Package 'tipr'

August 6, 2022

Type Package

Title Tipping Point Analyses

Version 1.0.0

Description The strength of evidence provided by epidemiological and observational studies is inherently limited by the potential for unmeasured confounding. We focus on three key quantities: the observed bound of the confidence interval closest to the null, a plausible residual effect size for an unmeasured continuous or binary confounder, and a realistic mean difference or prevalence difference for this hypothetical confounder. Building on the methods put forth by Lin, Psaty, & Kronmal (1998) <doi:10.2307/2533848>, we can use these quantities to assess how an unmeasured confounder may tip our result to insignificance, rendering the study inconclusive.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.2

BugReports https://github.com/LucyMcGowan/tipr/issues

Suggests testthat, broom, dplyr, MASS

Imports glue, tibble, purrr, sensemakr

Depends R (>= 2.10)

LazyData true

NeedsCompilation no

Author Lucy D'Agostino McGowan [aut, cre] (<https://orcid.org/0000-0002-6983-2759>)

Maintainer Lucy D'Agostino McGowan <lucydagostino@gmail.com>

Repository CRAN

Date/Publication 2022-08-06 19:10:02 UTC

R topics documented:

adjust_coef	. 2
adjust_coef_with_binary	. 3
adjust_coef_with_r2	. 4
adjust_hr	. 6
adjust_hr_with_binary	. 7
adjust_or	. 8
adjust_or_with_binary	. 9
adjust_rr	. 10
adjust_rr_with_binary	. 11
exdata_continuous	. 12
exdata_rr	. 12
e_value	. 13
observed_bias_order	. 13
observed_bias_tbl	. 14
observed_bias_tip	. 15
observed_covariate_e_value	. 16
r_value	. 16
tip	. 17
tipr	. 19
tip_coef	. 19
tip_coef_with_r2	. 21
tip_hr	. 22
tip_hr_with_binary	. 23
tip_or	. 24
tip_or_with_binary	. 26
tip_rr	. 27
tip_rr_with_binary	. 28
tip_with_binary	. 29
	32

Index

adjust_coef

Adjust an observed regression coefficient for a normally distributed confounder

Description

Adjust an observed regression coefficient for a normally distributed confounder

Usage

```
adjust_coef(
   effect_observed,
   exposure_confounder_effect,
   confounder_outcome_effect,
   verbose = TRUE
```

```
adjust_coef_with_continuous(
   effect_observed,
   exposure_confounder_effect,
   confounder_outcome_effect,
   verbose = TRUE
)
```

Arguments

)

effect_observed

Numeric. Observed exposure - outcome effect from a regression model. This can be the beta coefficient, the lower confidence bound of the beta coefficient, or the upper confidence bound of the beta coefficient.

exposure_confounder_effect

Numeric. Estimated difference in scaled means between the unmeasured confounder in the exposed population and unexposed population

 confounder_outcome_effect

 Numeric. Estimated relationship between the unmeasured confounder and the outcome.

 verbose
 Logical. Indicates whether to print informative message. Default: TRUE

Value

Data frame.

Examples

```
## Update an observed coefficient of 0.5 with an unmeasured confounder
## with a difference in scaled means between exposure groups of 0.2
## and coefficient of 0.3
adjust_coef(0.5, 0.2, 0.3)
```

adjust_coef_with_binary

Adjust an observed coefficient from a loglinear model with a binary confounder

Description

Adjust an observed coefficient from a loglinear model with a binary confounder

Usage

```
adjust_coef_with_binary(
   effect_observed,
   exposed_p,
   unexposed_p,
   confounder_outcome_effect,
   verbose = TRUE
)
```

Arguments

effect_observed		
	Numeric. Observed exposure - outcome effect from a loglinear model. This can be the beta coefficient, the lower confidence bound of the beta coefficient, or the upper confidence bound of the beta coefficient.	
exposed_p	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population	
unexposed_p	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population	
confounder_outcome_effect		
	Numeric. Estimated relationship between the unmeasured confounder and the outcome.	
verbose	Logical. Indicates whether to print informative message. Default: TRUE	

Value

Data frame.

Examples

```
adjust_coef_with_binary(1.1, 0.5, 0.3, 1.3)
```

adjust_coef_with_r2	Adjust a regression coefficient using the partial R2 for an unmeasured
	confounder-exposure relationship and unmeasured confounder- out- come relationship

Description

This function wraps the sensemakr::adjusted_estimate() and sensemakr::adjusted_se() functions.

4

```
adjust_coef_with_r2
```

Usage

```
adjust_coef_with_r2(
  effect_observed,
  se,
  df,
  confounder_exposure_r2,
  confounder_outcome_r2,
  verbose = TRUE,
  alpha = 0.05,
  ...
)
```

Arguments

effect_observed		
	Numeric. Observed exposure - outcome effect from a regression model. This is the point estimate (beta coefficient)	
se	Numeric. Standard error of the effect_observed in the previous parameter.	
df	Numeric positive value. Residual degrees of freedom for the model used to estimate the observed exposure - outcome effect. This is the total number of observations minus the number of parameters estimated in your model. Often for models estimated with an intercept this is $N - k - 1$ where k is the number of predictors in the model.	
confounder_expo	osure_r2	
	Numeric value between 0 and 1. The assumed partial R2 of the unobserved confounder with the exposure given the measured covariates.	
confounder_outcome_r2		
	Numeric value between 0 and 1. The assumed partial R2 of the unobserved confounder with the outcome given the exposure and the measured covariates.	
verbose	Logical. Indicates whether to print informative message. Default: TRUE	
alpha	Significance level. Default = 0.05 .	
	Optional arguments passed to the <pre>sensemakr::adjusted_estimate()</pre> function.	

Value

A data frame.

References

Carlos Cinelli, Jeremy Ferwerda and Chad Hazlett (2021). sensemakr: Sensitivity Analysis Tools for Regression Models. R package version 0.1.4. https://CRAN.R-project.org/package=sensemakr

Examples

```
adjust_coef_with_r2(0.5, 0.1, 102, 0.05, 0.1)
```

adjust_hr

Description

Adjust an observed hazard ratio for a normally distributed confounder

Usage

```
adjust_hr(
  effect_observed,
  exposure_confounder_effect,
  confounder_outcome_effect,
  verbose = TRUE,
  hr_correction = FALSE
)
adjust_hr_with_continuous(
  effect_observed,
  exposure_confounder_effect,
   confounder_outcome_effect,
   verbose = TRUE,
  hr_correction = FALSE
)
```

Arguments

effect_observed		
	Numeric positive value. Observed exposure - outcome hazard ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.	
exposure_confou	inder_effect	
	Numeric. Estimated difference in scaled means between the unmeasured con- founder in the exposed population and unexposed population	
confounder_outcome_effect		
	Numeric. Estimated relationship between the unmeasured confounder and the outcome.	
verbose	Logical. Indicates whether to print informative message. Default: TRUE	
hr_correction	Logical. Indicates whether to use a correction factor. The methods used for this function are based on relative risks. For rare outcomes, a hazard ratio approximates a relative risk. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.	

Value

Data frame.

Examples

adjust_hr(0.9, -0.9, 1.3)

adjust_hr_with_binary Adjust an observed hazard ratio with a binary confounder

Description

Adjust an observed hazard ratio with a binary confounder

Usage

```
adjust_hr_with_binary(
    effect_observed,
    exposed_p,
    unexposed_p,
    confounder_outcome_effect,
    verbose = TRUE,
    hr_correction = FALSE
)
```

Arguments

```
effect_observed
```

	Numeric positive value. Observed exposure - outcome hazard ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.
exposed_p	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population
unexposed_p	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population
confounder_out	come_effect
	Numeric positive value. Estimated relationship between the unmeasured con- founder and the outcome
verbose	Logical. Indicates whether to print informative message. Default: TRUE
hr_correction	Logical. Indicates whether to use a correction factor. The methods used for this function are based on relative risks. For rare outcomes, a hazard ratio approximates a relative risk. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.

Value

Data frame.

Examples

adjust_hr_with_binary(0.8, 0.1, 0.5, 1.8)

adjust_or

Description

Adjust an observed odds ratio for a normally distributed confounder

Usage

```
adjust_or(
  effect_observed,
  exposure_confounder_effect,
  confounder_outcome_effect,
  verbose = TRUE,
  or_correction = FALSE
)
adjust_or_with_continuous(
  effect_observed,
  exposure_confounder_effect,
   confounder_outcome_effect,
   verbose = TRUE,
   or_correction = FALSE
)
```

Arguments

effect_observed		
	Numeric positive value. Observed exposure - outcome odds ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.	
exposure_confou	under_effect	
	Numeric. Estimated difference in scaled means between the unmeasured con- founder in the exposed population and unexposed population	
confounder_outcome_effect		
	Numeric. Estimated relationship between the unmeasured confounder and the outcome.	
verbose	Logical. Indicates whether to print informative message. Default: TRUE	
or_correction	Logical. Indicates whether to use a correction factor. The methods used for this function are based on relative risks. For rare outcomes, an odds ratio approximates a relative risk. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.	

Value

Data frame.

Examples

adjust_or(1.2, 0.9, 1.3)

adjust_or_with_binary Adjust an observed odds ratio with a binary confounder

Description

Adjust an observed odds ratio with a binary confounder

Usage

```
adjust_or_with_binary(
    effect_observed,
    exposed_p,
    unexposed_p,
    confounder_outcome_effect,
    verbose = TRUE,
    or_correction = FALSE
)
```

Arguments

effect_observed

	Numeric positive value. Observed exposure - outcome odds ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.
exposed_p	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population
unexposed_p	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population
confounder_out	come_effect
	Numeric positive value. Estimated relationship between the unmeasured con- founder and the outcome
verbose	Logical. Indicates whether to print informative message. Default: TRUE
or_correction	Logical. Indicates whether to use a correction factor. The methods used for this function are based on relative risks. For rare outcomes, an odds ratio approximates a relative risk. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.

Value

Data frame.

Examples

```
adjust_or_with_binary(3, 1, 0, 3)
adjust_or_with_binary(3, 1, 0, 3, or_correction = TRUE)
```

adjust_rr

Description

Adjust an observed relative risk for a normally distributed confounder

Usage

```
adjust_rr(
    effect_observed,
    exposure_confounder_effect,
    confounder_outcome_effect,
    verbose = TRUE
)
adjust_rr_with_continuous(
    effect_observed,
    exposure_confounder_effect,
    confounder_outcome_effect,
    verbose = TRUE
)
```

Arguments

effect_observe	d	
	Numeric positive value. Observed exposure - outcome relative risk. This can be the point estimate, lower confidence bound, or upper confidence bound.	
exposure_confo	under_effect	
	Numeric. Estimated difference in scaled means between the unmeasured con- founder in the exposed population and unexposed population	
confounder_outcome_effect		
	Numeric. Estimated relationship between the unmeasured confounder and the outcome.	
verbose	Logical. Indicates whether to print informative message. Default: TRUE	

Value

Data frame.

Examples

adjust_rr(1.2, 0.5, 1.1)

adjust_rr_with_binary Adjust an observed relative risk with a binary confounder

Description

Adjust an observed relative risk with a binary confounder

Usage

```
adjust_rr_with_binary(
    effect_observed,
    exposed_p,
    unexposed_p,
    confounder_outcome_effect,
    verbose = TRUE
)
```

Arguments

effect_observed	
	Numeric positive value. Observed exposure - outcome relative risk. This can be the point estimate, lower confidence bound, or upper confidence bound.
exposed_p	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population
unexposed_p	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population
confounder_outc	ome_effect Numeric positive value. Estimated relationship between the unmeasured con- founder and the outcome
verbose	Logical. Indicates whether to print informative message. Default: TRUE

Value

Data frame.

Examples

adjust_rr_with_binary(1.1, 0.5, 0.3, 1.3)

exdata_continuous

Description

A data set simulated with two Normally distributed confounders, one "measured" and one "unmeasured", an exposure, and outcome. The "true" causal effect of the exposure on the outcome, accounting for both the measured and unmeasured confounders, should be 0.

Usage

exdata_continuous

Format

A data frame with 2,000 rows and 4 columns:

- .unmeasured_confounder: A simulated unmeasured confounder
- measured_confounder: A simulated measured confounder
- exposure
- outcome

exdata_rr

Example Data (Relative Risk)

Description

A data set simulated with two Normally distributed confounders, one "measured" and one "unmeasured", an exposure, and outcome. The "true" causal effect of the exposure on the outcome, accounting for both the measured and unmeasured confounders, should be 0.

Usage

exdata_rr

Format

A data frame with 2,000 rows and 4 columns:

- .unmeasured_confounder: A simulated unmeasured confounder
- measured_confounder: A simulated measured confounder
- exposure
- outcome

e_value

Description

Calculate an E-value

Usage

e_value(effect_observed)

Arguments

effect_observed

Numeric positive value. Observed exposure - outcome effect (assumed to be the exponentiated coefficient, so a relative risk, odds ratio, or hazard ratio). This can be the point estimate, lower confidence bound, or upper confidence bound.

Value

Numeric value

Examples

e_value(0.9)
e_value(1.3)

observed_bias_order Order observed bias data frame for plotting

Description

Order observed bias data frame for plotting

Usage

```
observed_bias_order(d, by)
```

Arguments

d	Observed bias data frame. Must have columns dropped and type	е
by	Character. Variable in d to order by.	

Value

Data frame in the correct order

observed_bias_tbl Create a data frame to assist with creating an observed bias plot

Description

Create a data frame to assist with creating an observed bias plot

Usage

```
observed_bias_tbl(ps_mod, outcome_mod, drop_list = NULL)
```

Arguments

ps_mod	Model object for the propensity score model
outcome_mod	Model object for the outcome model
drop_list	Named list of covariates or groups of covariates to drop if NULL, will default to dropping each covariate one at a time.

Value

Data frame with the following columns:

- dropped: The covariate or group of covariates that were dropped
- type: Explanation of dropped, whether it refers to a single covariate (covariate) or a group of covariates (group)
- ps_formula: The new formula for the updated propensity score model
- outcome_formula: The new formula for the updated outcome model
- ps_model: The new model object for the updated propensity score model
- p: The updated propensity score

Examples

```
ps_mod <- glm(am ~ mpg + cyl + I(hp^2), data = mtcars)
outcome_mod <- lm(qsec ~ am + hp + disp + wt, data = mtcars)
observed_bias_tbl(
    ps_mod,
    outcome_mod,
    drop_list = list(
        group_one = c("mpg", "hp"),
        group_two = c("cyl", "wt")
    )
)</pre>
```

observed_bias_tip

Description

Create a data frame to combine with an observed bias data frame demonstrating a hypothetical unmeasured confounder

Usage

```
observed_bias_tip(
   tip,
   point_estimate,
   lb,
   ub,
   tip_desc = "Hypothetical unmeasured confounder"
)
```

Arguments

tip	Numeric. Value you would like to tip to.
<pre>point_estimate</pre>	Numeric. Result estimate from the full model.
lb	Numeric. Result lower bound from the full model.
ub	Numeric. Result upper bound from the full model.
tip_desc	Character. A description of the tipping point.

Value

A data frame with five columns:

- dropped: the input from tip_desc
- type: Explanation of dropped, here tip to clarify that this was calculated as a tipping point.
- point_estimate: the shifted point estimate
- 1b: the shifted lower bound
- ub: the shifted upper bound

observed_covariate_e_value

Calculate the Observed Covariate E-value

Description

Calculate the Observed Covariate E-value

Usage

```
observed_covariate_e_value(lb, ub, lb_adj, ub_adj, transform = NULL)
```

Arguments

lb	Numeric. The lower bound of the full model
ub	Numeric. The upper bound of the full model
lb_adj	Numeric. The lower bound of the adjusted model
ub_adj	Numeric. The upper bound of the adjusted model
transform	Character. If your effect is an odds ratio or hazard ratio, this will perform the transformation suggested by VanderWeele and Ding. Allowed values are:
	• "OR"
	• "HR"

Value

The Observed Covariate E-value

r_value

Robustness value

Description

This function wraps the sensemakr::robustness_value() function

Usage

r_value(effect_observed, se, df, ...)

effect_observed	
	Numeric. Observed exposure - outcome effect from a regression model. This is the point estimate (beta coefficient)
se	Numeric. Standard error of the effect_observed in the previous parameter.
df	Numeric positive value. Residual degrees of freedom for the model used to estimate the observed exposure - outcome effect. This is the total number of observations minus the number of parameters estimated in your model. Often for models estimated with an intercept this is $N - k - 1$ where k is the number of predictors in the model.
	Optional arguments passed to the sensemakr::robustness_value() function.

Value

Numeric. Robustness value

References

Carlos Cinelli, Jeremy Ferwerda and Chad Hazlett (2021). sensemakr: Sensitivity Analysis Tools for Regression Models. R package version 0.1.4. https://CRAN.R-project.org/package=sensemakr

Examples

r_value(0.5, 0.1, 102)

tip

Tip a result with a normally distributed confounder.

Description

choose one of the following, and the other will be estimated:

- exposure_confounder_effect
- confounder_outcome_effect

Usage

```
tip(
   effect_observed,
   exposure_confounder_effect = NULL,
   confounder_outcome_effect = NULL,
   verbose = TRUE,
   correction_factor = "none"
)
```

tip_with_continuous(

```
effect_observed,
exposure_confounder_effect = NULL,
confounder_outcome_effect = NULL,
verbose = TRUE,
correction_factor = "none"
)
tip_c(
effect_observed,
exposure_confounder_effect = NULL,
confounder_outcome_effect = NULL,
verbose = TRUE,
correction_factor = "none"
)
```

Arguments

effect_observed

Numeric positive value. Observed exposure - outcome effect (assumed to be the exponentiated coefficient, so a relative risk, odds ratio, or hazard ratio). This can be the point estimate, lower confidence bound, or upper confidence bound.

exposure_confounder_effect

Numeric. Estimated difference in scaled means between the unmeasured confounder in the exposed population and unexposed population

confounder_outcome_effect

Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome

Logical. Indicates whether to print informative message. Default: TRUE

correction_factor

verbose

Character string. Options are "none", "hr", "or". For common outcomes (>15%), the odds ratio or hazard ratio is not a good estimate for the relative risk. In these cases, we can apply a correction factor. If you are supplying a hazard ratio for a common outcome, set this to "hr"; if you are supplying an odds ratio for a common outcome, set this to "or"; if you are supplying a risk ratio or your outcome is rare, set this to "none" (default).

Value

Data frame.

Examples

```
## to estimate the relationship between an unmeasured confounder and outcome
## needed to tip analysis
tip(1.2, exposure_confounder_effect = -2)
## to estimate the number of unmeasured confounders specified needed to tip
## the analysis
tip(1.2, exposure_confounder_effect = -2, confounder_outcome_effect = .99)
```

```
## Example with broom
if (requireNamespace("broom", quietly = TRUE) &&
    requireNamespace("dplyr", quietly = TRUE)) {
    glm(am ~ mpg, data = mtcars, family = "binomial") %>%
    broom::tidy(conf.int = TRUE, exponentiate = TRUE) %>%
    dplyr::filter(term == "mpg") %>%
    dplyr::pull(conf.low) %>%
    tip(confounder_outcome_effect = 2.5)
}
```

tipr

tipr

Description

The tipr package.

References

D'Agostino McGowan, L. (2018). Improving Modern Techniques of Causal Inference: Finite Sample Performance of ATM and ATO Doubly Robust Estimators, Variance Estimation for ATO Estimators, and Contextualized Tipping Point Sensitivity Analyses for Unmeasured Confounding. PhD thesis, Vanderbilt University.

VanderWeele, TJ, and Peng D (2017). Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med, 167(4), 268–74.

Lin, DY, Psaty, BM, & Kronmal, RA. (1998). Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics, 54(3), 948–963.

tip_coef

Tip a linear model coefficient with a continuous confounder.

Description

choose one of the following, and the other will be estimated:

- exposure_confounder_effect
- confounder_outcome_effect

Usage

```
tip_coef(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE
)
tip_coef_with_continuous(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE
)
```

Arguments

```
effect_observed

Numeric. Observed exposure - outcome effect from a regression model. This

can be the beta coefficient, the lower confidence bound of the beta coefficient,

or the upper confidence bound of the beta coefficient.

exposure_confounder_effect

Numeric. Estimated scaled mean difference between the unmeasured confounder

in the exposed population and unexposed population

confounder_outcome_effect

Numeric positive value. Estimated relationship between the unmeasured con-

founder and the outcome

verbose

Logical. Indicates whether to print informative message. Default: TRUE
```

Value

Data frame.

Examples

```
## to estimate the relationship between an unmeasured confounder and outcome
## needed to tip analysis
tip_coef(1.2, exposure_confounder_effect = -2)
## to estimate the number of unmeasured confounders specified needed to tip
## the analysis
tip_coef(1.2, exposure_confounder_effect = -2, confounder_outcome_effect = -0.05)
## Example with broom
if (requireNamespace("broom", quietly = TRUE) &&
    requireNamespace("dplyr", quietly = TRUE)) {
    lm(wt ~ mpg, data = mtcars) %>%
    broom::tidy(conf.int = TRUE) %>%
```

20

```
dplyr::pull(conf.low) %>%
  tip_coef(confounder_outcome_effect = 2.5)
}
```

tip_coef_with_r2

Tip a regression coefficient using the partial R2 for an unmeasured confounder-exposure relationship and unmeasured confounder- out-come relationship

Description

Choose one of the following, and the other will be estimated:

- confounder_exposure_r2
- confounder_outcome_r2

Usage

```
tip_coef_with_r2(
    effect_observed,
    se,
    df,
    confounder_exposure_r2 = NULL,
    confounder_outcome_r2 = NULL,
    verbose = TRUE,
    alpha = 0.05,
    tip_bound = FALSE,
    ...
)
```

Arguments

effect_observed	
	Numeric. Observed exposure - outcome effect from a regression model. This is the point estimate (beta coefficient)
se	Numeric. Standard error of the effect_observed in the previous parameter.
	Numeric positive value. Residual degrees of freedom for the model used to estimate the observed exposure - outcome effect. This is the total number of observations minus the number of parameters estimated in your model. Often for models estimated with an intercept this is $N - k - 1$ where k is the number of predictors in the model.
confounder_exposure_r2	
	Numeric value between 0 and 1. The assumed partial R2 of the unobserved confounder with the exposure given the measured covariates.
confounder_outc	ome_r2
	Numeric value between 0 and 1. The assumed partial R2 of the unobserved confounder with the outcome given the exposure and the measured covariates.

verbose	Logical. Indicates whether to print informative message. Default: TRUE
alpha	Significance level. Default = 0.05 .
tip_bound	Do you want to tip at the bound? Default = FALSE, will tip at the point estimate
	Optional arguments passed to the sensemakr::adjusted_estimate() func- tion.

Value

A data frame.

Examples

tip_coef_with_r2(0.5, 0.1, 102, 0.5)

```
tip_hr
```

Tip an observed hazard ratio with a normally distributed confounder.

Description

choose one of the following, and the other will be estimated:

- exposure_confounder_effect
- confounder_outcome_effect

Usage

```
tip_hr(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE,
  hr_correction = FALSE
)
tip_hr_with_continuous(
  effect_observed,
  exposure_confounder_effect = NULL,
   confounder_outcome_effect = NULL,
  verbose = TRUE,
  hr_correction = FALSE
)
```

Arguments

effect_observed	
	Numeric positive value. Observed exposure - outcome hazard ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.
exposure_confou	nder_effect
	Numeric. Estimated difference in scaled means between the unmeasured confounder in the exposed population and unexposed population
confounder_outc	ome_effect
	Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome
verbose	Logical. Indicates whether to print informative message. Default: TRUE
hr_correction	Logical. Indicates whether to use a correction factor. The methods used for this function are based on relative risks. For rare outcomes, a hazard ratio approximates a relative risk. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.

Value

Data frame.

Examples

```
## to estimate the relationship between an unmeasured confounder and outcome
## needed to tip analysis
tip_hr(1.2, exposure_confounder_effect = -2)
## to estimate the number of unmeasured confounders specified needed to tip
```

the analysis
tip_hr(1.2, exposure_confounder_effect = -2, confounder_outcome_effect = .99)

tip_hr_with_binary *Tip an observed hazard ratio with a binary confounder.*

Description

Choose two of the following three to specify, and the third will be estimated:

- exposed_confounder_prev
- unexposed_confounder_prev
- confounder_outcome_effect

Alternatively, specify all three and the function will return the number of unmeasured confounders specified needed to tip the analysis.

Usage

```
tip_hr_with_binary(
  effect_observed,
  exposed_confounder_prev = NULL,
  unexposed_confounder_prev = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE,
  hr_correction = FALSE
)
```

Arguments

effect_observed	1
	Numeric positive value. Observed exposure - outcome hazard ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.
exposed_confour	ider_prev
	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population
unexposed_confc	ounder_prev
	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population
confounder_outcome_effect	
	Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome
verbose	Logical. Indicates whether to print informative message. Default: TRUE
hr_correction	Logical. Indicates whether to use a correction factor. The methods used for this function are based on relative risks. For rare outcomes, a hazard ratio approximates a relative risk. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.

Value

Data frame.

Examples

```
tip_hr_with_binary(0.9, 0.9, 0.1)
```

tip_or

Tip an observed odds ratio with a normally distributed confounder.

Description

choose one of the following, and the other will be estimated:

- exposure_confounder_effect
- confounder_outcome_effect

24

tip_or

Usage

```
tip_or(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE,
  or_correction = FALSE
)
tip_or_with_continuous(
  effect_observed,
  exposure_confounder_effect = NULL,
   confounder_outcome_effect = NULL,
   verbose = TRUE,
   or_correction = FALSE
)
```

Arguments

effect_observed Numeric positive value. Observed exposure - outcome odds ratio. This can be the point estimate, lower confidence bound, or upper confidence bound. exposure_confounder_effect Numeric. Estimated difference in scaled means between the unmeasured confounder in the exposed population and unexposed population confounder_outcome_effect Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome verbose Logical. Indicates whether to print informative message. Default: TRUE or_correction Logical. Indicates whether to use a correction factor. The methods used for this function are based on relative risks. For rare outcomes, an odds ratio approximates a relative risk. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.

Value

Data frame.

Examples

```
## to estimate the relationship between an unmeasured confounder and outcome
## needed to tip analysis
tip_or(1.2, exposure_confounder_effect = -2)
## to estimate the number of unmeasured confounders specified needed to tip
## the analysis
tip_or(1.2, exposure_confounder_effect = -2, confounder_outcome_effect = .99)
```

```
## Example with broom
if (requireNamespace("broom", quietly = TRUE) &&
    requireNamespace("dplyr", quietly = TRUE)) {
    glm(am ~ mpg, data = mtcars, family = "binomial") %>%
    broom::tidy(conf.int = TRUE, exponentiate = TRUE) %>%
    dplyr::filter(term == "mpg") %>%
    dplyr::pull(conf.low) %>%
    tip_or(confounder_outcome_effect = 2.5, or_correction = TRUE)
}
```

tip_or_with_binary *Tip an observed odds ratio with a binary confounder.*

Description

Choose two of the following three to specify, and the third will be estimated:

- exposed_confounder_prev
- unexposed_confounder_prev
- confounder_outcome_effect

Alternatively, specify all three and the function will return the number of unmeasured confounders specified needed to tip the analysis.

Usage

```
tip_or_with_binary(
  effect_observed,
  exposed_confounder_prev = NULL,
  unexposed_confounder_prev = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE,
  or_correction = FALSE
)
```

Arguments

effect_observed

Numeric positive value. Observed exposure - outcome odds ratio. This can be the point estimate, lower confidence bound, or upper confidence bound.

```
exposed_confounder_prev
```

Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population

unexposed_confounder_prev

Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population

26

tip_rr

confounder_outcome_effect	
	Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome
verbose	Logical. Indicates whether to print informative message. Default: TRUE
or_correction	Logical. Indicates whether to use a correction factor. The methods used for this function are based on relative risks. For rare outcomes, an odds ratio approximates a relative risk. For common outcomes, a correction factor is needed. If you have a common outcome (>15%), set this to TRUE. Default: FALSE.

Value

Data frame.

Examples

tip_or_with_binary(0.9, 0.9, 0.1)

tip_rr

Tip an observed relative risk with a normally distributed confounder.

Description

choose one of the following, and the other will be estimated:

- exposure_confounder_effect
- confounder_outcome_effect

Usage

```
tip_rr(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE
)
tip_rr_with_continuous(
  effect_observed,
  exposure_confounder_effect = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE
)
```

Arguments

effect_observed	
	Numeric positive value. Observed exposure - outcome relative risk. This can be the point estimate, lower confidence bound, or upper confidence bound.
exposure_confounder_effect	
	Numeric. Estimated difference in scaled means between the unmeasured con- founder in the exposed population and unexposed population
confounder_outcome_effect	
	Numeric positive value. Estimated relationship between the unmeasured con- founder and the outcome
verbose	Logical. Indicates whether to print informative message. Default: TRUE

Value

Data frame.

Examples

```
## to estimate the relationship between an unmeasured confounder and outcome
## needed to tip analysis
tip_rr(1.2, exposure_confounder_effect = -2)
## to estimate the number of unmeasured confounders specified needed to tip
## the analysis
```

```
tip_rr(1.2, exposure_confounder_effect = -2, confounder_outcome_effect = .99)
```

tip_rr_with_binary Tip an observed relative risk with a binary confounder.

Description

Choose two of the following three to specify, and the third will be estimated:

- exposed_confounder_prev
- unexposed_confounder_prev
- confounder_outcome_effect

Alternatively, specify all three and the function will return the number of unmeasured confounders specified needed to tip the analysis.

tip_with_binary

Usage

```
tip_rr_with_binary(
  effect_observed,
  exposed_confounder_prev = NULL,
  unexposed_confounder_prev = NULL,
  confounder_outcome_effect = NULL,
  verbose = TRUE
)
```

Arguments

effect_observ	effect_observed	
	Numeric positive value. Observed exposure - outcome relative risk. This can be the point estimate, lower confidence bound, or upper confidence bound.	
exposed_confounder_prev		
	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population	
unexposed_confounder_prev		
	Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population	
confounder_outcome_effect		
	Numeric positive value. Estimated relationship between the unmeasured con- founder and the outcome	
verbose	Logical. Indicates whether to print informative message. Default: TRUE	

tip_with_binary *Tip a result with a binary confounder.*

Description

Choose two of the following three to specify, and the third will be estimated:

- exposed_confounder_prev
- unexposed_confounder_prev
- confounder_outcome_effect

Alternatively, specify all three and the function will return the number of unmeasured confounders specified needed to tip the analysis.

Usage

```
tip_with_binary(
   effect_observed,
   exposed_confounder_prev = NULL,
   unexposed_confounder_prev = NULL,
   confounder_outcome_effect = NULL,
```

```
verbose = TRUE,
correction_factor = "none"
)
tip_b(
  effect_observed,
  exposed_confounder_prev = NULL,
   unexposed_confounder_prev = NULL,
   confounder_outcome_effect = NULL,
   verbose = TRUE,
   correction_factor = "none"
)
```

Arguments

```
effect_observed
```

Numeric positive value. Observed exposure - outcome effect (assumed to be the exponentiated coefficient, so a relative risk, odds ratio, or hazard ratio). This can be the point estimate, lower confidence bound, or upper confidence bound.

exposed_confounder_prev

Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the exposed population

unexposed_confounder_prev

Numeric between 0 and 1. Estimated prevalence of the unmeasured confounder in the unexposed population

confounder_outcome_effect

Numeric positive value. Estimated relationship between the unmeasured confounder and the outcome

```
verbose Logical. Indicates whether to print informative message. Default: TRUE
```

correction_factor

Character string. Options are "none", "hr", "or". For common outcomes (>15%), the odds ratio or hazard ratio is not a good estimate for the relative risk. In these cases, we can apply a correction factor. If you are supplying a hazard ratio for a common outcome, set this to "hr"; if you are supplying an odds ratio for a common outcome, set this to "or"; if you are supplying a risk ratio or your outcome is rare, set this to "none" (default).

Details

tip_b() is an alias for tip_with_binary().

Examples

```
## to estimate the relationship between an unmeasured confounder and outcome
## needed to tip analysis
tip_with_binary(1.2, exposed_confounder_prev = 0.5, unexposed_confounder_prev = 0)
## to estimate the number of unmeasured confounders specified needed to tip
## the analysis
```

```
30
```

```
tip_with_binary(1.2,
  exposed_confounder_prev = 0.5,
  unexposed_confounder_prev = 0,
  confounder_outcome_effect = 1.1)
## Example with broom
if (requireNamespace("broom", quietly = TRUE) &&
    requireNamespace("dplyr", quietly = TRUE)) {
    glm(am ~ mpg, data = mtcars, family = "binomial") %>%
    broom::tidy(conf.int = TRUE, exponentiate = TRUE) %>%
    dplyr::filter(term == "mpg") %>%
    dplyr::pull(conf.low) %>%
    tip_with_binary(exposed_confounder_prev = 1, confounder_outcome_effect = 1.15)
}
```

Index

* datasets exdata_continuous, 12 exdata_rr, 12 adjust_coef, 2 adjust_coef_with_binary, 3 adjust_coef_with_continuous (adjust_coef), 2 adjust_coef_with_r2,4 adjust_hr, 6 adjust_hr_with_binary,7 adjust_hr_with_continuous (adjust_hr), 6 adjust_or, 8 adjust_or_with_binary,9 adjust_or_with_continuous (adjust_or), 8 adjust_rr, 10 adjust_rr_with_binary, 11 adjust_rr_with_continuous (adjust_rr), 10 e_value, 13 exdata_continuous, 12 exdata_rr, 12 observed_bias_order, 13 observed_bias_tbl, 14

observed_bias_tip, 15
observed_covariate_e_value, 16

```
r_value, 16
```

sensemakr::adjusted_estimate(), 4, 5, 22
sensemakr::adjusted_se(), 4
sensemakr::robustness_value(), 16, 17

tip, 17
tip_b(tip_with_binary), 29
tip_b(), 30
tip_c(tip), 17
tip_coef, 19
tip_coef_with_continuous(tip_coef), 19

tip_coef_with_r2, 21 tip_hr, 22 tip_hr_with_binary, 23 tip_hr_with_continuous (tip_hr), 22 tip_or, 24 tip_or_with_binary, 26 tip_or_with_continuous (tip_or), 24 tip_rr, 27 tip_rr_with_binary, 28 tip_rr_with_continuous (tip_rr), 27 tip_with_binary, 29 tip_with_binary(), 30 tip_with_continuous (tip), 17 tipr, 19