Using traj Package to Identify Clusters of Longitudinal Trajectories

Marie-Pierre Sylvestre*\& Dan Vatnik ${ }^{\dagger}$

November 25, 2014

Abstract

The traj package implements the 3 -step procedure proposed by Leffondre et al. (2004) to identify clusters of longitudinal trajectories. The first step calculates 24 summary measures that describes features of the trajectories. The second step performs a factor analysis on these 24 measures to select measures that best describenthe main features of the trajectories. The third step classifies the trajectories into clusters based on the previously selected factors. The traj package also offers a wide variety of plotting function used to visualize the results.

This vignette illustrates the use of the traj package using simulated data. A more detailed description of the methods can be found in Sylvestre et al. (2006) or Leffondre et al. (2004).

1 Data

Data consist in two dataframes. The first dataframe, example.data\$data, contains the values for each individual trajectory. Each row correspond to a trajectory.

```
library(traj)
head(example.data$data)
```

	ID	X1	X2	X3	X4	X5	X6
1	1	5.659	9.340	3.770	17.361	8.824	9.281
2	2	23.593	11.752	7.684	12.830	13.002	9.665
3	3	15.469	8.756	6.493	11.261	10.420	17.405
4	4	7.312	11.688	12.476	8.890	6.522	7.701
5	5	12.844	11.088	7.650	10.269	12.453	11.557
6	6	3.522	15.285	7.860	7.114	17.954	4.168

The second dataframe, example.data\$time, contains the time points at which the corresponding values for each individual trajectory were measured. Both dataframes must be of the same dimension.

ID time. 1 time. 2 time. 3 time. 4 time. 5 time. 6							
1	1	1	2	3	4	5	6
2	2	1	2	3	4	5	6
3	3	1	2	3	4	5	6
4	4	1	2	3	4	5	6
5	5	1	2	3	4	5	6
6	6	1	2	3	4	5	6

[^0]
2 Analysis

The first step in the analysis consists of the computing 24 measures of each trajectory.
The 24 measures are:

1. Range
2. Mean-over-time
3. Standard deviation (SD)
4. Coefficient of variation (CV)
5. Change
6. Mean change per unit time
7. Change relative to the first score
8. Change relative to the mean over time
9. Slope of the linear model
10. R^{2} : Proportion of variance explained by the linear model
11. Maximum of the first differences
12. SD of the first differences
13. SD of the first differences per time unit
14. Mean of the absolute first differences
15. Maximum of the absolute first differences
16. Ratio of the maximum absolute difference to the mean-over-time
17. Ratio of the maximum absolute first difference to the slope
18. Ratio of the SD of the first differences to the slope
19. Mean of the second differences
20. Mean of the absolute second differences
21. Maximum of the absolute second differences
22. Ration of the maximum absolute second difference to the mean-over-time
23. Ratio of the maximum absolute second difference to mean absolute first difference
24. Ratio of the mean absolute second difference to the mean absolute first difference

The 24 measures can be computed using the step1measures function.

```
s1 = step1measures(example.data$data, example.data$time, ID = TRUE)
[1] "Correlation of m5 and m6 : 1"
[1] "Correlation of m12 and m13 : 1"
[1] "Correlation of m17 and m18 : 0.999"
```

head(s1\$measurments)

	ID m1	m2	m3	m4	m5		m6	m7	m8	m9
1	113.590	9.039	4.66151	51.57	3.6225	0.60376	760.	640150.	40076	0.861616
2	215.909	13.088	5.534	42.28 -	-13.9279	-2.32131	$31-0$.	59035-1.	06421	-1.735574
3	310.912	11.634	4.107	35.30	1.9365	0.32275	750.1	12519 0.	16645	0.555447
4	45.955	9.098	2.447	26.90	0.3893	0.06488	880.	0.05324	04279	-0.489632
5	$5 \quad 5.194$	10.977	1.875	17.08	-1.2863	-0.21438	$38-0$.	10015-0.	11718	0.008112
6	614.432	9.317	5.955	63.91	0.6457	0.10761	610.	333	6930	0.299663
	m10	m11	m12	m13	3 m 14	m15	m16	m17	m18	8 m19
1	$1.196 \mathrm{e}-01$	13.590	8.656	8.656	66.367	13.5901	1.5035	15.773	10.047	$7-0.806$
2	3.442e-01	5.146	6.237	6.237	74.913	11.8410	0.9047	-6.822	-3.594	42.126
3	6.402e-02	6.985	5.515	5.515	54.314	6.9850	0.6004	12.576	9.929	9 3.425
4	$1.401 \mathrm{e}-01$	4.376	3.146	3.146	62.460	4.3760	0.4809	-8.936	-6.426	6-0.799
5	6.549e-05	2.619	2.598	2.598	82.179	3.4380	0.3132	423.805	320.306	$6 \quad 0.215$
6	$8.864 \mathrm{e}-03$	11.763	11.197	11.197	78.912	13.7861	1.4797	46.006	37.367	7-6.387
	m20	m21	m22 m	m 23 m	m24					
1	14.88322	. 1272.4	44793.4	4752.3	338					
2	$6.367 \quad 9$. 2140.70	. 70401.8	8761.2	296					
3	6.2297	. 8260.67	. 67271.81	. 8141.4	444					
4	3.182	. 3740.4	. 48081.7	7781.2	294					
5	2.8136	. 0570.5	55182.7	7801.2	291					
	15.52024	. 6262.6	64312.7	7631.7	741					

Each row in the dataframe returned by step1measures corresponds to the trajectory on the same row in the input data (example.data\$data). For each trajectory, the 24 measures have been calculated and correspond to columns m 1 to m 24 .
In the second step of the analysis, a factor analysis is performed to select a subset of measures that describes the main features of the trajectories. The function step2factors is used to perform the factor analysis.

```
s2 = step2factors(s1)
```

[1] " m 6 is removed because it is perfectly correlated with m5"
[2] "m13 is removed because it is perfectly correlated with m12"
[1] "Computing reduced correlation e-values..."
head(s2\$factors)

	ID	m 4	m 5	m 21	m 24
1	1	51.57	3.6225	22.127	2.338
2	2	42.28	-13.9279	9.214	1.296
3	3	35.30	1.9365	7.826	1.444
4	4	26.90	0.3893	4.374	1.294
5	5	17.08	-1.2863	6.057	1.291
6	6	63.91	0.6457	24.626	1.741

In this example, the step2factors has identified measures $4,5,21$ and 24 as the main factors of this set of trajectories. Measures 6,13 and 18 were not considered because they were too correlated with other measures (measures with a correlation higher than 0.95 are omitted from the factor analysis).
Once this step is done, the third step of the procedure consists in clustering the trajectories based on the measures identified in the factor analysis. This step is implemented in the step3clusters function. Two options are available to select the number of clusters. First, the user can a priori decide on the number of clusters, such as in the following example in which the number of clusters is set to 4 .

```
s3 = step3clusters(s2, nclusters = 4)
```

Alternatively, the number of clusters can be left blank in which case the step3clusters function will rely on the NbCl ust function from the NbCl ust package to determine the optimal number of clusters based on one of the criteria available in NbClust. Please see NbClust documentation for more details.

The function step3clusters assigns each trajectory to one and only one cluster and returns a dataframe that identifies cluster membership.

```
head(s3$clusters)
    ID cluster
1 1 2
2 2 2
3 3 2
4 4 2
5 5 2
6 2
s3$clust.distr
```

$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
25554010

The traj object returned by the function step3clusters can be plotted by an array of plotting functions, as described in the next section.

3 Plotting the traj object

The traj object created by step3clusters can be plotted by an array of plotting functions.

Cluster plots of data vs. time of 10 samples

Cluster 2

Cluster 4

This function selects 10 random trajectories from each cluster and plots them using randomly selected colours. The user can specify the number of trajectories to plot, the colours or any other generic plotting parameter. The user can request that trajectories from only one cluster be plotted.

Mean for Every Cluster

The plotMeanTraj function plots the mean trajectory of every cluster. The user can request that trajectories from only one cluster be plotted.

```
plotMedTraj(s3)
```

Median, 10\% and 90\% for Every Cluster

The plotMedTraj function plots the median trajectory of every cluster with 10th and 90 th percentiles. The user can request that trajectories from only one cluster be plotted.

Boxplots for Every Cluster

The plotBoxplotTraj function will plot the box-plot distribution of every time point in each cluster. The user can request that trajectories from only one cluster be plotted.

Mean Trajectory of all Clusters

The plotCombTraj function will plot the mean or median of all the clusters on one single graph. Different colours can be selected as well as different line styles.

References

(a) Sylvestre MP; et al. (2006). Classification of patterns of delirium severity scores over time in an elderly population. International Psychogeriatrics; 18(4); 667-680. doi:10.1017/S1041610206003334.
(b) Leffondree; K. et al. (2004). Statistical measures were proposed for identifying longitudinal patterns of change in quantitative health indicators. Journal of Clinical Epidemiology; 57; 10491062. doi : 10.1016/j.jclinepi.2004.02.012.

[^0]: * Department Social and Preventive Medicine, Universit? de Montr?al, CHUM Research Centre
 ${ }^{\dagger}$ Statistical Programming, CHUM Research Centre

