaylightSavingTime), 19
lines,timeDate-method (plot-methods), 49
Lisbon (DaylightSavingTime), 19
listFinCenter, 42, 44
listHolidays, 43
Ljubljana (DaylightSavingTime), 19
Lome (DaylightSavingTime), 19
London (DaylightSavingTime), 19
Longyearbyen (DaylightSavingTime), 19
Lord_Howe (DaylightSavingTime), 19
Los_Angeles (DaylightSavingTime), 19
LosAngeles (DaylightSavingTime), 19
Louisville (DaylightSavingTime), 19
Luanda (DaylightSavingTime), 19
Lubumbashi (DaylightSavingTime), 19
Lusaka (DaylightSavingTime), 19
Luxembourg (DaylightSavingTime), 19

Macau (DaylightSavingTime), 19
Maceio (DaylightSavingTime), 19
Madeira (DaylightSavingTime), 19
Madrid (DaylightSavingTime), 19
Magadan (DaylightSavingTime), 19

Mahe (DaylightSavingTime), 19
Majuro (DaylightSavingTime), 19
Makassar (DaylightSavingTime), 19
Malabo (DaylightSavingTime), 19
Maldives (DaylightSavingTime), 19
Malta (DaylightSavingTime), 19
Managua (DaylightSavingTime), 19
Manaus (DaylightSavingTime), 19
Manila (DaylightSavingTime), 19
Maputo (DaylightSavingTime), 19
Marengo (DaylightSavingTime), 19
Mariehamn (DaylightSavingTime), 19
Marigot (DaylightSavingTime), 19
Marquesas (DaylightSavingTime), 19
Martinique (DaylightSavingTime), 19
Maseru (DaylightSavingTime), 19
MassOfArchangels (holidayDate), 29
Mauritius (DaylightSavingTime), 19
Mawson (DaylightSavingTime), 19
max.timeDate (start), 57
Mayotte (DaylightSavingTime), 19
Mazatlan (DaylightSavingTime), 19
Mbabane (DaylightSavingTime), 19
McMurdo (DaylightSavingTime), 19
Melbourne (DaylightSavingTime), 19
Mendoza (DaylightSavingTime), 19
Menominee (DaylightSavingTime), 19
Merida (DaylightSavingTime), 19
Mexico_City (DaylightSavingTime), 19
MexicoCity (DaylightSavingTime), 19
midnightStandard, 43
midnightStandard2 (midnightStandard), 43
Midway (DaylightSavingTime), 19
min.timeDate (start), 57
Minsk (DaylightSavingTime), 19
Miquelon (DaylightSavingTime), 19
Mogadishu (DaylightSavingTime), 19
Monaco (DaylightSavingTime), 19
Moncton (DaylightSavingTime), 19
Monrovia (DaylightSavingTime), 19
Monterrey (DaylightSavingTime), 19
Montevideo (DaylightSavingTime), 19
monthlyRolling (periods), 48
months, 64
months,timeDate-method (julian), 39
Monticello (DaylightSavingTime), 19
Montreal (DaylightSavingTime), 19
Montserrat (DaylightSavingTime), 19

78 INDEX

Moscow (DaylightSavingTime), 19
MST (DaylightSavingTime), 19
Muscat (DaylightSavingTime), 19
myFinCenter, 44
myUnits, 45

Nairobi (DaylightSavingTime), 19
names,timeDate-method (names-methods),

45
names-methods, 45
names<-,timeDate-method

(names-methods), 45
Nassau (DaylightSavingTime), 19
Nauru (DaylightSavingTime), 19
nDay, 46
Ndjamena (DaylightSavingTime), 19
New_Salem (DaylightSavingTime), 19
New_York (DaylightSavingTime), 19
NewYearsDay (holidayDate), 29
NewYork (DaylightSavingTime), 19
Niamey (DaylightSavingTime), 19
Nicosia (DaylightSavingTime), 19
Nipigon (DaylightSavingTime), 19
Niue (DaylightSavingTime), 19
Nome (DaylightSavingTime), 19
Norfolk (DaylightSavingTime), 19
Noronha (DaylightSavingTime), 19
Nouakchott (DaylightSavingTime), 19
Noumea (DaylightSavingTime), 19
Novosibirsk (DaylightSavingTime), 19

Omsk (DaylightSavingTime), 19
onOrAfter, 47
onOrBefore (onOrAfter), 47
Ops, 64
Ops,timeDate,timeDate-method

(timeDateMathOps), 66
Oral (DaylightSavingTime), 19
Oslo (DaylightSavingTime), 19
Ouagadougou (DaylightSavingTime), 19

Pacific (DaylightSavingTime), 19
Pago_Pago (DaylightSavingTime), 19
Palau (DaylightSavingTime), 19
Palmer (DaylightSavingTime), 19
PalmSunday (holidayDate), 29
Panama (DaylightSavingTime), 19
Pangnirtung (DaylightSavingTime), 19
Paramaribo (DaylightSavingTime), 19

Paris (DaylightSavingTime), 19
Pentecost (holidayDate), 29
PentecostMonday (holidayDate), 29
periodicallyRolling (periods), 48
periods, 48
Perth (DaylightSavingTime), 19
Petersburg (DaylightSavingTime), 19
Phnom_Penh (DaylightSavingTime), 19
Phoenix (DaylightSavingTime), 19
Pitcairn (DaylightSavingTime), 19
plot,timeDate-method (plot-methods), 49
plot-methods, 49
Podgorica (DaylightSavingTime), 19
points,timeDate-method (plot-methods),

49
Ponape (DaylightSavingTime), 19
Pontianak (DaylightSavingTime), 19
Port-au-Prince (DaylightSavingTime), 19
Port_Moresby (DaylightSavingTime), 19
Port_of_Spain (DaylightSavingTime), 19
Porto-Novo (DaylightSavingTime), 19
Porto_Velho (DaylightSavingTime), 19
POSIXct, 44
Prague (DaylightSavingTime), 19
PresentationOfLord (holidayDate), 29
pretty.timeDate (plot-methods), 49
PST (DaylightSavingTime), 19
Puerto_Rico (DaylightSavingTime), 19
Pyongyang (DaylightSavingTime), 19

Qatar (DaylightSavingTime), 19
Quinquagesima (holidayDate), 29
Qyzylorda (DaylightSavingTime), 19

Rainy_River (DaylightSavingTime), 19
range.timeDate (start), 57
Rangoon (DaylightSavingTime), 19
Rankin_Inlet (DaylightSavingTime), 19
Rarotonga (DaylightSavingTime), 19
Recife (DaylightSavingTime), 19
Regina (DaylightSavingTime), 19
rep, 50
Resolute (DaylightSavingTime), 19
Reunion (DaylightSavingTime), 19
rev, 51
Reykjavik (DaylightSavingTime), 19
Riga (DaylightSavingTime), 19
Rio_Branco (DaylightSavingTime), 19
Rio_Gallegos (DaylightSavingTime), 19

INDEX 79

Riyadh (DaylightSavingTime), 19
RmetricsOptions, 52
RogationSunday (holidayDate), 29
Rome (DaylightSavingTime), 19
Rothera (DaylightSavingTime), 19
round, 52, 64
rulesFinCenter, 53

Saigon (DaylightSavingTime), 19
Saipan (DaylightSavingTime), 19
Sakhalin (DaylightSavingTime), 19
Samara (DaylightSavingTime), 19
Samarkand (DaylightSavingTime), 19
sample, 54
sample,timeDate-method (sample), 54
San_Juan (DaylightSavingTime), 19
San_Marino (DaylightSavingTime), 19
Santiago (DaylightSavingTime), 19
Santo_Domingo (DaylightSavingTime), 19
Sao_Paulo (DaylightSavingTime), 19
Sao_Tome (DaylightSavingTime), 19
Sarajevo (DaylightSavingTime), 19
Scoresbysund (DaylightSavingTime), 19
Seoul (DaylightSavingTime), 19
Septuagesima (holidayDate), 29
seq, 68
seq.POSIXt, 68
seq.timeDate (timeSequence), 68
setRmetricsOptions (RmetricsOptions), 52
Shanghai (DaylightSavingTime), 19
Shiprock (DaylightSavingTime), 19
show,ANY-method (show-methods), 54
show,timeDate-method (show-methods), 54
show-methods, 54
show.timeDate (show-methods), 54
Simferopol (DaylightSavingTime), 19
Singapore (DaylightSavingTime), 19
skewness, 55
Skopje (DaylightSavingTime), 19
Sofia (DaylightSavingTime), 19
SolemnityOfMary (holidayDate), 29
sort, 56, 64
South_Georgia (DaylightSavingTime), 19
South_Pole (DaylightSavingTime), 19
St_Barthelemy (DaylightSavingTime), 19
St_Helena (DaylightSavingTime), 19
St_Johns (DaylightSavingTime), 19
St_Kitts (DaylightSavingTime), 19
St_Lucia (DaylightSavingTime), 19

St_Thomas (DaylightSavingTime), 19
St_Vincent (DaylightSavingTime), 19
Stanley (DaylightSavingTime), 19
start, 57
Stockholm (DaylightSavingTime), 19
strptime, 43
strptimeDate (timeDate), 61
subset, 58
summary-methods, 59
summary.timeDate (summary-methods), 59
Swift_Current (DaylightSavingTime), 19
Sydney (DaylightSavingTime), 19
Syowa (DaylightSavingTime), 19
Sys.timeDate, 59

Tahiti (DaylightSavingTime), 19
Taipei (DaylightSavingTime), 19
Tallinn (DaylightSavingTime), 19
Tarawa (DaylightSavingTime), 19
Tashkent (DaylightSavingTime), 19
Tbilisi (DaylightSavingTime), 19
Tegucigalpa (DaylightSavingTime), 19
Tehran (DaylightSavingTime), 19
Tell_City (DaylightSavingTime), 19
Thimphu (DaylightSavingTime), 19
Thule (DaylightSavingTime), 19
Thunder_Bay (DaylightSavingTime), 19
Tijuana (DaylightSavingTime), 19
timeCalendar, 60
timeDate, 61, 68
timeDate,ANY-method (timeDate), 61
timeDate,character-method (timeDate), 61
timeDate,Date-method (timeDate), 61
timeDate,missing-method (timeDate), 61
timeDate,numeric-method (timeDate), 61
timeDate,POSIXt-method (timeDate), 61
timeDate,timeDate-method (timeDate), 61
timeDate-class, 62
timeDate-package, 3
timeDateMathOps, 66
timeFirstDayInMonth (firstDay), 25
timeFirstDayInQuarter (firstDay), 25
timeLastDayInMonth (firstDay), 25
timeLastDayInQuarter (firstDay), 25
timeLastNdayInMonth (nDay), 46
timeNdayOnOrAfter (onOrAfter), 47
timeNdayOnOrBefore (onOrAfter), 47
timeNthNdayInMonth (nDay), 46
timeSequence, 68

80 INDEX

Tirane (DaylightSavingTime), 19
Tokyo (DaylightSavingTime), 19
Tongatapu (DaylightSavingTime), 19
Toronto (DaylightSavingTime), 19
Tortola (DaylightSavingTime), 19
TransfigurationOfLord (holidayDate), 29
TrinitySunday (holidayDate), 29
Tripoli (DaylightSavingTime), 19
Truk (DaylightSavingTime), 19
trunc, 64
trunc (round), 52
Tucuman (DaylightSavingTime), 19
Tunis (DaylightSavingTime), 19

Ulaanbaatar (DaylightSavingTime), 19
unique, 69
Urumqi (DaylightSavingTime), 19
USChristmasDay (holidayDate), 29
USColumbusDay (holidayDate), 29
USCPulaskisBirthday (holidayDate), 29
USDecorationMemorialDay (holidayDate),

29
USElectionDay (holidayDate), 29
USGoodFriday (holidayDate), 29
Ushuaia (DaylightSavingTime), 19
USInaugurationDay (holidayDate), 29
USIndependenceDay (holidayDate), 29
USJuneteenthNationalIndependenceDay

(holidayDate), 29
USLaborDay (holidayDate), 29
USLincolnsBirthday (holidayDate), 29
USMemorialDay (holidayDate), 29
USMLKingsBirthday (holidayDate), 29
USNewYearsDay (holidayDate), 29
USPresidentsDay (holidayDate), 29
USThanksgivingDay (holidayDate), 29
USVeteransDay (holidayDate), 29
USWashingtonsBirthday (holidayDate), 29
Uzhgorod (DaylightSavingTime), 19

Vaduz (DaylightSavingTime), 19
Vancouver (DaylightSavingTime), 19
Vatican (DaylightSavingTime), 19
Vevay (DaylightSavingTime), 19
Vienna (DaylightSavingTime), 19
Vientiane (DaylightSavingTime), 19
Vilnius (DaylightSavingTime), 19
Vincennes (DaylightSavingTime), 19
Vladivostok (DaylightSavingTime), 19

Volgograd (DaylightSavingTime), 19
Vostok (DaylightSavingTime), 19

Wake (DaylightSavingTime), 19
Wallis (DaylightSavingTime), 19
Warsaw (DaylightSavingTime), 19
whichFormat, 70
Whitehorse (DaylightSavingTime), 19
Winamac (DaylightSavingTime), 19
Windhoek (DaylightSavingTime), 19
window, 71
Winnipeg (DaylightSavingTime), 19

Yakutat (DaylightSavingTime), 19
Yakutsk (DaylightSavingTime), 19
Yekaterinburg (DaylightSavingTime), 19
Yellowknife (DaylightSavingTime), 19
Yerevan (DaylightSavingTime), 19

Zagreb (DaylightSavingTime), 19
Zaporozhye (DaylightSavingTime), 19
Zurich (DaylightSavingTime), 19

	timeDate-package
	.endpoints
	align
	as.timeDate
	blockStart
	c
	currentYear
	DaylightSavingTime
	dayOfWeek
	dayOfYear
	diff
	difftimeDate
	Easter
	finCenter
	firstDay
	format-methods
	holiday
	holidayDate
	holidayLONDON
	holidayNERC
	holidayNYSE
	holidayTSX
	holidayZURICH
	is.na-methods
	isBizday
	isRegular
	isWeekday
	julian
	kurtosis
	length
	listFinCenter
	listHolidays
	midnightStandard
	myFinCenter
	myUnits
	names-methods
	nDay
	onOrAfter
	periods
	plot-methods
	rep
	rev
	RmetricsOptions
	round
	rulesFinCenter
	sample
	show-methods
	skewness
	sort
	start
	subset
	summary-methods
	Sys.timeDate
	timeCalendar
	timeDate
	timeDate-class
	timeDateMathOps
	timeSequence
	unique
	whichFormat
	window
	Index

