Package 'touchard'

May 31, 2019

Type Package

Title Touchard Model and Regression

Description Tools for analyzing count data with the Touchard model (Matsushita et al., 2018, Comm Stat Th Meth <doi:10.1080/03610926.2018.1444177>). It includes univariate estimation (ML and MM) and regression tools developed by Andrade et al. (submitted).

Version 2.0.1

Date 2019-05-31

Author Bernardo Andrade and Sandro Oliveira

Maintainer Bernardo Andrade <bbandrade@unb.br>

License GPL-2

Depends R (>= 3.2.0)

Imports MASS, nleqslv, numDeriv, plotrix

NeedsCompilation no

Repository CRAN

Date/Publication 2019-05-31 12:40:03 UTC

R topics documented:

ouchard-package	2
Accidents	3
Crabs	4
Ppilepsy	5
gram	5
core.delta	7
ouchard	8
oufit	10
ouplot	12
oureg	13
[17

Index

touchard-package

Description

Analysis of count data with the Touchard model including: d-*, p-*, q-* and r-* functions; inference for univariate analysis (maximum likelihood and method of moment estimation); regression modeling and graphical assessment of goodness of fit (rootogram and touchardness plot).

Details

The DESCRIPTION file:

Package:	touchard
Type:	Package
Title:	Touchard Model and Regression
Description:	Tools for analyzing count data with the Touchard model (Matsushita et al., 2018, Comm Stat Th Meth <doi:10.< td=""></doi:10.<>
Version:	2.0.1
Date:	2019-05-31
Author:	Bernardo Andrade and Sandro Oliveira
Maintainer:	Bernardo Andrade bbandrade@unb.br>
License:	GPL-2
Depends:	R (>= 3.2.0)
Imports:	MASS, nleqsly, numDeriy, plotrix

Index of help topics:

Trafic Accidents Data
Crabs Data
Epilepsy Data
The Touchard Distribution
Tukey's (hanging, standing, suspended)
Rootogram for Assessing a Touchard Model Fit
Score Test for Poisson vs Touchard
Touchard Model and Regression
Touchard Estimation
Touchardness Plot
Touchard Regression

Author(s)

Bernardo Andrade and Sandro Oliveira

Maintainer: Bernardo Andrade <bahheved with the second sec

Accidents

References

Matsushita RY, Pianto D, Andrade BB, Cancado A, Silva S (2018) The Touchard distribution, *Communications in Statistics - Theory and Methods*, <doi:10.1080/03610926.2018.1444177>

Andrade, BB; Matsushita, RY; Oliveira, SB (submitted) Analyzing Count Data with the Touchard Model. *available upon request*.

Accidents

Trafic Accidents Data

Description

Data on daily traffic accidents.

Usage

data("Accidents")

Format

A data frame with 1096 observations on 6 variables.

Year year (2011, 12, 13).

Month integer, 1-12.

WeekDay integer, 1-7.

Season factor (Fall, Spring, Summer, Winter).

Holiday integer (0=no, 1=yes).

Y integer, observed count of accidents.

Source

<https://data.ny.gov> Open Data NY: State of New York

Examples

data(Accidents)
summary(Accidents)

Crabs

Description

Horseshoe crab data in Table 4.3.2 (Agresti, Categ. Data Anal., 3nd edition) by courtesy of Jane Brockmann, Zoology Department, University of Florida.

Usage

data("Crabs")

Format

A data frame with 173 observations on the following 6 variables.

crab crab id

y number of satellites

weight in kg

width carapace width in cm

color has values 1-4 with 1=light

spine spine condition

Source

<http://www.stat.ufl.edu/~aa/cda/data.html>

References

Agresti, A. (2013). Categorical Data Analysis. Wiley, 3d ed.

Brockmann, H. J. (1996), Satellite Male Groups in Horseshoe Crabs, Limulus polyphemus. *Ethology*, 102: 1-21.

Examples

```
data(Crabs)
dim(Crabs)
head(Crabs)
```

Epilepsy

Epilepsy Data

Description

Data on Epileptic Seizures.

Usage

data("Epilepsy")

Format

A data frame with 351 observations on counts of epileptic seizures.

seizures numeric vector of length 351.

Source

see reference below

References

Bhati D, Sastry DVS, Qadri PZM (2015). A New Generalized Poisson-Lindley Distribution: Applications and Properties. *Austrian Journal of Statistics*, 4, 35-51.

Examples

```
data(Epilepsy)
seizures
table(seizures)
```

rgram

Tukey's (hanging, standing, suspended) Rootogram for Assessing a Touchard Model Fit

Description

The Hanging Rootogram is variation of the histogram with the vertical axis showing the square root of the frequencies hanging from (Touchard) fitted values so that the discrepancies are visualized against a straight line (the axis) rather than against a curve.

Usage

Arguments

object	either a toufit or a toureg object.
breaks	numeric. Breaks for the bar intervals.
style	character. Style of rootogram (see below).
scale	character. Scale of vertical axis, raw frequencies or their square roots; style="standing' with scale="raw" results in the usual histogram with the fitted curve superimposed.
plot	logical. Should the plot be displayed?
width	numeric. Widths of the histogram bars.
main	character. Title for the plot.
xlab	character. Label for the x axis.
ylab	character. Label for the y axis.
xlim, ylim, bor	der, fill, col, lwd, pch, lty, axes graphical parameters.
max	the largest count value used when using the rgram with toureg objects. If NULL, it sets to max(1.5 * max(count), 20L).
	further graphical parameters passed to the plotting function.

Details

The rootogram is a visual tool for comparing the empirical distribution and fitted values (here from a Touchard model). The square-root scale de-emphasizes outlying values and right skewness (common for count data). The hanging (from the fitted values) style allows discrepancies to be visualized against a straight line (the axis).

The code has been largely based on more general rootogram functions: rootogram in package vcd and countreg::rootogram available through R-forge.

Value

Returns invisibly a data frame with quantities used in plotting.

Author(s)

Bernardo Andrade and Sandro Oliveira

score.delta

References

Friendly M, Meyer D (2015). Discrete Data Analysis with R. Chapman and Hall.

Kleiber C, Zeileis A (2016). Visualizing Count Data Regressions Using Rootograms. *The American Statistician*, **70**(3), 296–303. doi: 10.1080/00031305.2016.1173590.

Tukey JW (1977). Exploratory Data Analysis. Addison-Wesley, Reading.

See Also

rootogram, touplot

Examples

```
data(Epilepsy)
seiz <- seizures
fm <- toufit( seiz )
rgram(fm)

data(Accidents)
acc <- within(subset(Accidents, subset=Year==2013), {
FriSat <- ifelse(WeekDay > 5, 1, 0)
Spring <- ifelse(Season == "Spring", 1, 0)
})
fmTraff <- toureg( Y ~ FriSat + Spring, data = acc )
rgram(fmTraff)</pre>
```

```
score.delta
```

Score Test for Poisson vs Touchard

Description

Score test for the extra (with respect to the Poisson) parameter in the Touchard model (Null: $\delta = 0$) performed without the need to fit the Touchard model. Analogous likelihood-ratio and Wald tests (which require fitting the full model) are available in the output of toureg.

Usage

```
score.delta(x, freq = NULL, max = 50, data)
```

Arguments

for univariate data: either an object of class table with the observed counts as classifying factors *or* the observed counts (raw data) *or* the unique values of the observed counts in which case the observed frequencies must be given in argument freq; for regression data: an object of class "formula" with the symbolic description of the model to be fitted.

Х

Touchard

freq	unnecessary (and ignored) if x is a table or the raw data or a formula; must be provided if x is the unique values of the observed counts, in the same order.
max	number of Poisson terms used in calculations of necessary moments
data	data frame containing the variables in the model.

Value

A list with elements

stat	the value the chi-squared test statistic.
pval	the p-value for the test (from chi^2(df=1)).

Author(s)

Bernardo Andrade and Sandro Oliveira

References

Andrade, BB; Matsushita, RY; Oliveira, SB (submitted) Analyzing Count Data with the Touchard Model. *available upon request*.

Examples

```
data(Epilepsy)
score.delta(seizures)
data(Crabs)
score.delta( y ~ weight + color, data = Crabs )
```

Touchard

The Touchard Distribution

Description

Density, normalizing constant, distribution function, quantile function and random number generation for the Touchard distribution with Poisson-like parameter equal to lambda and shape/dispersion parameter equal to delta.

Usage

```
dtouch(x, lambda, delta, N=NULL, eps=sqrt(.Machine$double.eps), log = FALSE)
ptouch(x, lambda, delta, N=NULL, eps=sqrt(.Machine$double.eps))
qtouch(p, lambda, delta, N=NULL, eps=sqrt(.Machine$double.eps))
rtouch(n, lambda, delta, N=NULL, eps=sqrt(.Machine$double.eps))
tau(lambda, delta, N=NULL, eps=sqrt(.Machine$double.eps))
```

Touchard

Arguments

x	vector of quantiles
р	vector of probabilities.
n	number of observations.
lambda	Poisson-like (location) parameter which corresponds to the mean of the distribution when $delta = 0$
delta	shape/dispersion parameter which produces unequal dispersion (var x mean) when different from zero and mild zero excess compared to the Poisson distribution
Ν	number of terms in the computation (series) of the normalizing constant. If NULL a recursion formula is used and iterated until the specified relative error is reached.
eps	relative error in the computation (series) of the normalizing constant. Only used if N=NULL. See reference for details.
log	logical; if TRUE, probability p is given as log(p).

Details

The Touchard distribution with parameters λ and δ has density

$$f(x) = \frac{\lambda^x (x+1)^{\delta}}{x! \tau(\lambda, \delta)}$$

for $y = 0, 1, 2, ..., \lambda > 0$ and δ real.

Value

dtouch gives the density, ptouch gives the distribution function, qnorm gives the quantile function, and rtouch generates random deviates.

rtouch uses the inverse transform method. The length of the result is determined by n and is the maximum of the lengths of the numerical arguments for the other functions. The numerical arguments other than n are recycled to the length of the result.

qtouch uses an initial approximation based on the Cornish-Fisher expansion followed by a search in the appropriate direction.

tau gives the value of the normalizing constant in the Touchard density.

Author(s)

Bernardo Andrade and Sandro Oliveira

References

Matsushita RY, Pianto D, Andrade BB, Cancado A, Silva S (2018) The Touchard distribution, *Communications in Statistics - Theory and Methods*, <doi:10.1080/03610926.2018.1444177>

See Also

rgram, touplot

Examples

```
for(N in c(2, 5, 10, 20, 50)) print( tau(lambda=7, delta=-1, N) )
tau(lambda=7, delta=-1)
dtouch(0:10, lambda=7, delta=-1)
ptouch(0:10, lambda=7, delta=-1)
qtouch(c(.1,.25,.5,.75,.9), lambda=7, delta=-1)
rtouch(10, lambda=7, delta=-1)
```

toufit Tou	chard Estimation
------------	------------------

Description

Maximum-likelihood and method-of-moments estimation of the Touchard model.

Usage

Arguments

x	either an object of class table with the observed counts as classifying factors <i>or</i> the observed counts (raw data) <i>or</i> the unique values of the observed counts in which case the observed frequencies must be given in argument freq; see example below for the three formats.
freq	unnecessary (and ignored) if x is a table or the raw data; must be provided if x is the unique values of the observed counts, in the same order.
start	starting values to be used by optimization/nonlinear solving algorithms. If miss- ing, the default value is explained in the reference below.
method	one of 'ml' (maximum likelihood), 'mm' (method of moments based on the usual first and second moment conditions) or 'gmm' (generalized method of moments based on the first two moments and an extra condition on the first moment of $log(Y+1)$.
rc	TRUE for right-censored data. Not implemented for methods 'mm' and 'gmm'.
trunc.at.zero	TRUE for model truncated at zero. Not implemented for methods 'mm' and 'gmm'.

Details

For method 'ml' the Touchard likelihood is numerically maximized via optim() with 'method=L-BFGS-B'. For methods 'mm' and 'gmm', the system of moment conditions is solved by calling nleqslv and numDeriv.

10

toufit

Value

A list with the following:

fit	a list with point estimates, standard errors and variance matrix of estimates
aic	Akaike's information criterion, -2*log-likelihood + 2*p
bic	Schwarz's Bayesian criterion, -2*log-likelihood + log(n)*p
test	a data frame with likelihood ratio and Wald test results for the Null: delta = 0 (Poisson)
method	estimation method used ('ml', 'mm' or 'gmm')
data	a list with elements x and freq

Author(s)

Bernardo Andrade and Sandro Oliveira

References

Matsushita RY, Pianto D, Andrade BB, Cancado A, Silva S (2018) The Touchard distribution, *Communications in Statistics - Theory and Methods*, <doi:10.1080/03610926.2018.1444177>

Andrade, BB; Matsushita, RY; Oliveira, SB (submitted) Analyzing Count Data with the Touchard Model. *available upon request*.

See Also

optim, rgram, Touchard, touplot

Examples

```
data(Epilepsy)
# 'seizures' is vector of raw data (351 counts)
toufit( x = seizures, method = 'ml' )
toufit( x = seizures, method = 'mm' )
toufit( x = seizures, method = 'gmm' )
# suppose data were recorded as table object
TAB <- table(seizures)
TAB
toufit(TAB) # same as above (method = 'ml')
# suppose data were recorded as data.frame
DF <- data.frame( y = as.numeric(names(TAB)), fr = as.numeric(TAB) )
DF
toufit(x = DF$y, freq = DF$fr) # same as above (method = 'ml')</pre>
```

touplot

Description

Touchardness Plot: diagnostic distribution plot for the Touchard model.

Usage

Arguments

Х	either a vector of counts or a 1-way table of frequencies of counts.
freq	unnecessary (and ignored) if x is a table or the raw data; must be provided if x is the unique values of the observed counts, in the same order.
plot	logical. Should the plot be displayed?
conf.level	numeric in $(0,1)$. Confidence level for confidence intervals.
main	character. Title for the plot.
xlab	character. Label for the x axis.
ylab	character. Label for the y axis.
	other parameters to be passed through to plotting functions.

Details

Plots the number of occurrences (counts) against the count metameter of the Touchard distribution. Circles are the observed count metameters and the filled points show the confidence interval (dashed lines) centers. Estimate of λ based on the fitted line is shown on top margin along with the MLE (toufit). If the Touchard model fits the data well, the plot should show a straight line and the two estimates of λ should be close.

Value

Returns invisibly a data frame containing the counts (y), frequencies (freq), count metameter (metameter), the CI center (CIcenter) and the CI margin (CImargin).

Author(s)

Bernardo Andrade and Sandro Oliveira

References

D. C. Hoaglin, F. Mosteller & J. W. Tukey (eds.), *Exploring Data Tables, Trends and Shapes*, chapter 9. John Wiley & Sons, New York.

M. Friendly & D. Meyer (2015), Discrete Data Analysis with R. Chapman and Hall.

toureg

See Also

rgram

Examples

```
data(Epilepsy)
touplot(seizures)
touplot(seizures, plot=FALSE)
```

toureg

Touchard Regression

Description

Touchard Regression via either maximum likelihood or quasi-likelihood.

Usage

```
toureg(formula, data, x = FALSE, y = FALSE, start.beta, start.delta,
    parscale = rep.int(1, length(start.beta)+1), maxit, abstol = -Inf,
    reltol = 1e-6, etol = 1e-6, gtol = 1e-4,
    N=100, eps=1e-6, dm = 10, regress = c("mu", "lambda"),
    method = c("BFGS", "CG", "Nelder-Mead", "glm", "qp1", "qp2"), ...)
```

Arguments

formula	an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.	
data	an optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which toureg is called.	
start.beta, sta	rt.delta	
	starting values for the parameters in the linear predictor. If missing, the default values explained in the reference below are used.	
parscale, maxit, abstol, reltol		
	arguments passed to control in optim. reltol is also used as a relative tol- erance for termination of iteratively weighted least squares (method="glm") if the relative absolute change in the function ($\mathbf{f} = \text{loglikelihood}$) falls below reltol*(reltol + \mathbf{f}).	
gtol	iteratively weighted least squares (method="glm") stops if largest component (in magnitude) of gradient is less than this value.	
etol	iteratively weighted least squares (method="glm") stops when the last relative step length is sufficiently small, i.e. below $etol*(etol + \mathbf{b} _2)$, where b is current state of the minimizer.	

dm	non-zero scalar: with method set to "glm" or "qp2" the estimated delta is obtained by solving some nonlinear equation with root-finding started in the interval start.delta +/- dm.
regress	whether regression is based on log("mu" or log("lambda".
method	optimization method for maximization of loglikelihood: (i) Broyden-Fletcher-Goldfarb-Shanno, Conjugate Gradient or Nelder-Mead as implemented in optim; (ii) iteratively weighted least squares (given delta) combined with optimization over delta (given the regression coefficients) as in GLM-type models;
	or
	(iii) quasi-Poisson-Touchard (QPT) method with two variants: "qp1" assumes variance = mu-delta and "qp2" assumes the exact Touchard variance (see also dm).
N, eps	arguments passed to tau.
х, у	logical values indicating whether the response vector and model matrix used in the fitting process should be returned as components of the returned value.
	not used.

Details

Touchard regression with either $log(\mu)$ or $log(\lambda)$ modeled linearly on the predictors as described in Andrade et al (submitted). Estimation can be performed by maximum likelihood via optim with three available methods ('BFGS', 'CG', 'Nelder-Mead') and analytical gradients. Default starting values for the coefficients are obtained from Poisson GLM. Default starting value for δ is obtained by regressing the metameter on the sufficient statistics Y and log(Y+1). Standard errors are obtained from the diagonal of inverse of observed Fisher information as reported at the final iteration.

Estimation may also be performed by combination of iteratively weighted least squares and maximization over δ given current estimate of β . Details are given Andrade et al (submitted).

Finally, estimation can be performed by Poisson Quasi-MLE (or Poisson pseudo-MLE): the estimator for is β is the same as in the Poisson model (which can be thought of as simply a motivation to the first-order condition defining the estimator); the variance is specified independently without restriction of equidispersion. Two specifications are available: (i) a linear specification variance = **mu-delta** which corresponds to an approximation to the Touchard variance and (ii) the exact Touchard variance, both allowing for under- and over-dispersion. Details are given Andrade et al (submitted).

Extractor functions for fitted model objects (of class "toureg"): print, summary, plot, residuals, predict, cooks.distance, hatvalues and gleverage.

toureg returns an object of class "toureg", a list with components as described below.

Value

call	the original function call.
coefficients	named vector of estimated regression coefficients.
convergence	integer code from otim indicating either successful completion or faulty termi- nation.

toureg

data	the data provided in the function call.	
delta	named vector (of length one) of estimated delta parameter.	
df	residual degrees of freedom in the fitted model.	
fitted.values	a vector of fitted values of lambda.	
formula	the formula provided in the function call.	
lambda	vector of fitted values of lambda.	
loglik	log-likelihood of the fitted model or pseudo-log-likelihood in case os method set to "glm", "qp1" or "qp2".	
method	method used.	
mu	vector of fitted means.	
residuals	vector of raw residuals (y - mu).	
se	standard errors of estimated parameters.	
start.beta, start.delta		
	the starting values for the parameters passed to the optimizations routines.	
W	weights in the (projection) hat matrix analogous to GLMs.	
terms	the 'terms' object used.	
var	vector of fitted variances.	
vcov	covariance matrix of estimates.	
x	if requested, the model matrix.	
У	if requested, the response vector.	

Author(s)

Bernardo Andrade and Sandro Oliveira

References

Andrade, BB; Matsushita, RY; Oliveira, SB (submitted) Analyzing Count Data with the Touchard Model in R. *available upon request*.

See Also

glm, formula

Examples

```
### Horseshoe crab data used by several textbook sources
data(Crabs)
### Model Fitting (with different methods) and Plotting
summary( fm <- toureg(y ~ weight + color, data=Crabs) )
# same as
# summary( fm <- toureg(y ~ weight + color, data=Crabs, regress='lambda', method='BFGS') )</pre>
```

```
# other methods based on log(mu):
# summary( fm2 <- toureg(y ~ weight + color, data=Crabs, regress='mu', method='glm') )
# summary( fm3 <- toureg(y ~ weight + color, data=Crabs, regress='mu', method='qp1') )
plot(fm)
plot(fm, which = 1)
rgram(fm)
### Diagnostics
plot(hvalues(fm))
plot(gleverage(fm))
plot(gleverage(fm))
plot(cooks.dist(fm))
sum(residuals(fm, 'response')^2)
sum(residuals(fm, 'pearson')^2)
sum(residuals(fm, 'deviance')^2)
```

Predicted values for 'newdata'

Predicted mean values (on the scale of the response variable, i.e. \hat{\mu}):
predict(fm, newdata=data.frame(weight=c(5,6), color=c(2,4)), type="response", se.fit=TRUE)
Predicted values of lambda:
predict(fm, newdata=data.frame(weight=c(5,6), color=c(2,4)), type="lambda", se.fit=TRUE)
Predicted values of the linear predictor x'beta, SEs not yet available:
predict(fm, newdata=data.frame(weight=c(5,6), color=c(2,4)), type="linpred")
Predicted variances, i.e. \hat{\sigma}^2, SEs not yet available:
predict(fm, newdata=data.frame(weight=c(5,6), color=c(2,4)), type="linpred")

Index

*Topic datasets Accidents, 3 Crabs, 4 Epilepsy, 5 *Topic rootogram rgram, 5 *Topic touchard touplot, 12Accidents, 3 cooks.dist(toureg), 13 cooks.distance, 14 Crabs, 4 dtouch (Touchard), 8 Epilepsy, 5 formula, 15 gleverage, 14 gleverage (toureg), 13 glm, <u>15</u> hatvalues, 14 hvalues (toureg), 13 optim, *11*, *13*, *14* plot, **14** plot.toureg(toureg), 13 predict, 14 predict (toureg), 13 print, **14** ptouch (Touchard), 8 qtouch (Touchard), 8

residuals, *14* residuals(toureg), 13 rgram, 5, *10*, *11*, *13* rootogram, 6, 7rtouch (Touchard), 8

score.delta,7
seizures(Epilepsy),5
summary,14

tau, *14* tau (Touchard), 8 Touchard, 8, *10*, *11* touchard-package, 2 toufit, 10, *12* touplot, *7*, *10*, *11*, 12 toureg, *7*, 13