Package ‘timeSeries’

July 17, 2022

Title Financial Time Series Objects (Rmetrics)
Date 2022-07-15
Version 4021.104

Description 'S4’ classes and various tools for financial time series:
Basic functions such as scaling and sorting, subsetting,
mathematical operations and statistical functions.

Depends R (>=2.10), timeDate (>= 2150.95)

Imports graphics, grDevices, stats, utils, methods

Suggests RUnit, robustbase, xts, PerformanceAnalytics, fTrading
LazyData yes

License GPL (>=2)

URL https://r-forge.r-project.org/scm/viewvc.php/pkg/timeSeries/?root=rmetrics,
https://www.rmetrics.org
NeedsCompilation no

Author Diethelm Wuertz [aut] (original code),
Tobias Setz [aut],
Yohan Chalabi [aut],
Martin Maechler [ctb] (<https://orcid.org/0000-0002-8685-9910>),
Georgi N. Boshnakov [cre]

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>
Repository CRAN
Date/Publication 2022-07-17 02:20:02 UTC

R topics documented:

timeSeries-package e e e e
aggregate-methods L.
align-methods L

apply . . e e

https://r-forge.r-project.org/scm/viewvc.php/pkg/timeSeries/?root=rmetrics
https://www.rmetrics.org
https://orcid.org/0000-0002-8685-9910

R topics documented:

attach L e e e e 13
attributes L e e e e e e e e e e e e 14
base-methods 15
bind e 15
colCum e e e e 16
colStatso e e e 17
COMMENL . . . v vt v v e 18
cumulated e e e e e 19
DataPart,timeSeries-method 20
description e 20
diff . . e e e e e 21
dimnames e e e e e e e e e e e e e e e 22
drawdowns e e e e 23
durations L e e e 24
filter e e e e e 25
finCenter e e e 25
is.imeSeries L. e 26
isRegular e 27
isUnivariate e e e e e e e e e e e 28
lag e 29
math e e e 30
METEE .« v v v v v e 31
model.frame L e 32
monthly L 33
0 34
NA.CONLZUOUS v v vt it e et e e e e e e e e e e e e e 37
orderColnames e e e 37
orderStatiStiCs e e e e e e e e e e e 39
periodical e 40
plot-methods L 41
print-methods 44
TANK . . . e e e 45
readSeries e e e e 46
TETUITIS . & . v v v v vt e e e e e e e e e e e e e e e e e e e 47
TEV o o v i e e e e e e e e e e 48
rollMean e e 49
rowCum e e e 50
runlengths L 51
sample L e e e e 51
scale L e e e e e 52
series-methods L 53
smooth e 54
SOTE v v vt e e e e e e e e e e e e 55
SpecialDailySeries 56
SPLIES . . o o e 58
SPreads e e e e e e e 59
] 7 1 60

str-methods L e 61

timeSeries-package 3
P 61
HME e e e e e e e e e e e e e e 62
timeSeries-deprecated oL 63
timeSeries-method-stats 63
TimeSeriesClass e e 64
TimeSeriesData e e 67
TimeSeriesSubsettings 67
100 ' 1 69
UNIES . . . v o o e e e e e e 71
wealth e 72
window L e e e e e e 72

Index 73

timeSeries-package Utilities and Tools Package
Description

Package of time series tools and utilities.

Details
Package: timeSeries
Type: Package
Version: see description file
Date: 2011
License: GPL Version 2 or later
Copyright: (c) 1999-2014 Rmetrics Association
URL: https://www.rmetrics.org

timeSeries - S4 timeSeries Class

timeSeries Creates a "timeSeries’ from scratch
getDataPart, series

getUnits Extracts the time serie units
getTime, time Extracts the positions of timestamps
use: slot Extracts the format of the timestamp
getFinCenter, finCenter Extracts the financial center

use: slot Extracts the record IDs

getTitle Extracts the title

use: slot Extracts the documentation

https://www.rmetrics.org

4 timeSeries-package

Base Time Series Functions

apply Applies a function to blocks of a ’timeSeries’
attach Attaches a "timeSeries’ to the search path
cbind Combines columns of two "timeSeries’ objects
rbind Combines rows of two ’timeSeries’ objects

diff Returns differences of a "timeSeries’ object
dim returns dimensions of a "timeSeries’ object
merge Merges two 'timeSeries’ objects

rank Returns sample ranks of a "timeSeries’ object
rev Reverts a timeSeries’ object

sample Resamples a "timeSeries’ object
scale Scales a ‘timeSeries’ object

sort Sorts a "timeSeries’ object

start Returns start date/time of a "timeSeries’

end Returns end date/time of a "timeSeries’

t Returns the transpose of a ’timeSeries’ object

Subsetting *timeSeries’ Objects

.subset_ Subsets "timeSeries’ objects

.findIndex Index search in a ’timeSeries’ object

L Subsets a ’timeSeries’ object

[<-] Assigns values to a subset

$ Subsets a ’timeSeries’ by column names

$<- Replaces Subset by column names

t Returns the transpose of a "timeSeries’

head Returns the head of a ’timeSeries’

tail Returns the tail of a time Series

na.omit Handles NAs in a timeSeries object
removeNA removes NAs from a matrix object
substituteNA substitutes NAs by zero, column mean or median
interpNA interpolates NAs using R’s "approx" function

Mathematical Operation

Ops.timeSeries S4: Arith method for a "timeSeries’ object

abs Returns absolute values of a "timeSeries’ object

sqrt Returns square root of a "timeSeries’ object

exp Returns the exponential values of a timeSeries’ object
log Returns the logarithm of a ’timeSeries’ object

sign Returns the signs of a "timeSeries’ object

diff Differences a "timeSeries’ object

timeSeries-package

Methods

scale
quantile

as.timeSeries
as.*x.default
as.*x.ts
as.*.data.frame
as.*.character
as.*.zoo
as.vector.x*
as.matrix.x*
as.numeric.*
as.data.frame.x*
as.ts.*
as.logical.*
is.timeSeries
plot
lines
points
show

Financial time series functions

align

cumulated
alignDailySeries
rollDailySeries
drawdowns
drawdownsStats
durations
countMonthlyRecords
rollMonthlyWindows
rollMonthlySeries
endOfPeriodSeries
endOfPeriodStats
endOfPeriodBenchmarks
returns
returnse
runlengths

smooth

splits

Centers and/or scales a "timeSeries’ object
Returns quantiles of an univariate "timeSeries’

Defines method for a ’timeSeries’
Returns the input

Transforma a ’ts’ object into a "timeSeries’
Transforms a ’data.frame’ intp a ’timeSeries
Loads and transforms from a demo file
Transforms a ’zoo’ object into a timeSeries
Converts univariate timeSeries to vector
Converts timeSeries to matrix

Converts timeSeries to numeric

Converts timeSeries to data.frame

Converts timeSeries to ts

Converts timeSeries to logical

Tests for a "timeSeries’ object

Displays a X-Y ’timeSeries’ Plot

Adds connected line segments to a plot
Adds Points to a plot

Prints a "timeSeries oobject

s

Aligns a 'timeSeries’ to time stamps

Computes cumulated series from a returns

Aligns a ‘timeSeries’ to calendarical dates

Rolls a ’timeSeries daily

Computes series of drawdowns from financial returns
Computes drawdowns statistics

Computes durations from a financial time series
Counts monthly records in a "timeSeries’

Rolls Monthly windows

Rolls a ’timeSeries’ monthly

Returns end of periodical series

Returns end of period statistics

Returns period benchmarks

Computes returns from prices or indexes

Computes untrimmed returns from prices or indexes
Computes run lenghts of a ’timeSeries’

Smoothes a ’timeSeries’

Detects 'timeSeries’ splits by outlier detection

spreads
turns
turnsStats

Statistics Time Series functions

colCumsums
colCummaxs
colCummins
colCumprods
colCumreturns
colSums
colMeans
colSds
colVars
colSkewness
colKurtosis
colMaxs
colMins
colProds
colStats
orderColnames
sortColnames
sampleColnames
pcaColnames
hclustColnames
statsColnames
orderStatistics
rollMean
rollMin
rollMax
rollMedian
rollStats
rowCumsums
smoothLowess
smoothSupsmu
smoothSpline

Misc Functions

timeSeries-package

Computes spreads from a price/index stream
Computes turning points in a "timeSeries’ object
Computes turning points statistics

Computes cumulated column sums of a ’timeSeries’
Computes cumulated maximum of a "timeSeries’
Computes cumulated minimum of a "timeSeries’
Computes cumulated pruduct values by column
Computes cumulated returns by column

Computes sums of all values in each column
Computes means of all values in each column
Computes standard deviations of all values in each column
Computes variances of all values in each column
Computes skewness of all values in each column
Computes kurtosis of all values in each column
Computes maxima of all values in each column
Computes minima of all values in each column
Computes products of all values in each column
Computes statistics of all values in each column
Returns ordered column names of a ’timeSeries’
Returns alphabetically sorted column names
Returns sampled column names of a ’timeSeries’
Returns PCA correlation ordered column names
Returns hierarchically clustered columnames
Returns statisticall rearrange columnames
Computes order statistics of a "timeSeries’ object
Computes rolling means of a ’timeSeries’ object
Computes rolling minima of a ’timeSeries’ object
Computes rolling maxima of a *timeSeries’ object
Computes rolling medians of a "timeSeries’ object
Computes rolling statistics of a "timeSeries’ objectcr
Computes cumulated column sums of a ’timeSeries’
Smoothes a series with lowess function

Smoothes a series with supsmu function

Smoothes a series with smooth.spline function

dummyDailySeries Creates a dummy daily "timeSeries’ object
isMonthly Decides if the series consists of monthly records
getArgs Extracts arguments from a S4 method

aggregate-methods 7

aggregate-methods timeSeries Class, Functions and Methods

Description

Aggregates a "timeSeries’ Object.

Usage
S4 method for signature 'timeSeries'

aggregate(x, by, FUN, ...)

daily2monthly(x, init=FALSE)
daily2weekly(x, startOn="Tue"”, init=FALSE)

Arguments
X an object of class "timeSeries’.
by a sequence of timeDate objects denoting the aggregation period.
FUN the function to be applied.
startOn a string value, specifying the day of week as a three letter abbreviation. Weekly
aggregated data records are then fixed to the weekdays given by the argument
startOn.
init a logical value, if set to TRUE then the time series will be indexed to 1 for its first
value. By default init is set to FALSE.
arguments passed to other methods.
Details

The function aggregate is a function which can aggregate time series on general aggregation peri-
ods.

In addition there are two tailored function for simple usage: Function daily2monthly and daily2weekly
which allow to aggregate "timeSeries’ objects from daily to monthly or weekly levels, respectively.

In the case of the function daily2weekly one can explicitely the starting day of the week, the
default value is Tuesday, startOn="Tue".

Value

aggregate returns an aggregated S4 object of class timeSeries.
daily2monthly returns an aggregated monthly object of class timeSeries.

daily2weekly returns an aggregated weekly object of class timeSeries starting on the specified
day of week.

Examples

#it

#it

#it

#it

#it

#it

Load Microsoft Data Set -
x <- MSFT

Aggregate by Weeks -

by <- timeSequence(from = start(x), to = end(x), by = "week")

aggregate(x, by, mean)

Aggregate to Last Friday of Month -

by <- unique(timeLastNdayInMonth(time(x), 5))
X <- aggregate(x, by, mean)

X

dayOfWeek (time (X))

isMonthly(X)

Aggregate to Last Day of Quarter -

by <- unique(timelLastDayInQuarter(time(x)))
X <- aggregate(x, by, mean)

X

isQuarterly(X)

Aggregate daily records to end of month records -
X <- daily2monthly(x)

X

isMonthly(X)

Aggregate da, ily records to end of week records -
X <- daily2weekly(x, startOn="Fri")

X

dayOfWeek (time (X))

align-methods

align-methods

timeSeries Class, Functions and Methods

Description

Aligns a 'timeSeries’ Object.

Usage

S4 method for signature 'timeSeries'
align(x, by = "1d", offset = "0s",

method = c("before”, "after”, "interp”, "fillINA",

"fmm", "periodic”, "natural”, "monoH.FC"),
include.weekends = FALSE, ...)

apply 9

Arguments
X an object of class timeSeries.
by a character string denoting the period
offset a character string denoting the offset
method a character string denoting the alignment approach.

include.weekends
a logical flag, should weekend be included.

Further arguments to be passed to the interpolating function.

Value

Returns an aligned S4 ’timeSeries’ object.

Examples
Use MSFT and Compute Sample Size -
dim(MSFT)

Align the Series -
MSFT.AL <- align(MSFT)

Show the Size of the Aligned Series -
dim(MSFT.AL)

apply Apply Functions Over Time Series Periods

Description

Applies a function to a timeSeries’ object over time peridos of arbitrary positons and lengths.
Usage

fapply(x, from, to, FUN, ...)

applySeries(x, from = NULL, to = NULL, by = c("monthly”, "quarterly"”),

FUN = colMeans, units = NULL, format = x@format, zone = x@FinCenter,
FinCenter = x@FinCenter, recordIDs = data.frame(), title = x@title,

documentation = x@documentation, ...)
Arguments
X an object of class timeSeries.
from, to starting date and end date as timeDate objects. Note, to must be time ordered

after from. If from and to are missing in function fapply they are set by default
to from=start(x), and to=end(x).

10 apply

FUN the function to be applied. For the function applySeries the default setting is
FUN=colMeans.

by a character value either "monthly” or "quarterly” used in the function applySeries.
The default value is "monthly”. Only operative when both arguments from and
to have their default values NULL. In this case the function FUN will be applied
to monthly or quarterly periods.

units an optional character string, which allows to overwrite the current column names
of a timeSeries object. By default NULL which means that the column names
are selected automatically.

format the format specification of the input character vector in POSIX notation.
zone the time zone or financial center where the data were recorded.
FinCenter a character value with the the location of the financial center named as "conti-

nent/city", or "city".
recordIDs a data frame which can be used for record identification information. Note, this
is not yet handled by the apply functions, an empty data.frame will be returned.
title an optional title string, if not specified the inputs data name is deparsed.
documentation optional documentation string, or a vector of character strings.

arguments passed to other methods.

Details

Like apply applies a function to the margins of an array, the function fapply applies a function to
the time stamps or signal counts of a financial (therefore the "f" in front of the function name) time
series of class 'timeSeries'.

The function fapply inputs a timeSeries object, and if from and to are missing, they take the
start and end time stamps of the series as default falues. The function then behaves like apply on
the column margin.

Note, the function fapply can be used repetitive in the following sense: If from and to are two
timeDate vectors of equal length then for each period spanned by the elelemts of the two vectors
the function FUN will be applied to each period. The resulting time stamps, are the time stamps of
the to vector. Note, the periods can be regular or irregelar, and they can even overlap.

The function fapply calls the more general function applySeries which also offers, to create
automatical monthly and quarterly periods.

Examples

Percentual Returns of Swiss Bond Index and Performance Index -
LPP <- 100 * LPP2@Q5REC[, c("SBI", "SPI")]
head(LPP, 20)

Aggregate Quarterly Returns -
applySeries(LPP, by = "quarterly”, FUN = colSums)

Aggregate Quarterly every last Friday in Quarter -
oneDay <- 24*3600
from <- unique(timeFirstDayInQuarter(time(LPP))) - oneDay

as

#it

#it

11

from <- timeLastNdayInMonth(from, nday = 5)

to <- unique(timelLastDayInQuarter(time(LPP)))

to <- timeLastNdayInMonth(to, nday = 5)

data.frame(from = as.character(from), to = as.character(to))
applySeries(LPP, from, to, FUN = colSums)

Count Trading Days per Month -
colCounts <- function(x) rep(NROW(x), times = NCOL(x))
applySeries(LPP, FUN = colCounts, by = "monthly")

Alternative Use -
fapply(LPP, from, to, FUN = colSums)

as

timeSeries Class, Coercion and Transformation

Description

Functions and methods dealing with the coercion of "timeSeries’ objects.

Usage

Default S3 method:

as.timeSeries(x, ...)

S3 method for class 'ts'

as.timeSeries(x, ...)

S3 method for class 'data.frame'

as.timeSeries(x, ...)

S3 method for class 'character'

as.timeSeries(x, ...)

S3 method for class 'zoo'

as.timeSeries(x, ...)

S4 method for signature 'timeSeries'

as.matrix(x, ...)

S4 method for signature 'timeSeries'

as.ts(x, ...)

S4 method for signature 'timeSeries'

as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S4 method for signature 'timeSeries'

as.ts(x, ...)

Arguments

optional A logical value. If TRUE, setting row names and converting column names (to
syntactic names) is optional.

row.names NULL or a character vector giving the row names for the data frame. Missing

values are not allowed.

12

Details

an object which is coerced according to the generic function.

arguments passed to other methods.

Functions to create 'timeSeries’ objects from other objects:

as.timeSeries

as.
as.
as.
as.
as.
as.
as.

timeSeries
timeSeries

timeSseries.data.frame

timeSeries

timeSeries.

timeSeries

timeSeries.

.default
.numeric

.matrix

ts
.character
Z00

Generic to convert an object to a "timeSeries’,
Returns the unchanged object,

Converts from a numeric vector,

Converts from a numeric vector,

Converts from a matrix,

Converts from an object of class ’ts’,
Converts from a named demo file,

Converts an object of class zoo.

Functions to transform "timeSeries’ objects into other objects:

as.matrix.timeSeries

as.data.frame.timeSeries

as.ts.timeSeries
as.ts.timeSeries

Value

Coerces a "timeSeries’ to a matrix,

Coerces a "timeSeries’ to a data.frame,

S3: Coerces a ’timeSeries’ to a ’ts” object.

S3: Coerces a "timeSeries’ to a ’logical’ object.

Function as.timeSeries returns a S4 object of class "timeSeries’.

as

Functions as.numeric, as.data.frame, as.matrix, as. ts return depending on the generic func-
tion a numeric vector, a data frame, a matrix, or an object of class ts.

Examples

Create an Artificial timeSeries Object -
setRmetricsOptions(myFinCenter = "GMT")
charvec <- timeCalendar()
data <- matrix(rnorm(12))
TS <- timeSeries(data, charvec, units = "RAND")

TS

Coerce to Vector -
as.vector(TS)

Coerce to Matrix -
as.matrix(TS)

Coerce to Data Frame -
as.data.frame(TS)

attach 13

attach Attach a timSeries to the search path

Description

Attaches a 'timeSeries’ object to the search path.

Usage

S4 method for signature 'timeSeries'
attach(what, pos = 2, name = deparse(substitute(what)),
warn.conflicts = TRUE)

Arguments
name alternative way to specify the database to be attached. See for details help(attach, package=base).
pos an integer specifying position in search() where to attach the database. See for

details help(attach,package=base).

warn.conflicts alogical value. If TRUE, warnings are printed about conflicts from attaching the
database, unless that database contains an object .conflicts.OK. A conflict is
a function masking a function, or a non-function masking a non-function. See
for details help(attach, package=base).

what [attach] -
database to be attached. This may currently be a timeSeries object, a data.frame
or a list or a R data file created with save or NULL or an environment. See for
details help(attach, package=base).

Value

The environment is returned invisibly with a name attribute.

Note

Note, the function detach from the base package can be used to detach the attached objects.

Examples

Load Microsoft Data Set -
X <- MSFT[1:10,]
colnames(x)

Attach the Series and Compute the Range -
attach(x)
range <- High - Low
range

Convert Vector to a timeSeries Object -

14 attributes

timeSeries(data=range, charvec=time(x), units="Range")

Detach the series from the search path -

detach("x")
ans <- try(High, silent=TRUE)
cat(ans[1])
attributes Get and Set Optional Attributes of a 'timeSeries’
Description

Extracts or assigns optional attributes from or to a timeSeries object.

Usage

getAttributes(obj)
setAttributes(obj) <- value

Arguments

obj a timeSeries object whose optional attributes are to be accessed.

value an object, the new value of the attribute, or NULL to remove the attribute.
Details

Each timeSeries object is documented. By default a time series object holds in the documentation
slot a string with creation time and the user who has defined it. But this is not all. Optionally the
whole creation process and history can be recorded. For this the @documentation slot may have
an optional "Attributes” element. This attribute is tracked over the whole life time of the object
whenever the time series is changed. Whenever you like to be informed about the optional attributes,
or you like to recover them you can dot it, and evenmore, whenever you like to add information as
an addiitonal attribute you can also do it.

The two functions getAttributes and setAttributes provide access to and allow to modify the
optional attributes of a timeSeries object.

Examples

Create an artificial timeSeries Object -
tS <~ dummySeries()
tS

Get Optional Attributes -
getAttributes(tS)
tS@documentation

Set a new Optional Attribute -
setAttributes(tS) <- list(what="A dummy Series")

base-methods 15

tS
getAttributes(tS)
tS@documentation

base-methods Methods for 'timeSeries’ object

Description

Methods for function in Package ‘base’ for timeSeries object.

Methods

x = ""timeSeries' a timeSeries object.

Examples

None -

bind Bind two timeSeries objects

Description

Binds two ’timeSeries’ objects either by column or by row.

Value

returns a S4 object of class timeDate.

Examples

Load Microsoft Data Set -
X <= MSFT[1:12, 1]
X

Bind Columnwise -
X <- cbind(x[, "Open”], returns(x[, "Open"]))
colnames(X) <- c("Open”, "Return”)
X

Bind Rowwise -
Y <- rbind(x[1:3, "Open”], x[10:12, "Open”"])
Y

16 colCum

colCum Cumulated Column Statistics

Description

Functions to compute cumulative column statistics.

Usage

S4 method for signature 'timeSeries'
colCumsums(x, na.rm = FALSE, ...)

S4 method for signature 'timeSeries'
colCummaxs(x, na.rm = FALSE, ...)

S4 method for signature 'timeSeries'
colCummins(x, na.rm = FALSE, ...)

S4 method for signature 'timeSeries'
colCumprods(x, na.rm = FALSE, ...)

S4 method for signature 'timeSeries'

colCumreturns(x, method = c("geometric”, "simple"”), na.rm = FALSE, ...)
Arguments
method a character string to indicate if geometric (TRUE) or simple (FALSE) returns
should be computed.
na.rm alogical. Should missing values be removed?
X a time series, may be an object of class "matrix”, or "timeSeries”.

arguments to be passed.

Value

all functions return an S4 object of class timeSeries.

Examples

Simulated Return Data -
x = matrix(rnorm(24), ncol = 2)

Cumulative Sums Column by Column -
colCumsums(x)

colStats

17

colStats Column Statistics

Description

A collection and description of functions to compute column statistical properties of financial and

economic time series data.

The functions are:

colStats
colSums
colMeans
colSds
colVars
colSkewness
colKurtosis
colMaxs
colMins
colProds
colQuantiles

Usage

colStats(x, FUN, ...)

colSds(x, ...)
colvars(x, ...)
colSkewness(x, ...)
colKurtosis(x, ...)
colMaxs(x, ...)
colMins(x, ...)
colProds(x, ...)

calculates column statistics,

calculates column sums,

calculates column means,

calculates column standard deviations,
calculates column variances,

calculates column skewness,

calculates column kurtosis,

calculates maximum values in each column,
calculates minimum values in each column,
computes product of all values in each column,
computes quantiles of each column.

colQuantiles(x, prob = .05, ...)

colStdevs(x, ...)
colAvgs(x, ...)

Arguments

FUN a function name. The statistical function to be applied.

prob a numeric value, the probability with value in [0,1].

18

comment

X a rectangular object which can be transformed into a matrix by the function

as.matrix.

arguments to be passed.

Value

the functions return a numeric vector of the statistics.

See Also

link{rowStats}.

Examples

Simulated Return Data in Matrix Form -
X = matrix(rnorm(252), ncol = 2)

Mean Columnwise Statistics -
colStats(x, FUN = mean)

Quantiles Column by Column -
colQuantiles(x, prob = 0.10, type = 1)

comment comment for timeSeries objects

Description

Print or assign new comment to a timeSeries object.

Usage

S4 method for signature 'timeSeries'

comment (x)

S4 replacement method for signature 'timeSeries'
comment(x) <- value

Arguments

X a timeSeries object.

value a character string - the comment.

cumulated 19

Examples

Get Description from timeSeries -
comment (LPP20@5REC)

Add User to comment -
comment (LPP20@5REC) <- paste(comment(LPP20Q5REC), "by User Rmetrics”)
comment (LPP2@@5REC)

cumulated Cumulated Time Series from Returns

Description

Computes a cumulated financial 'timeSeries’, e.g. prices or indexes, from financial returns.

Usage

cumulated(x, ...)

Default S3 method:

cumulated(x, method = c("continuous”, "discrete",
"compound”, "simple"), percentage = FALSE, ...)
Arguments
method a character string naming the method how the returns were computed.
percentage a logical value. By default FALSE, if TRUE the series will be expressed in per-

centage changes.
X an object of class timeSeries.

arguments to be passed.

Details

Note, the function cumulated assumes as input discrete returns from a price or index series. Only
then the cumulatrd series agrees with the original price or index series. The first values of the
cumulated series cannot be computed, it is assumed that the series is indexed to 1.

Value

Returns a ’timeSeries’ object of the same class as the input argument x.

20 description

Examples

Use the Microsofts' Close Prices Indexed to 1 -
MSFT.CL <- MSFT[, "Close”]
MSFT.CL <- MSFT.CL/MSFTL[1, "Close"]]
head(MSFT.CL)

Compute Discrete Return -
MSFT.RET <- returns(MSFT.CL, method = "discrete"”)

Cumulated Series and Compare -
MSFT.CUM <- cumulated(MSFT.RET, method = "discrete")
head(cbind(MSFT.CL, MSFT.CUM))

DataPart,timeSeries-method
DataPart,timeSeries-method

Description

Utilities called to implement object@.Data of timeSeries objects.

Examples

Load Microsoft Data -
X <= MSFT[1:10, 1:4]

Get Data Part -
DATA <- getDataPart(X)
class(DATA)

description Creates Date and User Information

Description

Creates and returns a data and user string.

Usage

description()

Examples

Show Default Description String -
description()

diff 21

diff diff

Description

Differences a "timeSeries’ Object.

Usage
diff(x, ...)
Arguments
X an object of class "timeSeries’.
further arguments to be passed. These may include
Details

Arguments to be passed may include:

lag - an integer indicating which lag to use. By default 1.

diff - an integer indicating the order of the difference. By default 1.

trim - alogical flag. Should NAs at the beginning of the series be removed? By default FALSE.
pad - a umeric value with which NAs should be replaced at the beginning of the series. By default
NA.

Value

Returns a differenced S4 "timeSeries’ object.

Examples

Load Microsoft Data Set -
x <= MSFT[1:12, 1]
X

Compute Differences -
diff(x)

Trimmed Differences -
diff(x, trim=TRUE)

Padded Differences -
diff(x, trim=FALSE, pad=0)

22

dimnames

dimnames Time Series Columns and Rows

Description

Handling columns and rows of ’timeSeries’ objects.

Details

Value

dim Returns the dimension of a "timeSeries’ object
dimnames Returns the dimension names of a ’timeSeries’ object
colnames<- Assigns column names to a ‘timeSeries’ object
rownames<- Assigns row names to a ‘timeSeries’ object

Returns the dimensions and related numbers of a ’timeSeries’ object.

Examples

#it

#it

#it

#it

#it

#it

#it

Load Swiss Pension Fund Benchmark Data -
X <- LPP20Q5REC[1:10, 1:3]

Get Dimension -
dim(X)

Get Column and Row Names -
dimnames (X)

Get Column / Row Names -
colnames(X)
rownames (X)

Try your own DIM -

DIM <- function(x) {c(NROW(x), NCOL(x))3}
DIM(X)

DIM(XL, 11)

Try length / LENGTH -
length(X)

length(X[, 11)

LENGTH <- function(X) NROW(X)
LENGTH(X)

Columns / Rows -
ncol(X); NCOL(X)

drawdowns 23

nrow(X); NROW(X)

See also -
isUnivariate(X)
isMultivariate(X)

drawdowns Calculations of Drawdowns

Description

Compute series of drawdowns from financial returns and calculate drawdown statisitcs.

Usage
drawdowns(x, ...)
drawdownsStats(x, ...)
Arguments
X a ’timeSeries’ object of financial returns. Note, drawdowns can be calculated
from an uni- or multivariate time deries object, statistics can only be computed
from an univariate time series object.
optional arguments passed to the function na.omit.
Details

The code in the core of the function drawdownsStats was was borrowed from the package PerformanceAnalytics
authored by Peter Carl and Sankalp Upadhyay.

Value

drawdowns
returns an object of class "timeSeries’.

drawdownsStats

returns an object of class ’data.frame’ with the following entries:
"drawdown” - the depth of the drawdown,

"from” - the start date,

"trough” - the trough period,

"to" - the end date,

"length” - the length in number of records,

"peaktrough” - the peak trough, and ,

"recovery"” - the recovery length in number of records.

Author(s)

Peter Carl and Sankalp Upadhyay for code from the contributed R package PerformanceAnalytics
used in the function drawdownsStats.

24 durations

Examples

Use Swiss Pension Fund Data Set of Returns -
head (LPP20@5REC)
SPI <- LPP2Q@5REC[, "SPI"]
head(SPI)

Plot Drawdowns -
dd = drawdowns(LPP20@@5REC[, "SPI"], main = "Drawdowns")
plot(dd)
dd = drawdowns(LPP2@@5REC[, 1:6], main = "Drawdowns")
plot(dd)

Compute Drawdowns Statistics -
ddStats <- drawdownsStats(SPI)
class(ddStats)
ddStats

Note, Only Univariate Series are allowd -
ddStats <- try(drawdownsStats(LPP20@@5REC))
class(ddStats)

durations Durations from a Time Series

Description

Computes durations from an object of class 'timeSeries’.

Usage
durations(x, trim = FALSE, units = c("secs”, "mins”, "hours", "days"))
Arguments
X an object of class timeSeries.
trim a logical value. By default TRUE, the first missing observation in the return series
will be removed.
units a character value or vector which allows to set the units in which the durations
are measured. By default durations are measured in seconds.
Details

Durations measure how long it takes until we get the next record in a timesSeries object. We
return a time series in which for each time stamp we get the length of the period from when we got
the last record. This period is measured in length specified by the argument units, for daily data
use units="days".

filter 25

Value

returns an object of class timeSeries.

Examples

Compute Durations in days for the MSFT Sereries -
head(durations(MSFT, units = "days"))
head(durations(MSFT, trim = TRUE, units = "days"))

The same in hours -
head(durations(MSFT, trim = TRUE, units = "hours"))

filter Linear Filtering on a Time Series

Description

Applies linear filtering to a univariate ’timeSeries’.

Value

A ’timeSeries’ object without missing values.

Examples

Creata a Dummy Signal 'timeSeries' -
data <- matrix(rnorm(100), ncol = 2)
s <- timeSeries(data, units=c("A", "B"))
head(s)

Filter the series -
f <- filter(s, rep(1, 3))
head(f)

Plot and Compare the first series -
plot(cbind(sl, 11, f[, 11), plot.type="s")

finCenter Get and Set Financial Center of a 'timeSeries’

Description

Print or assign new financial center to a timeSeries’ object.

26 is.timeSeries

Usage

getFinCenter(x)
setFinCenter(x) <- value

S4 method for signature 'timeSeries'
finCenter(x)

S4 replacement method for signature 'timeSeries'
finCenter(x) <- value

Arguments

X a 'timeSeries’ object.

value a character with the the location of the financial center named as "continent/city".

See Also

listFinCenter

Examples

An artificial timeSeries Object -
tS <- dummySeries()
tS

Print Financial Center -
finCenter(tS)
getFinCenter(tS)

Assign New Financial Center -
finCenter(tS) <- "Zurich”

tS
setFinCenter(tS) <- "New_York”
tS
is.timeSeries timeSeries Class, Coercion and Transformation
Description

is.timeSeries tests if its argument is a timeSeries. is.timeSeries tests if series has no times-
tamps.

Usage

is.timeSeries(x)
is.signalSeries(x)

isRegular 27

Arguments

X an object of class "timeSeries’.

Value

Returns TRUE or FALSE depending on whether its argument is an object of class "timeSeries’ or not.

Examples

Create an Artificial timeSeries Object -
setRmetricsOptions(myFinCenter = "GMT")
charvec <- timeCalendar()
data <- matrix(rnorm(12))

TS <- timeSeries(data, charvec, units = "RAND")
TS

Test for timeSeries -
is.timeSeries(TS)

isRegular Checks if a time series is regular

Description

Checks if a time series is regular.

Usage

S4 method for signature 'timeSeries'
isDaily(x)

S4 method for signature 'timeSeries'
isMonthly(x)

S4 method for signature 'timeSeries'
isQuarterly(x)

S4 method for signature 'timeSeries'
isRegular(x)

S4 method for signature 'timeSeries'

frequency(x, ...)
Arguments
X an R object of class "timeSeries’.

arguments to be passed.

28 isUnivariate

Details

What is a regular time series? If a series is a daily, a monthly, or a weekly time series then we speak
of a regular series. This can be tested calling the functions isDaily, isMonthly, isQuarterly,
or in general isRegular If the series is regular then the frequency of the series can be determined
calling the function frequency.

A time series is defined as daily if the series has not more than one date/time stamp per day.

A time series is defined as monthly if the series has not more than one date/time stamp per month.
A time series is defined as quarterly if the series has not more than one date/time stamp per quarter.
Note, amonthly series is also a daily series, a quarterly series is alsona monthly series.

With these definitions a regular series is either a monthly or a quarterly series.

NOT yet implemented is the case of weekly series.

Value

The is* functions return TRUE or FALSE depending on whether the series fulfills the condition or
not.

The function frequency returns in general 1, for quarterly series 4, and for monthly series 12.

Examples

None

isUnivariate Checks if a Time Series is Univariate

Description

Checks if a time series o bject or any other rectangular object is univariate or multivariate.

Usage
isUnivariate(x)
isMultivariate(x)
Arguments

X an object of class timeSeries or any other rectangular object.

Details

A rectangular object x is considered to be univariate if the function NCOL (x) returns one, and is
considered to be multivariate if NCOL (x) returns a value bigger than one.

lag 29

Value

isUnivariate
isMultivariate

return a logical depending if the test is true or not.

Examples

Load Microsoft Data -
setRmetricsOptions(myFinCenter = "GMT")
data(MSFT)

Open = MSFT[, "Open"]

Is the timeSeries Univariate -
isUnivariate(MSFT)
isUnivariate(Open)

Is the timeSeries Multivariate -
isMultivariate(MSFT)
isMultivariate(Open)

lag Lag a Time Series

Description

Compute a lagged version of a "timeSeries’ object.

Usage

S4 method for signature 'timeSeries'

lag(x, k =1, trim = FALSE, units = NULL, ...)
Arguments

k [lagSeries] -

an integer value. The number of lags (in units of observations). By default 1.

trim alogical value. By default TRUE, the first missing observation in the return series
will be removed.

units an optional character string, which allows to overwrite the current column names
of a timeSeries object. By default NULL which means that the column names
are selected automatically.

X an object of class timeSeries.

arguments passed to other methods.

Value

returns a lagged S4 object of class "timeSeries’.

30 math

Examples
Load Micsrosoft Data Set -
X = MSFT[1:20, "Open"]

Lag the timeSeries Object:
lag(x, k = -1:1)

math Mathematical Time Series Operations

Description

Functions and methods dealing with mathematical ’timeSeries’ operations.

Usage

S4 method for signature 'timeSeries'

quantile(x, ...)
Arguments
X an object of class timeSeries.

arguments to be passed.

Details

The math functions include:

Ops-method Group ’Ops’ methods for a ’timeSeries’ object
Math-method Group "Math’ methods for a "timeSeries’ object
Math2-method Group "Math2’ methods for a ’timeSeries’ object
Summary-method Group *Summary’ methods for a ’timeSeries’ object
quantile Returns quantiles of an univariate "timeSeries’.

Value

Returns the value from a mathematical or logical operation operating on objects of class ’time-
Series[], or the value computed by a mathematical function.

merge

Examples

Create an Artificial timeSeries Object -
setRmetricsOptions(myFinCenter = "GMT")
charvec = timeCalendar()
set.seed(4711)
data = matrix(exp(cumsum(rnorm(12, sd = 0.1))))
TS = timeSeries(data, charvec, units = "TS")
TS

Mathematical Operations: | +/- x ~ ... -
TS*2
TS[2:4]
OR = returns(TS)
OR
OR > 0

merge Merges two ’timeSeries’ objects

Description

Merges several object types with "timeSeries’ objects. The number of rows must match.

Details

The following combinations are supported:

timeSeries ANY
timeSeries missing
timeSeries numeric
timeSeries matrix
timeSeries timeSeries

Value

Returns a ’timeSeries’ object of two merged time series.

Examples

Load Series -
X <= MSFT[1:12, 1]

Merge 'timeSeries' with missing Object -
merge(x)

Merge 'timeSeries' with numeric Object -
y <= rnorm(12)
class(y)
merge(x, Yy)

32 model.frame

Merge 'timeSeries' with matrix Object -
y <- matrix(rnorm(24), ncol=2)
class(y)
merge(x, y)

Merge 'timeSeries' with matrix Object -
y <- timeSeries(data=rnorm(12), charvec=time(x))
class(y)
merge(x, y)

model. frame Model Frames for Time Series Objects

Description

Allow to work with model frames for *timeSeries’ objects.

Details

The function model. frame is a generic function which returns in the R-ststs framework by default
a data.frame with the variables needed to use formula and any ... arguments. In contrast to this
the method returns an object of class timeSeries when the argument data was not a data. frame
but also an object of class "timeSeries’.

Value

Returns an object of class timeSeries.

Note

This function is preliminary and untested.

See Also

model . frame.

Examples

Load Microsoft Data -
setRmetricsOptions(myFinCenter = "GMT")
X <- MSFT[1:12, 1]

Extract High's and Low's:
DATA <- model.frame(~ High + Low, data = X)
class(DATA)
as.timeSeries(DATA)

Extract Open Prices and their logl@'s:

monthly 33

base <- 10

Open <- model.frame(Open ~ log(Open, base = ‘base‘), data = X)
colnames(Open) <- c("X", "logl@(X)")

class(Open)

as.timeSeries(Open)

monthly Special Monthly Series

Description

Functions and methods dealing with special monthly "timeSeries’ objects.

Usage

countMonthlyRecords(x)

rollMonthlyWindows(x, period = "12m", by = "1m")

rollMonthlySeries(x, period = "12m"”, by = "1m", FUN, ...)
Arguments
X a ’timeSeries’ object.
period a character string specifying the rollling period composed by the length of the

period and its unit. As examples: "3m" represents quarterly shifts, and "6m",
Jcode"12m", and "24m"” semi-annual, annual and bi-annual shifts. To determine
the proper start of the series is in the responsibility of the user.

by a character string specifying the rolling shift composed by the length of the
shift and its unit. As examples: "1m" represents monthly shifts, "3m" represents
quarterly shifts, and "6m"” semi-annual shifts. To determine the proper start of
the series is in the responsibility of the user.

FUN the function for the statistic to be applied. For example in the case of aggregation
usecolAvgs.

arguments passed to the function FUN.

Details

The function countMonthlyRecords computes a ’timeSeries’ that holds the number of monthly
counts of the records.

The function rol1lMonthlyWindows computes start and end dates for rolling time windows.

The function rol1MonthlySeries computes a static over rolling periods defined by the function
rollMonthlyWindows.

34 na

Value

The function countMonthlyRecords returns a ’timeSeries’ object.

The function rol1lMonthlyWindows returns a list with two named ’tomeDate’ entries: $from and
to. An attribute "control” is added which keeps the start and end dates of the series.

The function rol1MonthlySeries computes the statistics defined by the function FUN over a rolling
window internally computed by the function rollMonthlyWindows. Note, the periods may be
overlapping, may be dense, or even may have gaps.

Examples

Load Microsoft Daily Data Set:
X <- MSFT

Count Monthly Records -
counts <- countMonthlyRecords(x)
counts

Quaterly Non-Overlapping Time Periods -
windows <- rollMonthlyWindows(counts[-1, 1, period = "3m", by = "3m")
windows

Nicely Reprint Results as a data.frame -
data.frame(cbind(FROM=format (windows$from), TO=format(windows$to)))

Compute the average number of monthly trading days per quarter -
rollMonthlySeries(counts[-1,], period = "3m", by = "3m", FUN=mean)

na Handling Missing Time Series Values

Description

Functions for handling missing values in ’timeSeries’ objects

Usage
S4 method for signature 'timeSeries'
na.omit(object, method = c("r", "s”, "z", "ir", "iz", "ie"),
interp = c("before”, "linear", "after"), ...)
removeNA(x, ...)
substituteNA(x, type = c(”zeros"”, "mean”, "median"), ...)

interpNA(x, method = c("linear"”, "before”, "after"), ...)

na

Arguments

interp, type

method

object

Details

35

[nna.omit][substituteNA] -

Three alternative methods are provided to remove NAs from the data: type="zeros"
replaces the missing values by zeros, type="mean" replaces the missing values

by the column mean, type="median" replaces the missing values by the the
column median.

[na.omit] -

Specifies the method how to handle NAs. One of the applied vector strings:
method="s" na.rm = FALSE, skip, i.e. do nothing, method="r" remove NAs,
method="z" substitute NAs by zeros, method="1ir" interpolate NAs and remove

NAs at the beginning and end of the series, method="iz" interpolate NAs and
substitute NAs at the beginning and end of the series, method="ie" interpolate

NAs and extrapolate NAs at the beginning and end of the series, [interpNA] -
Specifies the method how to interpolate the matrix column by column. One of

the applied vector strings: method="1inear"”, method="before" or method="after".
For the interpolation the function approx is used.

an object of class("timeSeries").

a numeric matrix, or any other object which can be transformed into a matrix
through x = as.matrix(x, ...). If x is a vector, it will be transformed into a
one-dimensional matrix.

arguments to be passed to the function as.matrix.

Functions for handling missing values in ’timeSeries’ objects and in objects which can be trans-
formed into a vector or a two dimensional matrix.

The functions are listed by topic.

na.omit Handles NAs,

removeNA Removes NAs from a matrix object,

substituteNA substitute NAs by zero, the column mean or median,
interpNA interpolates NAs using R’s "approx" function.

Missing Values in Price and Index Series:

Applied to timeSeries objects the function removeNA just removes rows with NAs from the series.
For an interpolation of time series points one can use the function interpNA. Three different meth-
ods of interpolation are offered: "linear” does a linear interpolation, "before” uses the previous
value, and "after” uses the following value. Note, that the interpolation is done on the index scale
and not on the time scale.

Missing Values in Return Series:

For return series the function substituteNA may be useful. The function allows to fill missing
values either by method="zeros", the method="mean" or the method="median" value of the ap-

propriate columns.

36 na

Note

The functions removeNA, substituteNA and interpNA are older implementations. Please use in
all cases if possible the new function na.omit.

When dealing with daily data sets, there exists another function alignDaily Series which can
handle missing data in un-aligned calendarical ’timeSeries’ objects.

References

Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., Botstein D., Altman
R.B., (2001); Missing Value Estimation Methods for DNA microarrays Bioinformatics 17, 520-525.

Examples

Create a Matrix -
X <- matrix(rnorm(100), ncol = 5)

Replace a Single NA Inside -
X[3, 5] <- NA

Replace Three in a Row Inside -
X[17, 2:4] <= c(NA, NA, NA)

Replace Three in a Column Inside -
X[13:15, 4] <= c(NA, NA, NA)

Replace Two at the Right Border -
X[11:12, 5] <= c(NA, NA)

Replace One in the Lower Left Corner -
X[20, 11 <- NA
print(X)

Remove Rows with NAs -
removeNA(X)

Subsitute NA's by Zeros or Column Means -
substituteNA(X, type = "zeros")
substituteNA(X, type = "mean")

Interpolate NA's Linearily -
interpNA(X, method = "linear")
Note the corner missing value cannot be interpolated!

Take Previous Values in a Column -
interpNA(X, method = "before")
Also here, the corner value is excluded

orderColnames 37

na.contiguous Find Longest Contiguous Stretch of non-NAs

Description

Find the longest consecutive stretch of non-missing values in a timeSeries object. (In the event of a
tie, the first such stretch.)

Usage
S4 method for signature 'timeSeries'
na.contiguous(object, ...)

Arguments
object a timeSeries object.

further arguments passed to or from other methods.

Value

A timeSeries object without missing values.

Examples

Dummy timeSeries with NAs entries
data <- matrix(sample(c(1:20, rep(NA,4))), ncol = 2)
s <- timeSeries(data, timeCalendar())

Find the longest consecutive non-missing values
na.contiguous(s)

orderColnames Reorder Column Names of a Time Series

Description

Functions and methods dealing with the rearrangement of column names of "timeSeries’ objects.

orderColnames Returns ordered column names of a time Series,
sortColnames Returns sorted column names of a time Series,
sampleColnames Returns sampled column names of a time Series,
statsColnames Returns statistically rearranged column names,
pcaColnames Returns PCA correlation ordered column names,
hclustColnames Returns hierarchical clustered column names.

38 orderColnames
Usage
orderColnames(x, ...)
sortColnames(x, ...)
sampleColnames(x, ...)
statsColnames(x, FUN = colMeans, ...)
pcaColnames(x, robust = FALSE, ...)
hclustColnames(x, method = c("euclidean”, "complete”), ...)
Arguments
FUN a character string indicating which statistical function should be applied. By
default statistical ordering operates on the column means of the time series.
method a character string with two elements. The first determines the choice of the
distance measure, see dist, and the second determines the choice of the ag-
glomeration method, see hclust.
robust a logical flag which indicates if robust correlations should be used.
X an object of class timesSeries or any other rectangular object which can be
transformed by the function as.matrix into a numeric matrix.
further arguments to be passed, see details.
Details

Statistically Motivated Rearrangement

The function statsColnames rearranges the column names according to a statical measure. These
measure must operate on the columns of the time series and return a vector of values which can
be sorted. Typical functions ar those listed in in help page colStats but one can also crete his
own functions which compute for example risk or any other statistical measure. The . .. argument
allows to pass additional arguments to the underlying function FUN.

PCA Ordering of the Correlation Matrix

The function pcaColnames rearranges the column names according to the PCA ordered correlation
matrix. The argument robust allsows to select between the use of the standard cor and computa-
tion of robust correlations using the function covMcd from contributed R package robustbase. The

. argument allows to pass additional arguments to the two underlying functions cor or covMcd.
E.g. adding method="kendall"” to the argument list calculates Kendall’s rank correlations instead
the default which calculates Person’s correlations.

Ordering by Hierarchical Clustering

The function pcaColnames uses the hierarchical clustering approach hclust to rearrange the col-
umn names of the time series.

Value

returns a vector of character string, the rearranged column names.

orderStatistics 39

Examples

Load Swiss Pension Fund Benchmark Data -
data <- LPP20@5REC[,1:6]

Abbreviate Column Names -
colnames(data)

Sort Alphabetically -
sortColnames(data)

Sort by Column Names by Hierarchical Clustering -
hclustColnames(data)
head(datal, hclustColnames(data)l)

orderStatistics order Statistics

Description

Computes order statistic of a "timeSeries’.

Usage

orderStatistics(x)
Arguments

X an univariate "timeSeries’ object.
Value

Function orderStatistics returns the order statistic of an univariate 'timeSeries’ object. The
output is an object of class ’list’.

Examples

Load Swiss Pension Fund Benchmark Data -
setRmetricsOptions(myFinCenter = "GMT")
X <- LPP20Q5REC[, "SPI"]
colnames(X)

Compute 1% Order Statistics -
N <= round(@.01*nrow(X))
N
0S <- orderStatistics(X)[[11]
OS[1:N, 1]

40

periodical

periodical

End-of-Period Series, Stats, and Benchmarks

Description

Computes perodical statistics back to a given period.

Usage

endOfPeriodSeries(x,
nYearSBaCk = C(H-Iyll’ szlly ”3le’ II5yII, II-IOy”, IlYTDIl))

endOfPeriodStats(x,
nYearsBack = C(H‘Iy”’ ”2yll’ Il3y”’ ”5yll, H‘I®yll, HYTDH))

endOfPeriodBenchmarks(x, benchmark = ncol(x),
nYearSBaCk = C(Il-ly”’ ”2y"’ I13yll’ II5yII7 II-I@y”’ IIYTDII))

Arguments

X

nYearsBack

benchmark

Details

an end-of-month recorded multivariate "timeSeries’ object. One of the columns
holds the benchmark series specified by the argument benchmark, By defauklt
this is the last column of x.

a period string. How long back should the series be treated? Options include
values from 1 year to 10 years, and year-to-date: "1y", "2y", "3y", "Sy", "10y",
"YTDII'

an integer giving the position of the benchmar series in x.

The function endOfPeriodSeries returns series back to a given period.
The function endOfPeriodStats returns statistics back to a given period.
The function endOfPeriodBenchmarks returns benchmarks back to a given period.

x must be end of month data. Note you can create such series using for example the functions:
align, alignDailySeries, daily2monthly.

Examples

Load Series: Column 1:3 Swiss Market, Column 8 (4) Benchmark
X <- 100 * LPP20Q5REC[, c(1:3, 8)]

colnames(x)

x <- daily2monthly(x)

X

Get the Monthly Series -

plot-methods 41

endOfPeriodSeries(x, nYearsBack="1y")

Compute the Monthly Statistics -
endOfPeriodStats(x, nYearsBack="1y")

Compute the Benchmark -
endOfPeriodBenchmarks(x, benchmark=4)

plot-methods Plot a Time Series

Description

Plots "timeSeries’ objects and add lines and points.

Usage

S4 method for signature 'timeSeries'

plot(x, y, FinCenter = NULL,
plot.type = c("multiple”, "single"), format = "auto”,
at = pretty(x), widths = 1, heights = 1, xy.labels,
xy.lines, panel = lines, nc, yax.flip = FALSE,
mar.multi = c(@, 5.1, @, if (yax.flip) 5.1 else 2.1),
oma.multi = c(6, @, 5, @), axes = TRUE, ...)

S4 method for signature 'timeSeries'

lines(x, FinCenter = NULL, ...)
S4 method for signature 'timeSeries'
points(x, FinCenter = NULL, ...)

S3 method for class 'timeSeries'
pretty(x, n=5, min.n=n%/%3, shrink.sml=0.75,

high.u.bias=1.5, u5.bias=0.5+1.5%high.u.bias, eps.correct=0, ...)
Arguments

X,y objects of class timeSeries.

FinCenter a character with the the location of the financial center named as "continent/city”.

plot.type for multivariate time series, should the series by plotted separately (with a com-
mon time axis) or on a single plot?

format POSIX label format, e.g. "%Y-%m-%d" or "%F" for ISO-8601 standard date
format.

at a timeDate object setting the plot label positions. If at=pretty(x), the pos-

titions are generated automatized calling the function pretty. Default option
at="auto" selects 6 equal spaced time label positions. For the new plot themes
set at="pretty" or at="chic". In this case additional arguments can be passed
through the ... arguments, see details.

42

widths, heights

xy.labels

xy.lines

panel

nc

yax.flip

plot-methods

widths and heights for individual graphs, see layout.

logical, indicating if text () labels should be used for an x-y plot, _or_ charac-
ter, supplying a vector of labels to be used. The default is to label for up to 150
points, and not for more.

logical, indicating if 1ines should be drawn for an x-y plot. Defaults to the
value of xy.labels if that is logical, otherwise to TRUE

a function(x, col, bg, pch, type, ...) which gives the action to be carried
out in each panel of the display for plot.type="multiple”. The default is
lines.

the number of columns to use when type="multiple"”. Defaults to 1 for up to
4 series, otherwise to 2.

logical indicating if the y-axis (ticks and numbering) should flip from side 2
(left) to 4 (right) from series to series when type="multiple”.

mar.multi, oma.multi

axes
n
min.n

shrink.sml

high.u.bias

u5.bias

eps.correct

Details

the (default) par settings for plot.type="multiple”.
logical indicating if x- and y- axes should be drawn.

an integer giving the desired number of intervals.

a nonnegative integer giving the minimal number of intervals.

a positive numeric by a which a default scale is shrunk in the case when range(x)
is very small.

a non-negative numeric, typically > 1. Larger high.u.bias values favor larger
units.

a non-negative numeric multiplier favoring factor 5 over 2.
an integer code, one of 0,1,2. If non-0, a correction is made at the boundaries.

additional graphical arguments, see plot, plot.default and par.

The original plotting function plot was build along R’s plotting function plot.ts with an addi-
tional argument to tailor the position marks at user defined position specified by the argument at.
We call this style or theme "ts".

With Verison R 3.1 we have inroduced two new additionol plotting themes called "pretty" and
"chick". They are becoming active when we set at="pretty" or at="chic".

Plot style or theme "pretty" is an extension of our original plotting function.

Plot style or theme "chic" an implementation along the contributed packages xts and PerformanceAnalytics

from the Chicago finance group members. "Chicago" gave the name to call the them "chic”.

For both themes, "pretty" and "chic" additional arguments are passed through the ... arguments.
These are:

Argument: Default: Description:

type "T" types pf plot

col 1 colors for lines and points

pch 20 plot symbol

plot-methods 43

cex 1 character and symbol scales

1ty 1 line types

lwd 2 line widths

cex.axes 1 scale of axes

cex.lab 1 scale of labels

cex.pch 1 scale of plot symbols

grid TRUE should grid lines plotted?
frame.plot TRUE should b box around the plot?
axes TRUE should be axes drawn on the plot?
ann TRUE should default annotations appear?

Concerning the plot elements, the length of these vectors has to be the same as the number of
columns in the time series to be plotted. If their length is only one, then tey are repeated.

There is an almost 70 pages vignette added to the package, with dozens of examples of tailored
plots. Have a look in it.

Value

Displays a plot or plot elements of an object of class "timeSeries’.

Examples

#it

#it

#it

#it

#it

Load Swiss Pension Fund Benchmark Data -

LPP <- LPP2Q@5REC[1:12, 1:4]

colnames(LPP) <- abbreviate(colnames(LPP), 2)
finCenter(LPP) <- "GMT"

Example Plot 1 -
plot(LPP[, 1], type = "o", col = "steelblue”,
main = "LPP", xlab = "2005", ylab = "Return")
plot(LPP[, 1], at="auto", type = "0", col = "steelblue”,
main = "LPP", xlab = "2005", ylab = "Return")

Example Plot 2 -
plot(LPP[, 1:2], type = "o", col = "steelblue”,
main = "LPP", xlab = "2005", ylab = "Return")

Example Plot 3 -
plot(LPP[, 1], LPP[, 2], type = "p", col = "steelblue”,
main = "LPP", xlab = "Return 1", ylab = "Return 2")

Example Plot 4a, The Wrong Way to do it! -

LPP <- as.timeSeries(data(LPP200@5REC))

ZRH <- as.timeSeries(LPP[,"SPI"], zone = "Zurich"”, FinCenter = "Zurich")
NYC <- as.timeSeries(LPP[,"LMI"], zone = "NewYork"”, FinCenter = "NewYork")
finCenter (ZRH)

finCenter (NYC)

plot(ZRH, at="auto"”, type = "p", pch = 19, col = "blue")

points(NYC, pch = 19, col = "red")

44 print-methods

Example Plot 4b, Convert NYC to Zurich Time -
finCenter(ZRH) <- "Zurich"
finCenter(NYC) <- "Zurich”
at <- unique(round(time(ZRH)))
plot(ZRH, type = "p", pch = 19, col = "blue”, format = "%b %d", at = at,
xlab = paste(ZRH@FinCenter, "local Time"), main = ZRH@FinCenter)
points(NYC, pch = 19, col = "red")

Example 4c, Force Everything to GMT Using "FinCenter"” Argument -
finCenter(ZRH) <- "Zurich"”
finCenter (NYC) <- "NewYork”
at <- unique(round(time(ZRH)))
plot(ZRH, type = "p", pch = 19, col = "blue”, format = "%b %d", at = at,
FinCenter = "GMT", xlab = "GMT", main = "ZRH - GMT")
points(NYC, FinCenter = "GMT", pch = 19, col = "red")

print-methods Print a Time Series

Description

Print "timeSeries’ pbjects.

Arguments

object an object of class timeSeries.

Value

Prints an object of class timeSeries.

Examples

Load Micsrosoft Data -
setRmetricsOptions(myFinCenter = "GMT")
LPP <- MSFT[1:12, 1:4]

Abbreviate Column Names -
colnames(LPP) <- abbreviate(colnames(LPP), 6)

Print Data Set -
print(LPP)

Alternative Use, Show Data Set -
show(LPP)

rank 45

rank Sample Ranks of a Time Series

Description

Returns the sample ranks of the values of a ’timeSeries’ object.

Usage

S4 method for signature 'timeSeries'
rank(x, na.last = TRUE, ties.method =)

Arguments
X an univariate object of class timeSeries.
na.last for controlling the treatment of NAs. If TRUE, missing values in the data are
put last; if FALSE, they are put first; if NA, they are removed; if "keep" they are
kept with rank NA.
ties.method a character string specifying how ties are treated; can be abbreviated.
Details

If all components are different (and no NAs), the ranks are well defined, with values in seq_len(x).
With some values equal (called ???ties???), the argument ties.method determines the result at the
corresponding indices. The "first"” method results in a permutation with increasing values at each
index set of ties. The "random” method puts these in random order whereas the default, "average”,
replaces them by their mean, and "max"” and "min" replaces them by their maximum and minimum
respectively, the latter being the typical sports ranking.

NA values are never considered to be equal: for na.last = TRUE and na.last = FALSE they are
given distinct ranks in the order in which they occur in x.

Value

returns the ranks of a timeSeries object.

Examples

Load Microsoft Data -
X <= 100 * returns(MSFT)

Compute the Ranks -
head(rank(X[, "Open”]), 10)

Only Interested in the Vector, then use -
head(rank(series(X[, "Open”])), 10)

46

readSeries

readSeries

Reads a ’timeSeries’ from a File

Description

Reads a file in table format and creates a timeSeries object from it.

Usage
readSeries(file

FinCenter =

Arguments
file
FinCenter

header

format

sep

zone

Details

, header = TRUE, sep = ";", zone = "",

nn

, format, ...)

the filename of a spreadsheet data set from which to import the data records.
a character with the the location of the financial center named as "continent/city".

a logical value indicating whether the file contains the names of the variables as
its first line. If missing, the value is determined from the file format: "header’
is set to "'TRUE’ if and only if the first row contains one fewer field than the
number of columns.

a character string with the format in POSIX notation specifying the timestamp
format. Note, the format has not to be specified if the first column in the file
has the timestamp format specifyer, e.g. "% Y-%m-%d" for the short ISO 8601
format.

the field seperator used in the spreadsheet file to separate columns. By default

n,n

";". Note, if sep=";" is specified, and reading the series fails, then the reading

n o n

is automatically repeated with sep=",".

the time zone or financial center where the data were recorded. By default
zone="" which is short for GMT.

Additional arguments passed to read. table() function which is used to read
the file.

The first column of the table must hold the timestamps. Format of the stimestamps can be either
specified in the header of the first column or by the format argument.

Value

Returns a S4 object of class timeSeries.

returns 47

returns Financial Returns

Description

Compute financial returns from prices or indexes.

Usage

returns(x, ...)
returns@(x, ...)

S4 method for signature 'ANY'

returns(x, method = c("continuous”, "discrete”,
"compound”, "simple"), percentage = FALSE, ...)

S4 method for signature 'timeSeries'

returns(x, method = c("continuous”, "discrete",
"compound”, "simple"), percentage = FALSE, na.rm = TRUE,
trim = TRUE, ...)

getReturns(...)
returnSeries(...)

Arguments
X an object of class timeSeries.
percentage a logical value. By default FALSE, if TRUE the series will be expressed in per-
centage changes.
method a character string. Which method should be used to compute the returns, "con-
tinuous", "discrete", or "compound", "simple". The second pair of methods is a
synonyme for the first two methods.
na.rm a logical value. Should NAs be removed? By Default TRUE.
trim a logical value. Should the time series be trimmed? By Default TRUE.
arguments to be passed.
Value

all functions return an object of class timeSeries.

returns@ returns am untrimmed series with the first row of returns set to zero(s).

Note

The functions returnSeries, getReturns, are synonymes for the function returns. We do not
recommend to use these functions.

48 rev

Examples

Load Microsoft Data -
setRmetricsOptions(myFinCenter = "GMT")

data(MSFT)
X = MSFT[1:10, 1:4]
X

Continuous Returns -
returns(X)
returns@(X)

Discrete Returns:
returns(X, method = "discrete")

Don't trim:
returns(X, trim = FALSE)

Use Percentage Values:
returns(X, percentage = TRUE, trim = FALSE)

rev Reversion of a 'timeSeries’

Description

Reverses an uni- or multivariate 'timeSeries’ object by reversing the order of the time stamps.

Usage
S4 method for signature 'timeSeries'
rev(x)

Arguments

X an uni- or multivariate "timeSeries’ object.

Value

Returns a reversed ’timeSeries’ object.

Examples

Create Dummy timeSeries -
tS <- dummySeries()

Reverse Series -
rev(ts)

rolIMean 49

rollMean Rolling Statistics

Description

Computes rolling mean, min, max and median for a "timeSeries’ object.

Usage

rollStats(x, k, FUN=mean, na.pad=FALSE,
align=c("center”, "left", "right"), ...)

rollMean(x, k, na.pad = FALSE,

align = c("center”, "left”, "right"), ...)
rollMin(x, k, na.pad = FALSE,
align = c("center”, "left”, "right"), ...)
rollMax(x, k, na.pad = FALSE,
align = c("center”, "left”, "right"), ...)
rollMedian(x, k, na.pad = FALSE,
align = c("center”, "left”, "right"), ...)
Arguments
X an uni- or multivariate "timeSeries’ object.
k an integer width of the rolling window. Must be odd for rol1Median.
FUN the function to be rolled.
na.pad a logical flag. Should NA padding be added at beginning? By default FALSE.
align a character string specifying whether the index of the result should be left- or

right-aligned or centered compared to the rolling window of observations. The
default choice is set to align="center".

optional arguments to be passed.

Details

The code in the core of the functions rol1Mean, rol1Min, rol1lMax, and rol1Median was borrowed
from the package zoo authored by Achim Zeileis, Gabor Grothendieck and Felix Andrews.

Value

returns an object of class “timeSeries’.

Author(s)

Achim Zeileis, Gabor Grothendieck and Felix Andrews for code from the contributed R package
zoo used in the functions rol1Mean, rol1Min, rol1lMax, and rol1lMedian.

50 rowCum

Examples

Use Swiss Pension Fund Data Set of Returns -
head (LPP20@@5REC)
SPI <- LPP2Q@5REC[, "SPI"]
head(SPI)

Plot Drawdowns -
rmean <- rollMean(SPI, k = 10)
plot(rmean)

rowCum Cumulated Column Statistics

Description

Compute cumulative row Statistics.

Usage
S4 method for signature 'ANY'
rowCumsums(x, na.rm = FALSE, ...)
S4 method for signature 'timeSeries'
rowCumsums(x, na.rm = FALSE, ...)
Arguments
na.rm a logical. Should missing values be removed?
X a time series, may be an object of class "matrix” or "timeSeries"”.

arguments to be passed.

Value

all functions return an S4 object of class timeSeries.

Examples

Simulated Monthly Return Data -
X = matrix(rnorm(24), ncol = 2)

Compute cumulated Sums -
rowCumsums (X)

runlengths

51

runlengths Runlengths of a Time Series

Description

Computes runlengths of an univariate "timeSeries’ object.

Usage
runlengths(x, ...)
Arguments
X an univariate time series of class ’timeSeries’.
arguments to be passed.
Value

returns an object of class timeSeries.

Examples

random time series -
set.seed(4711)
X <= rnorm(12)
tS <- timeSeries(data=x, charvec=timeCalendar(), units="x")
tS

return runlengths -
runlengths(tS)

sample sample

Description

Takes a sample of the specified size from the elements of a *timeSeries.

Value

Returns a resampled ’timeSeries’ object.

52 scale

Examples

Monthly Calendar Series -
x <- daily2monthly(LPP20@5REC[, 1:21)[3:14,]

Resample the Series with respect to the time stamps -
resampled <- sample(x)
resampled
is.unsorted(resampled)

scale scale

Description

Scales a "timeSeries’ object.

Details

scale is a function to center and/or scale the columns of a ’timeSeries’ object.

The value of center determines how column centering is performed. If center is a numeric vector
with length equal to the number of columns of x, then each column of x has the corresponding
value from center subtracted from it. If center is TRUE then centering is done by subtracting the
column means (omitting NAs) of x from their corresponding columns, and if center is FALSE, no
centering is done.

The value of scale determines how column scaling is performed (after centering). If scale is a
numeric vector with length equal to the number of columns of x, then each column of x is divided
by the corresponding value from scale. If scale is TRUE then scaling is done by dividing the
(centered) columns of x by their standard deviations if center is TRUE, and the root mean square
otherwise. If scale is FALSE, no scaling is done.

Value

Returns a centered and/or scaled "timeSeries’ object.

Examples

Load Series:
X <- 100* LPP20QO5REC[, c("SBI", "SPI")]

Scale and Center -
X <- scale(x)
hist(X[, 11, prob=TRUE)
s <- seq(-3, 3, length=201)
lines(s, dnorm(s), col="red")

series-methods 53

series-methods Get and Set Data of a 'timeSeries’

Description

series returns the @.Data slot of a timeSeries object in matrix form. New series can also be
assign to an already existing timeSeries.

coredata is a synonyme function nameing for series.

Usage

series(x)
series(x) <- value

Arguments

X a timeSeries object.

value avector, adata. frame or amatrix object of numeric data.

See Also

timeSeries()

Examples

A Dummy timeSeries Object
ts <- timeSeries()
ts

Get the Matrix Part -
mat <- series(ts)
class(mat)
mat

Assign a New Univariate Series -
series(ts) <- rnorm(12)
ts

Assign a New Bivariate Series -
series(ts) <- rnorm(12)
ts

54 smooth
smooth Smoothes Time Series Objects
Description
Smoothes a ’timeSeries’ object.
Usage
smoothLowess(x, f = 0.5, ...)
smoothSpline(x, spar = NULL, ...)
smoothSupsmu(x, bass =5, ...)
Arguments
X an univariate "timeSeries’ object.
f the lowess smoother span. This gives the proportion of points in the plot which
influence the smooth at each value. Larger values give more smoothness.
spar smoothing parameter, typically (but not necessarily) in (0,1]. By default NULL,
i.e. the value will be automatically selected.
bass controls the smoothness of the fitted curve. Values of up to 10 indicate increas-
ing smoothness.
optional arguments to be passed to the underlying smoothers.
Details

The functions smoothLowess, smoothSpline, smoothSupsmu allow to smooth timeSerie object.
The are interfaces to the function lowess, supmsu. and smooth.spline in R’s stats package.

The ... arguments allow to pass optional arguments to the underlying stats functions and tailor
the smoothing process. We refer to the manual pages of these functions for a proper setting of these

options.

Value

returns a bivariate 'timeSeries’ object, the first column holds the original time series data, the second

the smoothed series.

Author(s)

The R core team for the underlying smoother functions.

sort 55
Examples

Use Close from MSFT's Price Series -
head (MSFT)

MSFT.CLOSE <- MSFT[, "Close"]
head (MSFT.CLOSE)

Plot Original and Smoothed Series by Lowess -
MSFT.LOWESS <- smoothLowess(MSFT.CLOSE, f = 0.1)
head (MSFT.LOWESS)
plot(MSFT.LOWESS)
title(main = "Close - Lowess Smoothed”)

Plot Original and Smoothed Series by Splines -
MSFT.SPLINE <- smoothSpline(MSFT.CLOSE, spar = 0.4)
head (MSFT. SPLINE)
plot (MSFT.SPLINE)
title(main = "Close - Spline Smoothed")

Plot Original and Smoothed Series by Supsmu -
MSFT.SUPSMU <- smoothSupsmu(MSFT.CLOSE)
head (MSFT. SUPSMU)
plot (MSFT.SUPSMU)
title(main = "Close - Spline Smoothed")

sort Sorting a 'timeSeries’ by Time Stamps
Description

Sorts a "timeSeries’ object with respect to its time stamps.

Usage
S4 method for signature 'timeSeries'
sort(x, decreasing = FALSE, ...)
Arguments
X an uni- or multivariate timeSeries object.
decreasing a logical flag. Should we sort in increasing or decreasing order? By default
FALSE.

Details

optional arguments passed to other methods.

Sorts a time series either in increasing or decreasing time stamp order. Internally the function order
from R’s base packahe is used. order generates a permutation which rearranges the time stamps in
ascending or descending order.

To find out if the series is unsorted, the function is.unsorted from R’s base package can be called.

56 SpecialDailySeries

Value

Returns a sorted ’timeSeries’ object, which can be increasing or decreasing in time.

Examples

Monthly Calendar Series -
x <- daily2monthly(LPP20@5RECL, 1:2])[3:14, 1]

Resample the Series with respect to the time stamps -
resampled <- sample(x)
resampled
is.unsorted(resampled)

Now sort the serie in decreasing time order -
sorted <- sort(resampled, , decreasing = TRUE)
sorted
is.unsorted(sorted)

Is the reverted series ordered? -
reverted <- rev(sorted)
reverted
is.unsorted(reverted)

SpecialDailySeries Special Daily Time Series

Description

Special daily "timeSeries’ functions

Usage
dummyDailySeries(x = rnorm(365), units = NULL, zone = "",
FinCenter = "")
alignDailySeries(x, method = c("before”, "after”, "interp”, "fillNA",
"fmm", "periodic”, "natural”, "monoH.FC"),
include.weekends = FALSE, units = NULL, zone = "",
FinCenter = "", ...)

rollDailySeries(x, period = "7d", FUN, ...)

SpecialDailySeries 57

Arguments
FinCenter a character with the the location of the financial center named as "continent/city".
FUN the function to be applied.

[applySeries] -
a function to use for aggregation, by default colAvgs.
include.weekends
[alignDailySeries] -
a logical value. Should weekend dates be included or removed from the series.

method [alignDailySeries] -
the method to be used for the alignment. A character string, one of "before”,
use the data from the row whose position is just before the unmatched position,
or "after”, use the data from the row whose position is just after the unmatched
position, or "linear”, interpolate linearly between "before” and "after”.

period [rollDailySeries] -
a character string specifying the rollling period composed by the length of the
period and its unit, e.g. "7d" represents one week.

units [allignDailySeries] -
an optional character string, which allows to overwrite the current column names
of a timeSeries object. By default NULL which means that the column names
are selected automatically.

X an object of class timeSeries.
zone the time zone or financial center where the data were recorded.

arguments passed to interpolating methods.

Details
dummyDailySeries Creates a dummy daily ‘timeSeries’ object,
alignDailySeries Aligns a daily ’timeSeries’ to new positions,
rollDailySeries Rolls daily a "timeSeries’ on a given period,
ohlcDailyPlot Plots open high low close bar chart,
dummySeries Creates a dummy monthly ’timeSeries’ object

Value

dummyDailySeries

creates from a numeric matrix with daily records of unknown dates a timeSeries object with
dummy daily dates.

alignDailySeries
returns from a daily time series with missing holidays a weekly aligned daily timeSeries object

rollDailySeries

58 splits

returns an object of class timeSeries with rolling values, computed from the function FUN.

Examples

Use Microsofts' OHLCV Price Series -
head (MSFT)
end(MSFT)

Cut out April Data from 2001 -
Close <- MSFT[, "Close"]
tsAprilel <- window(Close, start="2001-04-01", end="2001-04-30")
tsAprilol

Align Daily Series with NA -
tsRet <- returns(tsApril@l, trim = TRUE)
GoodFriday(2001)
EasterMonday (2001)
alignDailySeries(tsRet, method "fillNA", include.weekends = FALSE)
alignDailySeries(tsRet, method = "fillNA", include.weekends = TRUE)

Align Daily Series by Interpolated Values -
alignDailySeries(tsRet, method = "interp"”, include.weekend = FALSE)
alignDailySeries(tsRet, method = "interp”, include.weekend = TRUE)

splits splits

Description

Searches for outlier splits in a "timeSeries’ object.

Usage
splits(x, sd = 3, complement = TRUE, ...)
Arguments
X a ’timeSeries’ object.
sd anumeric value of standard deviations, e.g. 5 means that values larger or smaller
than five times the standard deviation of the series will be detected.
complement a logical flag, should the outlier series or its complements be returned?
arguments to be passed.
Details

This function is thought to find splits in financial price or index series If a price or index is splitted
we observe in the returns a big jump of several standard deviations which is identified usual as an
outlier.

spreads 59

Examples

Create a Return Series with a Split -
data <- runif(12, -1, 1)
data[6] <- 20
x <- timeSeries(data, timeCalendar(), units="RUNIF")
X

Search for the Split:
splits(x, sd=3, complement=TRUE)
splits(x, sd=3, complement=FALSE)

spreads Spreads and Mid Quotes

Description

Compute spreads and midquotes from price streams.

Usage

spreads(x, which = c("Bid”, "Ask"), tickSize = NULL)
midquotes(x, which = c("Bid", "Ask"))

midquoteSeries(...)
spreadSeries(...)

Arguments
tickSize the default is NULL to simply compute price changes in original price lev-
els. If ticksize is supplied, the price changes will be divided by the value of
inTicksOfSize to compute price changes in ticks.
which a vector with two character strings naming the column names of the time series
from which to compute the mid quotes and spreads. By default these are bid and
ask prices with column names c("Bid"”, "Ask").
X an object of class timeSeries.
arguments to be passed.
Value

all functions return an object of class timeSeries.

Note

The functions returnSeries, getReturns, midquoteSeries, spreadSeries are synonymes for
returns, midquotes, and spreads.

60

Examples

Load the Microsoft Data -
setRmetricsOptions(myFinCenter = "GMT")
data(MSFT)

X = MSFT[1:10,]
head(X)

Compute Open/Close Midquotes -
X.MID <- midquotes(X, which = c("Close”, "Open"))
colnames(X.MID) <- "X.MID"
X.MID

Compute Open/Close Spreads -
X.SPREAD <- spreads(X, which = c("Close”, "Open"))
colnames(X.SPREAD) <- "X.SPREAD"
X.SPREAD

start

start Start and End of a 'timeSeries’

Description

Returns start and/or end time stamps of a "timeSeries’ object.

Usage

S4 method for signature 'timeSeries'
start(x, ...)

S4 method for signature 'timeSeries'

end(x, ...)
Arguments
X an uni- or multivariate timeSeries object.
optional arguments passed to other methods.
Value

returns a timeSeries object.

Examples

Create Dummy timeSeries -
tS <- dummySeries()[, 1]
tS

str-methods

Return Start and end Time Stamp -
c(start(tS), end(tS))
range(time(tS))

61

str-methods timeSeries Object Structure

Description

Compactly display the structure of a "timeSeries’ Object.

Usage
S4 method for signature 'timeSeries'
str(object, ...)

Arguments
object an object of class timeSeries.

arguments passed to other methods.

Value

returns a str report for an object of class timeSeries.

Examples

Load Microsoft Data Set -
data(MSFT)
X <= MSFT[1:12, 1:4]
colnames(X) <- abbreviate(colnames(X), 4)

Display Structure -
str(X)

t timeSeries Transpose

Description

Returns the transpose of a "timeSeries’ object.

Usage

1

S4 method for signature 'timeSeries

t(x)

62 time

Arguments

X a 'timeSeries’ object.

Value

Returns a matrix object.

Examples

Dummy timeSeries with NAs entries
data <- matrix(1:24, ncol = 2)
s <- timeSeries(data, timeCalendar())
s

Transpose 'timeSeries' -

t(s)

time Get and Set Time stamps of a ’timeSeries’

Description

Functions and methods extracting and modifying positions of ’timeSeries’ objects.

Usage

getTime(x)
setTime(x) <- value

S4 method for signature 'timeSeries'

time(x, ...)

S3 replacement method for class 'timeSeries'
time(x) <- value

Arguments
value a valid value for the component of time(x).
X an object of class timeSeries.
optional arguments passed to other methods.
Value

Returns a timeDate’ object.

timeSeries-method-stats

Examples

Create Dummy timeSeries -
X <- timeSeries(matrix(rnorm(24), 12), timeCalendar())

Return Series Positions -
getTime(X)
time(X)

Add / Subtract one Day from X
setTime(X) <- time(X) - 24x3600 # sec
X
time(X) <- time(X) + 24%x3600 # sec
X

63

timeSeries-deprecated Deprecated functions in timeSeries package

Description

seriesPositions Extracts positions slot from a "timeSeries’,
newPositions<- Modifies positions of a ’timeSeries’ object,

timeSeries-method-stats
Time Series Correlations

Description

S4 methods of stats package for timeSeries objects.

cov Computes Covariance from a ’timeSeries’ object,
cor Computes Correlations from a ’timeSeries’ object.
dcauchy

dnorm

dt

64 TimeSeriesClass

Usage

S4 method for signature 'timeSeries'
cov(x, y = NULL, use = "all.obs”,
method = c("pearson”, "kendall”, "spearman"))

S4 method for signature 'timeSeries'
cor(x, y = NULL, use = "all.obs",

method = c("pearson”, "kendall”, "spearman"))
Arguments
method a character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson” (default), "kendall”, or "spearman”, can be
abbreviated.
use an optional character string giving a method for computing covariances in the

presence of missing values. This must be (an abbreviation of) one of the strings
"all.obs"”, "complete.obs"” or "pairwise.complete.obs”.

X an univariate object of class timeSeries.

y NULL (default) or a timeSeries object with compatible dimensions to x. The
default is equivalent to y = x (but more efficient).

Value

returns the covariance or correlation matrix.

Examples

Load Microsoft Data Set -
data(MSFT)
X = MSFT[, 1:4]
X = 100 * returns(X)

Compute Covariance Matrix -
cov(X[, "Open"], X[, "Close"l)
cov(X)

TimeSeriesClass timeSeries Class

Description

Functions to generate and modify "timeSeries’ objects:

timeSeries Creates a "timeSeries’ object from scratch.

Data Slot and classification of "timeSeries’ objects:

TimeSeriesClass 65

seriesData Extracts data slot from a ’timeSeries’.

Usage
timeSeries(data, charvec, units = NULL, format = NULL, zone = "",
FinCenter = "", recordIDs = data.frame(), title = NULL,
documentation = NULL, ...)
seriesData(object)
Arguments
charvec a character vector of dates and times or any objects which can be coerced to a

timeDate object.
data amatrix object or any objects which can be coereced to a matrix.
documentation optional documentation string, or a vector of character strings.
FinCenter a character with the the location of the financial center named as "continent/city".

format the format specification of the input character vector,
[as.timeSeries] -
a character string with the format in POSIX notation to be passed to the time
series object.

object [is][seriesData][seriesPositions][show][summary] - an object of class timeSeries.
recordIDs a data frame which can be used for record identification information.
[print] -

a logical value. Should the recordIDs printed together with the data matrix and
time series positions?

title an optional title string, if not specified the inputs data name is deparsed.
units an optional character string, which allows to overwrite the current column names

of a timeSeries object. By default NULL which means that the column names
are selected automatically.

zone the time zone or financial center where the data were recorded.

arguments passed to other methods.

Details

Generation of Time Series Objects:

We have defined a timeSeries class which is in many aspects similar to the S-Plus class with the
same name, but has also some important differences. The class has seven Slots, the Data’ slot
which holds the time series data in matrix form, the ’position’ slot which holds the time/date as a
character vector, the 'format’ and "FinCenter’ slots which are the same as for the "timeDate’ object,
the *units’ slot which holds the column names of the data matrix, and a ’title’ and a ’"documentation’
slot which hold descriptive character strings. Date and time is managed in the same way as for
timeDate objects.

66

Value

timeSeries
returns a S4 object of class timeSeries.

seriesData

TimeSeriesClass

extracts the @.Data slot from a timeSeries object and is equivalent to as.amtrix.

Note

These functions were written for Rmetrics users using R and Rmetrics under Microsoft’s Windows
operating system where timze zones, daylight saving times and holiday calendars are insuffeciently
supported.

Examples

#it

#it

#i#

#it

#it

#it

#it

#it

#it

Load Microsoft Data -

Microsoft Data:
setRmetricsOptions(myFinCenter = "GMT")
data(MSFT)

head (MSFT)

Create a timeSeries Object, The Direct Way ...
Close <- MSFTL[, 5]
head(Close)

Create a timeSeries Object from Scratch -

data <- as.matrix(MSFT[, 41)

charvec <- rownames(MSFT)

Close <- timeSeries(data, charvec, units = "Close")
head(Close)

c(start(Close), end(Close))

Cut out April Data from 2001 -
tsAprilel <- window(Close, "2001-04-01", "2001-04-30")
tsAprilol

Compute Continuous Returns -
returns(tsAprile1)

Compute Discrete Returns -
returns(tsApril@l, type = "discrete")

Compute Discrete Returns, Don't trim -
returns(tsApril@1, trim = FALSE)

Compute Discrete Returns, Use Percentage Values -
tsRet <- returns(tsApril@1, percentage = TRUE, trim =
tsRet

Aggregate Weekly -

TimeSeriesSubsettings 67

GoodFriday(2001)

to <- timeSequence(from = "2001-04-11", length.out = 3, by = "week")
from <- to - 6*x24%3600

from

to

applySeries(tsRet, from, to, FUN = sum)

Create large timeSeries objects with different 'charvec' object classes -
charvec is a 'timeDate' object
head(timeSeries(1:1e6L, timeSequence(length.out = 1e6L, by = "sec")))
head(timeSeries(1:1e6L, seq(Sys.timeDate(), length.out = 1e6L, by = "sec")))
'charvec' is a 'POSIXt' object
head(timeSeries(1:1e6L, seq(Sys.time(), length.out = 1e6L, by = "sec")))
'charvec' is a 'numeric' object
head(timeSeries(1:1e6L, 1:1e6L))

TimeSeriesData Time Series Data Sets

Description

Three data sets used in example files.

The data sets are:

LPP20@5REC Swiss pension fund assets returns benchmark,
MSFT Daily Microsoft OHLC prices and volume,
USDCHF USD CHF intraday foreign exchange xchange rates.

Examples

Plot LPP20@05 Example Data Set -
data(LPP20@5REC)
plot (LPP20Q5REC, type = "1")

Plot MSFT Example Data Set -
data(MSFT)
plot(MSFTL, 1:41, type = "1")
plot(MSFTL, 5], type = "h")

Plot USDCHF Example Data Set -
plot (USDCHF)

TimeSeriesSubsettings Subsettig Time Series

68

Description

TimeSeriesSubsettings

Subset a ’timeSeries’ objects due to different aspects.

L

[<-
window
cut

head
tail
outliers

Usage

"[" method for a "timeSeries’ object,

"[<-" method to assign value for a subset of a "timeSeries’ object,
Windows a piece from a ’timeSeries’ object,

A no longer used synonyme for window,

Returns the head of a ’timeSeries’ object,

Returns the tail of a "timeSeries’ object,

Removes outliers from a ’timeSeries’ object.

S4 method for signature 'timeSeries'
window(x, start, end, ...)

S4 method for signature 'timeSeries'

head(x, n = 6, recordIDs = FALSE, ...)
S4 method for signature 'timeSeries'
tail(x, n = 6, recordIDs = FALSE, ...)

S4 method for signature 'timeSeries'

outlier(x, sd =

3, complement = TRUE, ...)

S4 method for signature 'timeSeries'

cut(x, from, to, ...)
Arguments
complement [outlierSeries] -

from, to
start, end

n

recordIDs

sd

a logical flag, should the outler series or its complement be returns, by default
TRUE which returns the series free of outliers.

starting date and end date, to must be after from.
starting date and end date, end must be after start.

[head][tail] -

an integer specifying the number of lines to be returned. By default n=6.
[head][tail] -

a logical value. Should the recordIDs returned together with the data matrix
and time series positions?

[outlierSeries] -
a numeric value of standard deviations, e.g. 10 means that values larger or
smaller tahn ten times the standard deviation will be removed from the series.

turns 69

X an object of class timeSeries.

arguments passed to other methods.

Value

All functions return an object of class ’timeSeries’.

Examples

Create an Artificial timeSeries Object -
setRmetricsOptions(myFinCenter = "GMT")
charvec <- timeCalendar()
set.seed(4711)
data <- matrix(exp(cumsum(rnorm(12, sd = 0.1))))
tS <- timeSeries(data, charvec, units = "tS")
tS

Subset Series by Counts "[" -
tS[1:3, 1

Subset the Head of the Series -
head(tS, 6)

turns Turning Points of a Time Series

Description

Extracts and analyzes turn points of an univariate timeSeries object.

Usage

turns(x, ...)

turnsStats(x, doplot = TRUE)

Arguments

X an univariate 'timeSeries’ object of financial indices or prices.
optional arguments passed to the function na.omit.

doplot a logical flag, should the results be plotted? By default TRUE.

70 turns

Details

The function turns determines the number and the position of extrema (turning points, either peaks
or pits) in a regular time series.

The function turnsStats calculates the quantity of information associated to the observations in
this series, according to Kendall’s information theory.

The functions are borrowed from the contributed R package pastecs and made ready for working
together with univariate timeSeries objects. You need not to load the R package pastecs, the
code parts we need here are builtin in the timeSeries package.

We have renamed the function turnpoints to turns to distinguish between the original function
in the contributed R package pastecs and our Rmetrics function wrapper.

For further details please consult the help page from the contributed R package pastecs.

Value

turns
returns an object of class timeSeries.

turnsStats

returns an object of class turnpoints with the following entries:

data - The dataset to which the calculation is done.

n - The number of observations.

points - The value of the points in the series, after elimination of ex-aequos.

pos - The position of the points on the time scale in the series (including ex-aequos).
exaequos - Location of exaequos (1), or not (0).

nturns - Total number of tunring points in the whole time series.

firstispeak - Is the first turning point a peak (TRUE), or not (FALSE).

peaks - Logical vector. Location of the peaks in the time series without ex-aequos.
pits - Logical vector. Location of the pits in the time series without ex-aequos.
tppos - Position of the turning points in the initial series (with ex-aequos).

proba - Probability to find a turning point at this location.

info - Quantity of information associated with this point.

Author(s)
Frederic Ibanez and Philippe Grosjean for code from the contributed R package pastecs and Rmet-
rics for the function wrapper.

References

Ibanez, F., 1982, Sur une nouvelle application de la theorie de I’'information a la description des
series chronologiques planctoniques. J. Exp. Mar. Biol. Ecol., 4, 619-632

Kendall, M.G., 1976, Time Series, 2nd ed. Charles Griffin and Co, London.

Examples

Load Swiss Equities Series -
SPI.RET <- LPP20@5REC[, "SPI"]

units 71

head(SPI.RET)

Cumulate and Smooth the Series -
SPI <- smoothLowess(cumulated(SPI.RET), f=0.05)
plot(SPI)

Plot Turn Points Series -
SPI.SMOOTH <- SPI[, 2]
tP <- turns(SPI.SMOOTH)
plot(tP)

Compute Statistics -
turnsStats(SPI.SMOOTH)

units Get and Set Unit Names of a 'timeSeries’

Description
Gets and sets the column names of a "timeSeries’ object. The column names are also called units or
unit names.
Usage
getUnits(x)
setUnits(x) <- value
Arguments

X a 'timeSeries’ object.

value a vector of unit names.

See Also

timeSeries()

Examples

A Dummy timeSeries Object
tS <- dummySeries()
tS

Get the Units -
getUnits(tS)

Assign New Units to the Series -
setUnits(tS) <- c("A", "B")
head(tS)

72 window

wealth Conversion of an index to wealth

Description

Converts an index series to a wealth series normalizing the starting value to one.

Usage

index2wealth(x)

Arguments

X an object of class "timeSeries’.

Value

returns a time series object of the same class as the input argument x normalizing the starting value
to one.

Examples

Load MSFT Open Prices -
INDEX <- MSFT[1:20, 1]
INDEX

Compute Wealth Normalized to 100 -
100 * index2wealth(INDEX)

window window

Description

Extracts a part from a "timeSeries Object

Examples

Load LPP Benchmark Returns -
X <- LPP20Q5REC[, 7:9]
range(time(x))

Extract Data for January 2006 -
window(x, "2006-01-01", "2006-01-31")

Index

* chron

aggregate-methods, 7
align-methods, 8
apply, 9

as, 11

attach, 13
base-methods, 15
bind, 15

comment, 18
cumulated, 19

DataPart, timeSeries-method, 20

diff, 21
dimnames, 22
drawdowns, 23
durations, 24
is.timeSeries, 26
isRegular, 27
isUnivariate, 28
lag, 29

math, 30

merge, 31

model. frame, 32
monthly, 33
orderColnames, 37
orderStatistics, 39
periodical, 40
plot-methods, 41
print-methods, 44
rank, 45
returns, 47

rev, 48
rollMean, 49
runlengths, 51
sample, 51
scale, 52
smooth, 54

sort, 55

SpecialDailySeries, 56

spreads, 59

73

start, 60

str-methods, 61

t, 61

time, 62
timeSeries-method-stats, 63
TimeSeriesClass, 64
TimeSeriesSubsettings, 67

turns, 69
wealth, 72
window, 72
+ datasets
TimeSeriesData, 67
* math
na, 34
+ methods

aggregate-methods, 7
align-methods, 8
math, 30
timeSeries-method-stats, 63
* package
timeSeries-package, 3
* programming
attributes, 14
description, 20
finCenter, 25
series-methods, 53
units, 71
* univar
colCum, 16
colStats, 17
rowCum, 50
+,timeSeries,missing-method (math), 30
-,timeSeries,missing-method (math), 30
[,timeSeries,ANY,index_timeSeries-method
(TimeSeriesSubsettings), 67
[,timeSeries,character,character-method
(TimeSeriesSubsettings), 67
[,timeSeries,character,index_timeSeries-method
(TimeSeriesSubsettings), 67

74 INDEX

[,timeSeries,character,missing-method [<-,timeSeries, timeDate, ANY-method
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67
[,timeSeries,index_timeSeries,character-methofik-,timeSeries, timeDate, character-method
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67
[,timeSeries,index_timeSeries, index_timeSerieb<methwoeSeries,timeDate,index_timeSeries-method
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67
[,timeSeries,index_timeSeries,missing-method [<-,timeSeries,timeDate,missing-method
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67
[,timeSeries,matrix,index_timeSeries-method [<-,timeSeries,timeSeries,character-method
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67
[,timeSeries,matrix,missing-method [<-,timeSeries,timeSeries,index_timeSeries-method
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67
[,timeSeries,missing,character-method [<-,timeSeries, timeSeries,missing-method
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67
[,timeSeries,missing, index_timeSeries-method $,timeSeries-method
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67

$<-,timeSeries,ANY, ANY-method
(TimeSeriesSubsettings), 67

$<-,timeSeries,ANY, factor-method
(TimeSeriesSubsettings), 67

[,timeSeries,missing,missing-method
(TimeSeriesSubsettings), 67

[,timeSeries,timeDate,character-method
(TimeSeriesSubsettings), 67) . .

[,timeSeries,timeDate,index_timeSeries—method$<_’tlmeserles’A.NY’numerlc'_mEthod
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67

[,timeSeries,timeDate,missing-method $<—,tlmeSerles,ANY—method.
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67

[,timeSeries,timeSeries,index_timeSeries—methﬂché_’tlmeserles’f,acmr_meth,od
(TimeSeriesSubsettings), 67 (TimeSeriesSubsettings), 67

. $<-,timeSeries,numeric-method
[,timeSeries, timeSeries,missing-method (TimeSeriesSubsettings), 67
(TimeSeriesSubsettings), 67 £3),

%*%,ANY , timeSeries-method (math), 30
[,timeSeries,time_timeSeries, ANY-method ior s e (),
. . . %x%,timeSeries, ANY-method (math), 30
(TimeSeriesSubsettings), 67 o e .
. . i . : %*%,timeSeries,vector-method (math), 30
[,timeSeries,time_timeSeries, character-method

(TimeSeriesSubsettings), 67 aggregate (aggregate-methods), 7
[,timeSeries,time_timeSeries,index_timeSerieszpethbodie timeSeries-method

(TimeSeriesSubsettings), 67 (aggregate-methods), 7
[,timeSeries,time_timeSeries,missing-method ggoregate-methods, 7
(TimeSeriesSubsettings), 67 aggregate.timeSeries
[<-,timeSeries,character,ANY-method (aggregate-methods), 7
(TimeSeriesSubsettings), 67 align (align-methods), 8
[<-,timeSeries,character,character-method align, timeSeries-method
(TimeSeriesSubsettings), 67 (align-methods), 8
[<-,timeSeries,character, index_timeSeries-methddgn-methods, 8
(TimeSeriesSubsettings), 67 alignDailySeries (SpecialDailySeries),
[<-,timeSeries,character,missing-method 56
(TimeSeriesSubsettings), 67 apply, 9
[<-,timeSeries,index_timeSeries,character-methpply, timeSeries-method (apply), 9
(TimeSeriesSubsettings), 67 applySeries (apply), 9
[<-,timeSeries,matrix,character-method as, 11

(TimeSeriesSubsettings), 67 attach, 13

INDEX

attach,timeSeries-method (attach), 13
attributes, 14

base-methods, 15
bind, 15

cbind (bind), 15

cbind2 (bind), 15

cbind2,ANY, timeSeries-method (bind), 15

cbind2,timeSeries,ANY-method (bind), 15

cbind2,timeSeries,missing-method
(bind), 15

cbind2,timeSeries, timeSeries-method
(bind), 15

coerce,ANY, timeSeries-method (as), 11

coerce,character, timeSeries-method
(as), 11

coerce,data.frame, timeSeries-method
(as), 11

coerce,timeSeries,data.frame-method
(as), 11

coerce,timeSeries,list-method (as), 11

coerce,timeSeries,matrix-method (as), 11

coerce, timeSeries, ts-method (as), 11

coerce,timeSeries, tse-method (as), 11

coerce,ts,timeSeries-method (as), 11

colAvgs (colStats), 17

colCum, 16

colCummaxs (colCum), 16

colCummaxs,matrix-method (colCum), 16

colCummaxs, timeSeries-method (colCum),
16

colCummins (colCum), 16

colCummins,matrix-method (colCum), 16

colCummins, timeSeries-method (colCum),
16

colCumprods (colCum), 16

colCumprods,matrix-method (colCum), 16

colCumprods, timeSeries-method (colCum),
16

colCumreturns (colCum), 16

colCumreturns,matrix-method (colCum), 16

colCumreturns, timeSeries-method
(colCum), 16

colCumsums (colCum), 16

colCumsums,matrix-method (colCum), 16

colCumsums,timeSeries-method (colCum),
16

colKurtosis (colStats), 17

75

colMaxs (colStats), 17

colMeans, timeSeries-method (colStats),
17

colMins (colStats), 17

colnames, timeSeries-method (dimnames),
22

colnames<-,timeSeries-method
(dimnames), 22

colProds (colStats), 17

colQuantiles (colStats), 17

colSds (colStats), 17

colSkewness (colStats), 17

colStats, 17

colStdevs (colStats), 17

colSums, timeSeries-method (colStats), 17

colVars (colStats), 17

comment, 18

comment, timeSeries-method (comment), 18

comment<-,timeSeries-method (comment),
18

cor,timeSeries-method
(timeSeries-method-stats), 63

cor-methods (timeSeries-method-stats),
63

coredata (series-methods), 53

coredata, timeSeries-method
(series-methods), 53

coredata<- (series-methods), 53

coredata<-,timeSeries, ANY-method
(series-methods), 53

coredata<-,timeSeries,data.frame-method
(series-methods), 53

coredata<-,timeSeries,matrix-method
(series-methods), 53

coredata<-,timeSeries, vector-method
(series-methods), 53

countMonthlyRecords (monthly), 33

cov, timeSeries-method
(timeSeries-method-stats), 63

cov-methods (timeSeries-method-stats),
63

cummax, timeSeries-method (math), 30

cummin, timeSeries-method (math), 30

cumprod, timeSeries-method (math), 30

cumsum, timeSeries-method (math), 30

cumulated, 19

cut,timeSeries-method
(TimeSeriesSubsettings), 67

76

cut.timeSeries (TimeSeriesSubsettings),
67

daily (SpecialDailySeries), 56

daily2monthly (aggregate-methods), 7

daily2weekly (aggregate-methods), 7

DataPart, timeSeries-method, 20

dcauchy, timeSeries-method
(timeSeries-method-stats), 63

dcauchy-methods
(timeSeries-method-stats), 63

description, 20

diff, 21

diff,timeSeries-method (diff), 21

dim, timeSeries-method (dimnames), 22

dim<-,timeSeries-method (dimnames), 22

dimnames, 22

dimnames, timeSeries-method (dimnames),
22

dimnames<-,timeSeries,list-method
(dimnames), 22

dnorm, timeSeries-method
(timeSeries-method-stats), 63

dnorm-methods
(timeSeries-method-stats), 63

documentation (attributes), 14

drawdowns, 23

drawdownsStats (drawdowns), 23

dt,timeSeries-method
(timeSeries-method-stats), 63

dt-methods (timeSeries-method-stats), 63

dummyDailySeries (SpecialDailySeries),
56

dummySeries (SpecialDailySeries), 56

durations, 24

durationSeries (durations), 24

end, timeSeries-method (start), 60
end.timeSeries (start), 60

endOfPeriod (periodical), 40
endOfPeriodBenchmarks (periodical), 40
endOfPeriodSeries (periodical), 40
endOfPeriodStats (periodical), 40

fapply (apply), 9

filter, 25
filter,timeSeries-method (filter), 25
finCenter, 25

INDEX

finCenter,timeSeries-method
(finCenter), 25

finCenter<-,timeSeries-method
(finCenter), 25

frequency, timeSeries-method
(isRegular), 27

getAttributes (attributes), 14

getDataPart,timeSeries-method
(DataPart,timeSeries-method),
20

getFinCenter (finCenter), 25

getReturns (returns), 47

getTime (time), 62

getUnits (units), 71

hclustColnames (orderColnames), 37

head, timeSeries-method
(TimeSeriesSubsettings), 67

head.timeSeries
(TimeSeriesSubsettings), 67

index2wealth (wealth), 72
index_timeSeries (TimeSeriesClass), 64
index_timeSeries-class
(TimeSeriesClass), 64
initialize, timeSeries-method
(TimeSeriesClass), 64
interpNA (na), 34
is.na,timeSeries-method
(is.timeSeries), 26
is.signalSeries (is.timeSeries), 26
is.timeSeries, 26
is.unsorted, timeSeries-method
(is.timeSeries), 26
isDaily,timeSeries-method (isRegular),
27
isMonthly, timeSeries-method
(isRegular), 27
isMultivariate (isUnivariate), 28
isQuarterly, timeSeries-method
(isRegular), 27
isRegular, 27
isRegular,timeSeries-method
(isRegular), 27
isUnivariate, 28

lag, 29
lag,timeSeries-method (lag), 29

INDEX

lag.timeSeries (lag), 29

lines,timeSeries-method (plot-methods),
41

log, timeSeries-method (math), 30

LPP2005REC (TimeSeriesData), 67

math, 30

Math, timeSeries-method (math), 30

Math2,timeSeries-method (math), 30

mean, timeSeries-method (base-methods),
15

median, timeSeries-method (math), 30

median.timeSeries (math), 30

merge, 31

merge,ANY, timeSeries-method (merge), 31

merge,matrix,timeSeries-method (merge),
31

merge,numeric,timeSeries-method
(merge), 31

merge,timeSeries, ANY-method (merge), 31

merge,timeSeries,matrix-method (merge),
31

merge,timeSeries,missing-method
(merge), 31

merge,timeSeries,numeric-method
(merge), 31

merge,timeSeries,timeSeries-method
(merge), 31

midquotes (spreads), 59

midquoteSeries (spreads), 59

model. frame, 32, 32

monthly, 33

MSFT (TimeSeriesData), 67

na, 34

na.contiguous, 37

na.contiguous, timeSeries-method
(na.contiguous), 37

names, timeSeries-method (dimnames), 22

names<-, timeSeries-method (dimnames), 22

newPositions<- (timeSeries-deprecated),
63

Ops,array, timeSeries-method (math), 30

Ops, timeSeries, array-method (math), 30

Ops,timeSeries, timeSeries-method
(math), 30

Ops, timeSeries, ts-method (math), 30

Ops, timeSeries,vector-method (math), 30

77

Ops,ts,timeSeries-method (math), 30

Ops,vector,timeSeries-method (math), 30

orderColnames, 37

orderStatistics, 39

outlier (TimeSeriesSubsettings), 67

outlier,ANY-method
(TimeSeriesSubsettings), 67

outlier,timeSeries-method
(TimeSeriesSubsettings), 67

pcaColnames (orderColnames), 37

periodical, 40

plot (plot-methods), 41

plot,timeSeries-method (plot-methods),
41

plot-methods, 41

points,timeSeries-method
(plot-methods), 41

pretty.timeSeries (plot-methods), 41

print,timeSeries-method
(print-methods), 44

print-methods, 44

quantile, timeSeries-method (math), 30
quantile.timeSeries (math), 30

rank, 45

rank, timeSeries-method (rank), 45

rbind (bind), 15

rbind2 (bind), 15

rbind2,ANY, timeSeries-method (bind), 15

rbind2, timeSeries, ANY-method (bind), 15

rbind2,timeSeries,missing-method
(bind), 15

rbind2,timeSeries, timeSeries-method
(bind), 15

readSeries, 46

removeNA (na), 34

returns, 47

returns,ANY-method (returns), 47

returns, timeSeries-method (returns), 47

returnso (returns), 47

returnSeries (returns), 47

rev, 48

rev,timeSeries-method (rev), 48

rev.timeSeries (rev), 48

rollDailySeries (SpecialDailySeries), 56

rollMax (rollMean), 49

rollMean, 49

78

rol1lMedian (rollMean), 49

rollMin (rollMean), 49

rollMonthlySeries (monthly), 33

rollMonthlyWindows (monthly), 33

rollStats (rollMean), 49

rowCum, 50

rowCumsums (rowCum), 50

rowCumsums, ANY-method (rowCum), 50

rowCumsums, timeSeries-method (rowCum),
50

rownames, timeSeries-method (dimnames),
22

rownames<-,timeSeries, ANY-method
(dimnames), 22

rownames<-,timeSeries, timeDate-method
(dimnames), 22

runlengths, 51

sample, 51
sample, timeSeries-method (time), 62
sampleColnames (orderColnames), 37
scale, 52
sd, timeSeries-method
(timeSeries-method-stats), 63
sd-methods (timeSeries-method-stats), 63
series (series-methods), 53
series,timeSeries-method
(series-methods), 53
series-methods, 53
series<- (series-methods), 53
series<-,timeSeries,ANY-method
(series-methods), 53
series<-,timeSeries,data.frame-method
(series-methods), 53
series<-,timeSeries,matrix-method
(series-methods), 53
series<-,timeSeries,vector-method
(series-methods), 53
seriesData (TimeSeriesClass), 64
seriesPositions
(timeSeries-deprecated), 63
setAttributes<- (attributes), 14
setDataPart, timeSeries-method
(DataPart, timeSeries-method),
20
setFinCenter<- (finCenter), 25
setTime<- (time), 62
setUnits<- (units), 71

INDEX

show, timeSeries-method (print-methods),
44

smooth, 54

smoothLowess (smooth), 54

smoothSpline (smooth), 54

smoothSupsmu (smooth), 54

sort, 55

sort,timeSeries-method (sort), 55

sort.timeSeries (sort), 55

sortColnames (orderColnames), 37

SpecialDailySeries, 56

splits, 58

spreads, 59

spreadSeries (spreads), 59

start, 60

start,timeSeries-method (start), 60

start.timeSeries (start), 60

statsColnames (orderColnames), 37

str (str-methods), 61

str,timeSeries-method (str-methods), 61

str-methods, 61

substituteNA (na), 34

Summary, timeSeries-method (math), 30

summary, timeSeries-method
(base-methods), 15

t, 61
t,timeSeries-method (t), 61
tail,timeSeries-method
(TimeSeriesSubsettings), 67
tail.timeSeries
(TimeSeriesSubsettings), 67
time, 62
time,timeSeries-method (time), 62
time.timeSeries (time), 62
time<- (time), 62
time_timeSeries (TimeSeriesClass), 64
time_timeSeries-class
(TimeSeriesClass), 64
timeSeries (TimeSeriesClass), 64
timeSeries, ANY,ANY-method
(TimeSeriesClass), 64
timeSeries,ANY,missing-method
(TimeSeriesClass), 64
timeSeries,ANY, timeDate-method
(TimeSeriesClass), 64
timeSeries,matrix, ANY-method
(TimeSeriesClass), 64

INDEX

timeSeries,matrix,missing-method
(TimeSeriesClass), 64
timeSeries,matrix,numeric-method
(TimeSeriesClass), 64
timeSeries,matrix, timeDate-method
(TimeSeriesClass), 64
timeSeries,missing,ANY-method
(TimeSeriesClass), 64
timeSeries,missing,missing-method
(TimeSeriesClass), 64
timeSeries,missing,timeDate-method
(TimeSeriesClass), 64
timeSeries-class (TimeSeriesClass), 64
timeSeries-deprecated, 63
timeSeries-method-stats, 63
timeSeries-package, 3
TimeSeriesClass, 64
TimeSeriesData, 67
TimeSeriesSubsettings, 67
trunc, timeSeries-method (math), 30
turns, 69
turnsStats (turns), 69

units, 71
USDCHF (TimeSeriesData), 67

var,timeSeries-method
(timeSeries-method-stats), 63

var-methods (timeSeries-method-stats),
63

wealth, 72

window, 72

window, timeSeries-method
(TimeSeriesSubsettings), 67

window.timeSeries
(TimeSeriesSubsettings), 67

79

	timeSeries-package
	aggregate-methods
	align-methods
	apply
	as
	attach
	attributes
	base-methods
	bind
	colCum
	colStats
	comment
	cumulated
	DataPart,timeSeries-method
	description
	diff
	dimnames
	drawdowns
	durations
	filter
	finCenter
	is.timeSeries
	isRegular
	isUnivariate
	lag
	math
	merge
	model.frame
	monthly
	na
	na.contiguous
	orderColnames
	orderStatistics
	periodical
	plot-methods
	print-methods
	rank
	readSeries
	returns
	rev
	rollMean
	rowCum
	runlengths
	sample
	scale
	series-methods
	smooth
	sort
	SpecialDailySeries
	splits
	spreads
	start
	str-methods
	t
	time
	timeSeries-deprecated
	timeSeries-method-stats
	TimeSeriesClass
	TimeSeriesData
	TimeSeriesSubsettings
	turns
	units
	wealth
	window
	Index

