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Abstract

Owing to their generality, transformation models can be used to set-up and compute
many interesting regression models for discrete and continuous responses. This document
focuses on the analysis of clustered observations. Marginal predictive distributions are
defined by transformation models and their joint normal distribution depends on a struc-
tured covariance matrix. Applications with skewed, bounded, and survival continuous
outcomes as well as binary and ordered categorical responses are presented. Data is anal-
ysed by a proof-of-concept implementation of parametric linear transformation models for
clustered observations available in the tram add-on package to the R system for statistical
computing.

Keywords: conditional mixed models, marginal models, marginal predictive distributions, sur-
vival analysis, categorical data analysis.

1. Introduction

The purpose of this document is to compare marginally interpretable linear transformation
models for clustered observations (Barbanti and Hothorn 2022) to conventional conditional
formulations of mixed-effects models where such an overlap exists. In addition, novel transfor-
mation models going beyond the capabilities of convential mixed-effects models are estimated
and interpreted. A proof-of-concept implementation available in package tram (Hothorn and
Barbanti 2022) is applied. The results presented in this document can be reproduced from
the mtram demo

R> install.packages("tram")

R> demo("mtram", package = "tram")

2. Normal and Non-normal Mixed-effects Models

First we consider mixed-effects models for reaction times in the sleep deprivation study (Be-
lenky et al. 2003). The average reaction times to a specific task over several days of sleep

Please cite this document as: Luisa Barbanti and Torsten Hothorn (2022) Some Applications of Marginally
Interpretable Linear Transformation Models for Clustered Observations. R package vignette version 0.7-1, URL
https://CRAN.R-project.org/package=tram.
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Figure 1: Sleep deprivation: Average reaction times to a specific task over several days of
sleep deprivation for 18 subjects from Belenky et al. (2003).

deprivation are given for i = 1, . . . , N = 18 subjects in Figure 1. The data are often used to
illustrate conditional normal linear mixed-effects models with correlated random intercepts
and slopes.

The classical normal linear random-intercept/random-slope model, treating the study partic-
ipants as independent observations, is fitted by maximum likelihood to the data using the
lmer() function from the lme4 add-on package (Bates et al. 2015):

R> sleep_lmer <- lmer(Reaction ~ Days + (Days | Subject),

+ data = sleepstudy, REML = FALSE)

The corresponding conditional model for subject i reads

P(Reaction ≤ y | day, i) = Φ

(

y − α− βday− αi − βiday

σ

)

, (αi, βi) ∼ N2(0,G(γ))

with σ−2G = Λ(γ)Λ(γ)⊤ and

Λ(γ) =

(

γ1 0
γ2 γ3

)

, γ = (γ1, γ2, γ3)
⊤.

The same model, however using the alternative parameterisation and an independent (of lme4,
only the update() method for Cholesky factors is reused) gradient-based maximisation of the
log-likelihood, is estimated in a two-step approach as

R> library("tram")
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R> sleep_LM <- Lm(Reaction ~ Days, data = sleepstudy)

R> sleep_LMmer <- mtram(sleep_LM, ~ (Days | Subject), data = sleepstudy)

The first call to Lm() computes the equivalent of a normal linear regression model parame-
terised as a linear transformation model ignoring the longitudinal nature of the observations.
The purpose if to set-up the necessary model infrastructure (model matrices, inverse link func-
tions, etc.) and to compute reasonable starting values for the fixed effects. The second call
to mtram() specifies the random effects structure (here a correlated pair of random intercept
for subject and random slope for days) and optimises the likelihood for all model parameters
ϑ1, α̃, β̃, and γ in the model (here also looking at the conditional model for subject i)

P(Reaction ≤ y | day, i) = Φ
(

ϑ1y + α̃− β̃day− α̃i − β̃iday
)

, (α̃i, β̃i) ∼ N2(0,Λ(γ)Λ(γ))

that is, all fixed and random effect parameters are divided by the residual standard deviation
σ (this is the reparameterisation applied by Lm()). Of course, the parameter ϑ1, the inverse
residual standard deviation, is ensured to be positive via an additional constraint in the
optimiser maximising the log-likelihood.

The log-likelihoods of the two models fitted by lmer() and mtram() are very close

R> logLik(sleep_lmer)

'log Lik.' -875.9697 (df=6)

R> logLik(sleep_LMmer)

'log Lik.' -875.9697 (df=6)

Looking at the model coefficients, the two procedures lead to almost identical inverse residual
standard deviations

R> (sdinv <- 1 / summary(sleep_lmer)$sigma)

[1] 0.03907485

R> coef(sleep_LMmer)["Reaction"]

Reaction

0.03907741

and fixed effects (the slope can be interpreted as inverse coefficient of variation)

R> fixef(sleep_lmer) * c(-1, 1) * sdinv

(Intercept) Days

-9.8236175 0.4090077

R> coef(sleep_LMmer)[c("(Intercept)", "Days")]
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(Intercept) Days

-9.8243917 0.4089265

The random-effect parameters γ are also reasonably close

R> sleep_lmer@theta

[1] 0.92919061 0.01816575 0.22264321

R> coef(sleep_LMmer)[-(1:3)]

gamma1 gamma2 gamma3

0.92901066 0.01843056 0.22280431

Consequently, the variance-covariance and correlation matrices

R> sleep_LMmer$G * (1 / sdinv)^2

2 x 2 sparse Matrix of class "dsCMatrix"

[1,] 565.2580 11.21410

[2,] 11.2141 32.73513

R> cov2cor(sleep_LMmer$G * (1 / sdinv)^2)

2 x 2 sparse Matrix of class "dsCMatrix"

[1,] 1.00000000 0.08243925

[2,] 0.08243925 1.00000000

R> unclass(VarCorr(sleep_lmer))$Subject

(Intercept) Days

(Intercept) 565.47697 11.05512

Days 11.05512 32.68179

attr(,"stddev")

(Intercept) Days

23.779760 5.716799

attr(,"correlation")

(Intercept) Days

(Intercept) 1.00000000 0.08132109

Days 0.08132109 1.00000000

are practically equivalent. This result indicates the correctness of the alternative implementa-
tion of normal linear mixed-effects models in the transformation model framework: mtram()
reuses some infrastructure from lme4 and Matrix, most importantly fast update methods for
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Cholesky factors, but the likelihood and corresponding optimisation relies on an independent
implementation. So why are we doing this? Because mtram() is able to deal with models or
likelihoods not available in lme4, for example the likelihood for interval-censored observations.

Let’s assume that the timing of the reaction times was less accurate than suggested by the
numerical representation of the results. The following code

R> library("survival")

R> sleepstudy$Reaction_I <- with(sleepstudy, Surv(Reaction - 20, Reaction + 20,

+ type = "interval2"))

R> sleepstudy$Reaction_I[1:5]

[1] [229.5600, 269.5600] [238.7047, 278.7047] [230.8006, 270.8006]

[4] [301.4398, 341.4398] [336.8519, 376.8519]

converts the outcome to interval-censored values, where each interval has length 40. The
above mixed model can now be estimated by maximising the likelihood corresponding to
interval-censored observations:

R> sleep_LM_I <- Lm(Reaction_I ~ Days, data = sleepstudy)

R> sleep_LMmer_I <- mtram(sleep_LM_I, ~ (Days | Subject), data = sleepstudy)

Of course, the log-likelihood changes (because this is a log-probability and not a log-density
of a continuous distribution) but the parameter estimates are reasonably close

R> logLik(sleep_LMmer_I)

'log Lik.' -214.9675 (df=6)

R> coef(sleep_LMmer_I)

(Intercept) Reaction_I Days gamma1 gamma2 gamma3

-9.78770607 0.03900116 0.41633415 0.83398952 0.07584130 0.19038611

R> coef(sleep_LMmer)

(Intercept) Reaction Days gamma1 gamma2 gamma3

-9.82439168 0.03907741 0.40892652 0.92901066 0.01843056 0.22280431

The next question is if the normal assumption for reaction times is appropriate. In the
transformation world, this assumption is simple to assess because we can easily (theoretically
and in-silico) switch to the non-normal linear mixed-effects transformation model

P(Reaction ≤ y | day, i) = Φ
(

h(y)− β̃day− α̃i − β̃iday
)

, (α̃i, β̃i) ∼ N2(0,Λ(γ)Λ(γ))

where h(y) = a(y)⊤ϑ represents a monotone non-decreasing transformation function. The
function implementing such a more flexible model in named in honor of the first paper on the
analysis of transformed responses by Box and Cox (1964) but it does not simply apply what
is known as a Box-Cox transformation. Bernstein polynomials h(y) = a(y)⊤ϑ under suitable
constraints (Hothorn et al. 2018) are applied instead by
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Figure 2: Sleep deprivation: Data-driven transformation ĥ of average reaction times to sleep
deprivation. The non-linearity induces a non-normal marginal distribution function of reaction
times.

R> sleep_BC <- BoxCox(Reaction ~ Days, data = sleepstudy)

R> sleep_BCmer <- mtram(sleep_BC, ~ (Days | Subject), data = sleepstudy,

+ Hessian = TRUE)

R> logLik(sleep_BCmer)

'log Lik.' -859.5455 (df=11)

The increase in the log-likelihood compared to the normal model is not a big surprise. Plot-
ting the transformation function h(y) = a(y)⊤ϑ as a function of reaction time can help to
assess deviations from normality because the latter assumption implies a linear transforma-
tion function. Figure 2 clearly indicates that models allowing a certain skewness of reaction
times will provide a better fit to the data. This might also not come as a big surprise to
experienced data analysts.

Such probit-type mixed-effects models have been studied before, mostly by merging a Box-
Cox power transformation h with a grid-search over REML estimates (Gurka et al. 2006),
a conditional likelihood (Hutmacher et al. 2011), or a grid-search maximising the profile
likelihood (Maruo et al. 2017). Recently, Tang et al. (2018) and Wu and Wang (2019)
proposed a monotone spline parameterisation of h in a Bayesian context. The model presented
here was estimated by simultaneously maximising the log-likelihood (Barbanti and Hothorn
2022) with respect to the parameters ϑ, β, and γ. For a linear Bernstein polynomial of order
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Figure 3: Sleep deprivation: Marginal distribution of reaction times, separately for each
day of study participation. The grey step-function corresponds to the empirical cumulative
distribution function, the blue line to the marginal cumulative distribution of a normal linear
mixed-effects model, and the orange line to a non-normal linear mixed-effects transformation
model.

one, the models obtained with this approach and classical maximum likelihood estimation in
normal linear mixed-effects models are equivalent (up to reparameterisation of β).

However, what does this finding mean in terms of a direct comparison of the model and the
data? Looking at the marginal cumulative distribution functions of average reaction time
conditional on days of sleep deprivation in Figure 3 one finds that the non-normal marginal
transformation models provided a better fit to the marginal empirical cumulative distribution
functions than the normal marginal models. Especially for short reaction times in the first
week of sleep deprivation, the orange marginal cumulative distribution is much closer to the
empirical cumulative distribution function representing the marginal distribution of reaction
times at each single day of study participation.

It should be noted that the small positive correlation between random intercept and random
slope observed in the normal linear mixed-effects model turned into a negative correlation in
this non-normal model

R> cov2cor(sleep_BCmer$G)

2 x 2 sparse Matrix of class "dsCMatrix"

[1,] 1.0000000 -0.1946629

[2,] -0.1946629 1.0000000
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What is the uncertainty associated with this parameter? The correlation is a non-linear func-
tion of γ and therefore the direct computation of confidence intervals questionable. However,
we can extract an estimate of the covariance of the estimated model parameters from the
model and, relying on the asymptotic normality of the maximum likelihood estimators, we
can sample from the asymptotic distribution of the variance of the random intercept α̃, the
random slope β̃, and their correlation

R> library("mvtnorm")

R> VC <- solve(sleep_BCmer$Hessian)

R> idx <- (nrow(VC) - 2):nrow(VC)

R> Rcoef <- rmvnorm(1000, mean = coef(sleep_BCmer), sigma = VC)[,idx]

R> ret <- apply(Rcoef, 1, function(gamma) {

+ L <- matrix(c(gamma[1:2], 0, gamma[3]), nrow = 2)

+ V <- tcrossprod(L)

+ c(diag(V), cov2cor(V)[1,2])

+ })

The 95% confidence intervals

R> ### variance random intercept

R> quantile(ret[1,], c(.025, .5, .975))

2.5% 50% 97.5%

0.9127821 2.5713595 5.2493469

R> ### variance random slope

R> quantile(ret[2,], c(.025, .5, .975))

2.5% 50% 97.5%

0.01890987 0.05348231 0.10594879

R> ### correlation random intercept / random slope

R> quantile(ret[3,], c(.025, .5, .975))

2.5% 50% 97.5%

-0.6193527 -0.1883314 0.4689778

indicate rather strong unobserved heterogeneity affecting the intercept and less pronouned
variability in the slope. There is only weak information about the correlation of the two
random effects contained in the data.

The downside of this approach is that, although the model is nicely interpretable on the scale
of marginal or conditional distribution functions, the direct interpretation of the fixed effect β̃
is not very straightforward because it corresponds to the conditional mean after transforming
the outcome. This interpretability issue can be addressed by exchanging the probit link to a
logit link in Section 4.
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Figure 4: Toe nail data: Conditional density plot of two outcome classes (none or mild
vs. moderate or severe) under two treatments.

3. Binary Probit Mixed-effects Models

Here we compare different implementations of binary probit mixed models for the notoriously
difficult toe nail data (Backer et al. 1998). The outcome was categorised to two levels (this
being probably the root of all troubles, as quasi-separation issues have been reported by
Sauter and Held (2016)). A conditional density plot (Figure 4) suggests an improvement in
both treatment groups over time, however with a more rapid advance in patients treated with
terbinafine.

We were interested in binary probit models featuring fixed main and interaction effects β1, β2,
and β3 of treatment (itraconazole vs. terbinafine) and time. Subject-specific random intercept
models and models featuring correlated random intercepts and slopes were estimated by the
glmer function from package lme4 (Bates et al. 2015), by the glmm function from package
glmmsr (Ogden 2015), and by direct maximisation of the exact discrete log-likelihood given
in Appendix B of Barbanti and Hothorn (2022).

The random intercept probit model fitted by Laplace and Adaptive Gauss-Hermite Quadra-
ture (AGQ) approximations to the likelihood give quite different results:

R> ### Laplace

R> toenail_glmer_RI_1 <-

+ glmer(outcome ~ treatment * time + (1 | patientID),

+ data = toenail, family = binomial(link = "probit"),

+ nAGQ = 1)

R> summary(toenail_glmer_RI_1)

Generalized linear mixed model fit by maximum likelihood (Laplace
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Approximation) [glmerMod]

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 | patientID)

Data: toenail

AIC BIC logLik deviance df.resid

1279.0 1306.8 -634.5 1269.0 1898

Scaled residuals:

Min 1Q Median 3Q Max

-3.507 -0.017 -0.004 0.000 54.046

Random effects:

Groups Name Variance Std.Dev.

patientID (Intercept) 20.68 4.548

Number of obs: 1903, groups: patientID, 289

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.39650 0.22091 -15.375 <2e-16 ***

treatmentterbinafine -0.01532 0.25359 -0.060 0.9518

time -0.21749 0.02256 -9.639 <2e-16 ***

treatmentterbinafine:time -0.07155 0.03425 -2.089 0.0367 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) trtmnt time

trtmnttrbnf -0.593

time -0.009 0.102

trtmnttrbn: 0.093 -0.143 -0.629

R> toenail_glmer_RI_1@theta

[1] 4.547891

R> ### Adaptive Gaussian Quadrature

R> toenail_glmer_RI_2 <-

+ glmer(outcome ~ treatment * time + (1 | patientID),

+ data = toenail, family = binomial(link = "probit"),

+ nAGQ = 20)

R> summary(toenail_glmer_RI_2)

Generalized linear mixed model fit by maximum likelihood (Adaptive

Gauss-Hermite Quadrature, nAGQ = 20) [glmerMod]

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 | patientID)
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Data: toenail

AIC BIC logLik deviance df.resid

1277.8 1305.6 -633.9 1267.8 1898

Scaled residuals:

Min 1Q Median 3Q Max

-2.847 -0.189 -0.078 -0.001 33.997

Random effects:

Groups Name Variance Std.Dev.

patientID (Intercept) 4.485 2.118

Number of obs: 1903, groups: patientID, 289

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.93061 0.23176 -4.015 5.93e-05 ***

treatmentterbinafine -0.07609 0.30921 -0.246 0.8056

time -0.19074 0.02059 -9.263 < 2e-16 ***

treatmentterbinafine:time -0.06419 0.03099 -2.071 0.0383 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) trtmnt time

trtmnttrbnf -0.655

time -0.186 0.212

trtmnttrbn: 0.193 -0.287 -0.611

R> toenail_glmer_RI_2@theta

[1] 2.117846

The sequential reduction (SR) algorithm (Ogden 2015) gives results close to AGQ

R> library("glmmsr")

R> toenail_glmm_RI_3 <-

+ glmm(outcome ~ treatment * time + (1 | patientID),

+ data = toenail, family = binomial(link = "probit"),

+ method = "SR", control = list(nSL = 3))

Fitting the model................. done.

R> summary(toenail_glmm_RI_3)
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Generalized linear mixed model fit by maximum likelihood [glmmFit]

Likelihood approximation: Sequential reduction at level 3

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 | patientID)

Random effects:

Groups Name Estimate Std.Error

patientID (Intercept) 2.119 0.1954

Number of obs: 1903, groups: patientID, 289;

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.93105 0.23217 4.0102 6.066e-05

treatmentterbinafine -0.07618 0.30945 0.2462 8.055e-01

time -0.19076 0.02060 9.2618 2.010e-20

treatmentterbinafine:time -0.06420 0.03099 2.0713 3.834e-02

Because of the probit link, this binary generalised linear model is equivalent to a linear trans-
formation model and we can thus use the exact likelihood implemented for the latter model
in mtram() for parameter estimation (it is still a bit nasty to set-up a constant transformation
function h(y) = α, we plan to add a more convenient interface later)

R> m <- ctm(as.basis(~ outcome, data = toenail),

+ shifting = ~ treatment * time,

+ data = toenail, todistr = "Normal")

R> toenail_probit <- mlt(m, data = toenail,

+ fixed = c("outcomemoderate or severe" = 0))

R> toenail_mtram_RI <-

+ mtram(toenail_probit, ~ (1 | patientID),

+ data = toenail, Hessian = TRUE)

R> coef(toenail_mtram_RI)

(Intercept) treatmentterbinafine

0.92947317 0.07699415

time treatmentterbinafine:time

0.19056726 0.06355500

gamma1

2.11448400

For this random intercept model, the exact likelihood is defined as a one-dimensional in-
tegral over the unit interval. We use sparse grids (Heiss and Winschel 2008; Ypma 2013)
to approximate this integral. The integrand is defined by products of normal probabilities,
which are approximated as described by Matić et al. (2018). It is important to note that this
likelihood can be computed as accurately as necessary whereas Laplace, AGQ, and SR are
approximations of limited accuracy.

The results are very close to SR and AGQ, indicating a very good quality of the AGQ and
SR approximations. We can also compare the corresponding covariances
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R> vcov(toenail_glmer_RI_2)

4 x 4 Matrix of class "dpoMatrix"

(Intercept) treatmentterbinafine time

(Intercept) 0.0537124461 -0.046953347 -0.0008877032

treatmentterbinafine -0.0469533473 0.095609207 0.0013522295

time -0.0008877032 0.001352229 0.0004239967

treatmentterbinafine:time 0.0013871385 -0.002754664 -0.0003896724

treatmentterbinafine:time

(Intercept) 0.0013871385

treatmentterbinafine -0.0027546636

time -0.0003896724

treatmentterbinafine:time 0.0009603449

R> solve(toenail_mtram_RI$Hessian)[1:4, 1:4]

[,1] [,2] [,3] [,4]

[1,] 0.0535097423 -0.046828787 -0.0008863008 0.0013728404

[2,] -0.0468287869 0.095401755 0.0013454564 -0.0027201727

[3,] -0.0008863008 0.001345456 0.0004223674 -0.0003889295

[4,] 0.0013728404 -0.002720173 -0.0003889295 0.0009479493

Things get a bit less straightforward when a random slope is added to the model. The two
implementations of the Laplace approximation in packages lme4

R> toenail_glmer_RS <-

+ glmer(outcome ~ treatment * time + (1 + time | patientID),

+ data = toenail, family = binomial(link = "probit"))

R> summary(toenail_glmer_RS)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 + time | patientID)

Data: toenail

AIC BIC logLik deviance df.resid

985.8 1024.7 -485.9 971.8 1896

Scaled residuals:

Min 1Q Median 3Q Max

-1.85421 -0.00210 -0.00037 0.00000 2.35828

Random effects:

Groups Name Variance Std.Dev. Corr

patientID (Intercept) 118.433 10.883

time 3.305 1.818 -0.90
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Number of obs: 1903, groups: patientID, 289

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.30120 0.26361 -16.316 <2e-16 ***

treatmentterbinafine 0.05419 0.34652 0.156 0.8757

time -0.06792 0.07847 -0.866 0.3867

treatmentterbinafine:time -0.23478 0.13885 -1.691 0.0909 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) trtmnt time

trtmnttrbnf -0.662

time -0.453 0.342

trtmnttrbn: 0.270 -0.438 -0.335

R> toenail_glmer_RS@theta

[1] 10.8826790 -1.6359589 0.7930842

and glmmsr

R> toenail_glmm_RS_1 <-

+ glmm(outcome ~ treatment * time + (1 + time | patientID),

+ data = toenail, family = binomial(link = "probit"),

+ method = "Laplace")

Fitting the model... done.

R> toenail_glmm_RS_1$estim[1:3]

[1] 4.9992120 -0.5708117 0.4234373

R> toenail_glmm_RS_1$estim[-(1:3)]

[1] -3.492610943 0.009300918 -0.065461048 -0.133223336

do not quite agree. Note that the standard deviation of the random intercept is twice as large
in the glmer() output.

The optimisation of the exact discrete likelihood in the transformation framework gives

R> toenail_mtram_RS <-

+ mtram(toenail_probit, ~ (1 + time | patientID),

+ data = toenail)

R> logLik(toenail_mtram_RS)
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'log Lik.' -545.1164 (df=7)

R> coef(toenail_mtram_RS)

(Intercept) treatmentterbinafine

1.5765323 -0.2666843

time treatmentterbinafine:time

0.5323919 0.1842506

gamma1 gamma2

5.2172371 -0.3723897

gamma3

0.5285640

The variance parameters are not too far off the results reported by glmm(), but the fixed
effects differ quite a bit.

At least in biostatistics, the probit model is less popular than the logit model owing to the
better interpretability of the fixed effects as conditional log-odds ratios in the latter. Using
a logit link, we can use the transformation approach to compute marginally interpretable
time-dependent log-odds ratios from random intercept transformation logit models:

R> m <- ctm(as.basis(~ outcome, data = toenail),

+ shifting = ~ treatment * time,

+ data = toenail, todistr = "Logistic")

R> toenail_logit <- mlt(m, data = toenail,

+ fixed = c("outcomemoderate or severe" = 0))

R> toenail_mtram_logit <- mtram(toenail_logit, ~ (1 | patientID),

+ data = toenail, Hessian = TRUE)

It is important to note that this model is not a logistic mixed-effects model and thus we can’t
expect to obtain identical results from glmer() as it was (partially) the case for the probit
model.

From the model, we can compute marginally interpretable probabilities and odds ratios over
time

R> tmp <- toenail_logit

R> cf <- coef(tmp)

R> cf <- cf[names(cf) != "outcomemoderate or severe"]

R> sdrf <- rev(coef(toenail_mtram_logit))[1]

R> cf <- coef(toenail_mtram_logit)[names(cf)] / sqrt(sdrf^2 + 1)

R> cf <- c(cf[1], "outcomemoderate or severe" = 0, cf[-1])

R> coef(tmp) <- cf

R> time <- 0:180/10

R> treatment <- sort(unique(toenail$treatment))

R> nd <- expand.grid(time = time, treatment = treatment)

R> nd$prob_logit <- predict(tmp, newdata = nd, type = "distribution")[1,]

R> nd$odds <- exp(predict(tmp, newdata = nd, type = "trafo")[1,])
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Figure 5: Toe nail data: Marginal odds ratio over time (from a logistic random intercept
model). The blue line represents the maximum likelihood estimator, the grey lines are samples
from the corresponding distribution.

We can also sample from the distribution of the maximum likelihood estimators to obtain an
idea about the uncertainty (Figure 5).

From the logit and probit models, we can also obtain marginally interpretable probabilities
as (probit)

R> tmp <- toenail_logit

R> cf <- coef(tmp)

R> cf <- cf[names(cf) != "outcomemoderate or severe"]

R> sdrf <- rev(coef(toenail_mtram_logit))[1]

R> cf <- coef(toenail_mtram_logit)[names(cf)]

R> cf <- c(cf[1], "outcomemoderate or severe" = 0, cf[-1])

R> coef(tmp) <- cf

R> pr <- predict(tmp, newdata = nd, type = "distribution")[1,]

R> nd$prob_logit <- pnorm(qnorm(pr) / sdrf)

and (logit)

R> tmp <- toenail_probit

R> cf <- coef(tmp)

R> cf <- cf[names(cf) != "outcomemoderate or severe"]

R> sdrf <- rev(coef(toenail_mtram_RI))[1]

R> cf <- coef(toenail_mtram_RI)[names(cf)] / sqrt(sdrf^2 + 1)

R> cf <- c(cf[1], "outcomemoderate or severe" = 0, cf[-1])

R> coef(tmp) <- cf

R> nd$prob_probit <- predict(tmp, newdata = nd, type = "distribution")[1,]
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Figure 6: Toe nail data: Comparison of marginal probabilities obtained from a probit lin-
ear mixed-effects model and a logistic transformation model with marginal log-odds ratio
treatment effect.

The marginal time-dependent probabilities obtained from all three models are very similar as
shown in Figure 6.

The estimated model parameters, along with the discrete log-likelihood (Equation 7 in Bar-
banti and Hothorn 2022) evaluated at these parameters, are given in Table 1. For the random
intercept models, AGQ, SR, and the discrete log-likelihood give the same results, the Laplace
approximation seemed to fail. It was not possible to apply the AGQ and SR approaches to
the random intercept / random slope model. The two implementations of the Laplace ap-
proximation in packages lme4 and glmmsr differed quite a bit. The log-likelihood obtained by
direct maximisation of (7) resulted in the best fitting model with the least extreme parameter
estimates. Computing times for all procedures were comparable.

4. Proportional Odds Models for Bounded Responses

Manuguerra and Heller (2010) proposed a mixed-effects model for bounded responses whose
fixed effects can be interpreted as log-odds ratios. We fit a transformation model to data from
a randomised controlled trial on chronic neck pain treatment (Chow et al. 2006). The data
are visualised in Figure 7. Subjective neck pain levels were assessed on a visual analog scale,
that is, on a bounded interval.

Manuguerra and Heller (2010) suggested the conditional model

logit(P(pain ≤ y | treatment, time, i)) =

h(y) + βActive + β7 weeks + β12 weeks + β7 weeks, Active + β12 weeks, Active + αi
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RI RI + RS
glmer glmer glmm glmer glmm

L AGQ SR (7) L L (7)

α -3.40 -0.93 -0.93 -0.93 -4.30 -3.49 -1.58
β1 -0.02 -0.08 -0.08 -0.08 0.05 0.01 0.27
β2 -0.22 -0.19 -0.19 -0.19 -0.07 -0.07 -0.53
β3 -0.07 -0.06 -0.06 -0.06 -0.23 -0.13 -0.18
γ1 4.55 2.12 2.12 2.11 10.88 5.00 5.22
γ2 0.00 0.00 0.00 0.00 -1.64 -0.57 -0.37
γ3 0.00 0.00 0.00 0.00 0.79 0.42 0.53

LogLik -671.27 -633.96 -633.96 -633.96 -628.12 -575.56 -545.12
Time (sec) 3.16 1.79 21.14 2.32 10.06 5.31 11.83

Table 1: Toe nail data. Binary probit models featuring fixed intercepts α, treatment effects
β1, time effects β2, and time-treatment interactions β3 are compared. Random intercept (RI)
and random intercept/random slope (RI + RS) models were estimated by the Laplace (L),
Adaptive Gauss-Hermite Quadrature (AGQ), an Sequential Reduction (SR) approximations
to the likelihood (implemented in packages lme4 and glmmsr). In addition, the exact discrete
log-likelihood (7) was used for model fitting and evaluation (the in-sample log-likelihood (7)
for all models and timings of all procedures are given in the last two lines).

with random intercepts α̃i such that the odds at baseline, for example, are given by

P(pain ≤ y | Active, baseline, i)

P(pain > y | Active, baseline, i)
= exp(βActive)

P(pain ≤ y | Placebo, baseline, i)
P(pain > y | Placebo, baseline, i)

R> library("ordinalCont")

R> neck_ocm <- ocm(vas ~ laser * time + (1 | id), data = pain_df,

+ scale = c(0, 1))

The results

R> summary(neck_ocm)

Call:

ocm(formula = vas ~ laser * time + (1 | id), data = pain_df,

scale = c(0, 1))

Random effects:

Name Variance Std.Dev.

Intercept|id 5.755 2.399

Coefficients:

Estimate StdErr t.value p.value
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Figure 7: Neck pain: Trajectories of neck pain assessed on a visual analog scale with and
without low-level laser therapy.

laserActive -2.07922 0.65055 -3.1961 0.001918 **

time7 weeks -0.60366 0.35744 -1.6889 0.094689 .

time12 weeks -0.23804 0.36365 -0.6546 0.514395

laserActive:time7 weeks 4.40817 0.56073 7.8615 7.604e-12 ***

laserActive:time12 weeks 3.38593 0.53925 6.2790 1.159e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

suggest that there is a difference at baseline; the pain distribution of subjects in the placebo
group on the odds scale is only 12.5% of the odds in the active group for any cut-off y:

R> exp(cbind(coef(neck_ocm)[2:6], confint(neck_ocm)[2:6,]))

2.5 % 97.5 %

laserActive 0.1250278 0.03493482 0.4474608

time7 weeks 0.5468040 0.27137954 1.1017581

time12 weeks 0.7881704 0.38643700 1.6075391

laserActive:time7 weeks 82.1194073 27.36208405 246.4577275

laserActive:time12 weeks 29.5454666 10.26785879 85.0162253

In contrast, there seems to be a very large treatment effect (at week 7, the odds in the placebo
group is 0.55 times larger than in the active group. This levels off after 12 weeks, but the
effect is still significant at the 5% level.

For comparison, we can fit a conditional mixed-effects transformation model with a differ-
ent parametrisation of the transformation function h using a Laplace approximation of the
likelihood (Támasi et al. 2022):
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R> library("tramME")

R> neck_ColrME <- ColrME(vas ~ laser * time + (1 | id), data = pain_df,

+ bounds = c(0, 1), support = c(0, 1))

and coefficients

R> exp(coef(neck_ColrME))

laserActive time7 weeks time12 weeks

0.1040042 0.5184702 0.7806349

laserActive:time7 weeks laserActive:time12 weeks

130.6994999 41.9850813

The model is the same as neck_ocm, but the parameter estimates for log-odds ratios differ
quite substantially due to an alternative parameterisation of h and due to different estimation
procedures being applied.

Our marginally interpretable transformation model with the same transformation function as
the model neck_ColrME but with a completely different model formulation and optimisation
procedure for maximising the log-likelihood, can be estimated by

R> neck_Colr <- Colr(vas ~ laser * time, data = pain_df,

+ bounds = c(0, 1), support = c(0, 1),

+ extrapolate = TRUE)

R> neck_Colrmer <- mtram(neck_Colr, ~ (1 | id), data = pain_df,

+ Hessian = TRUE)

Based on this model, it is possible to derive the marginal distribution functions in the two
groups, see Figure 8.

We sample from the joint normal distribution of the maximum likelihood estimators ϑ̂1, . . . , ϑ̂7,
β̂Active, β̂7 weeks, β̂12 weeks, β̂7 weeks, Active, β̂12 weeks, Active, α̂i and compute confidence intervals
for the marginal treatment effect after 7 and 12 weeks

R> S <- solve(neck_Colrmer$Hessian)

R> rbeta <- rmvnorm(10000, mean = coef(neck_Colrmer), sigma = S)

R> s <- rbeta[, ncol(rbeta)]

R> rbeta <- rbeta[,-ncol(rbeta)] / sqrt(s^2 + 1)

R> t(apply(rbeta[, 8:12], 2, function(x) {

+ quantile(exp(x),prob = c(.025, .5, .975))}))

2.5% 50% 97.5%

laserActive 0.1155597 0.2442656 0.5116651

time7 weeks 0.4440986 0.6910827 1.0546846

time12 weeks 0.5493419 0.8541083 1.3186687

laserActive:time7 weeks 7.8967729 15.6946073 33.8065001

laserActive:time12 weeks 4.3462218 8.5281613 17.5073242
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Figure 8: Neck pain: Marginal distribution functions of chronic neck pain evaluated at three
different time points under placebo or active low-level laser therapy.

Because the model neck_Colrmer has a marginal interpretation, we can derive the marginal
probabilistic index and corresponding confidence intervals for the three time points as fol-
lows. In this case, the marginal probabilistic index obtained from model neck_Colrmer is the
probability that, for a randomly selected patient in the treatment group, the neck pain score
at time t is higher than the score for a subject in the placebo group randomly selected at the
same time point.

There are two possible ways to compute the marginal probabilistic index. First, we consider
the standardised version of the marginal treatment effects, that is:

R> beta <- coef(neck_Colrmer)[8:12]

R> alpha <- coef(neck_Colrmer)[13]

R> (std_beta <- cbind(beta / sqrt(1 + alpha^2)))

[,1]

laserActive -1.4103130

time7 weeks -0.3700945

time12 weeks -0.1603065

laserActive:time7 weeks 2.7556704

laserActive:time12 weeks 2.1411043

Then we compute the marginal treatment effect for weeks 0, 7, 12 by multiplying the shift
vector with the following contrast matrix

R> ctr_mat <- matrix(c(1, 0, 0, 0, 0,

+ 1, 0, 0, 1, 0,

+ 1, 0, 0, 0, 1), nrow = 3, byrow = TRUE)

R> ctr_mat %*% std_beta
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[,1]

[1,] -1.4103130

[2,] 1.3453573

[3,] 0.7307912

We simulate from the asymptotic distribution of the parameters to obtain an empirical 95%
confidence interval and pass it to the PI function by specifying the correct link function

R> (ci_emp <- t(apply(ctr_mat %*% t(rbeta[, 8:12]), 1, function(x) {

+ quantile(x, prob = c(.025, .5, .975))})))

2.5% 50% 97.5%

[1,] -2.15796821 -1.4094990 -0.6700849

[2,] 0.59267791 1.3457813 2.1487890

[3,] -0.02692987 0.7356106 1.5289845

R> PI(-ci_emp, link = "logistic")

2.5% 50% 97.5%

[1,] 0.8118615 0.7203947 0.6100357

[2,] 0.4023626 0.2884183 0.1891192

[3,] 0.5044882 0.3795677 0.2634896

Alternatively, we can compute the probabilistic index by passing a Colr model to the PI

function. However, we have to make sure that the marginal model has the correct coefficients
as obtained by standardising the coefficients from the mtram model:

R> nd <- expand.grid(time = unique(pain_df$time),

+ laser = unique(pain_df$laser))

R> neck_Colr_marg <- neck_Colr

R> neck_Colr_marg$coef <- coef(neck_Colrmer)[1:12] / sqrt(coef(neck_Colrmer)[13]^2 + 1)

R> (neck_Colr_PI <- PI(neck_Colr_marg, newdata = nd[1:3, ], reference = nd[4:6, ],

+ one2one = TRUE, conf.level = .95))[1:3, 1:3]

Estimate lwr upr

4-1 0.7205063 0.5840618 0.8277766

5-2 0.2884774 0.1749458 0.4327289

6-3 0.3803291 0.2446174 0.5354274

At baseline, we obtain a probabilistic index of 0.72. After 7 weeks, its value is 0.29 and after
12 weeks 0.38. These values reflect the effect of the low-level laser therapy for patients in the
treatment group.

Of course, the confidence intervals for the estimates of the probabilistic index differ slightly
across the two methods, but the point estimates coincide.
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Figure 9: Rectal cancer: Distribution of disease-free survival times for two treatments in the
four strata defined by lymph node involvement (negative or positive) and tumor grading (T1-3
or T4).

5. Marginally Interpretable Weibull and Cox Models

The CAO/ARO/AIO-04 randomised clinical trial (Rödel et al. 2015) compared Oxaliplatin
added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemother-
apy to the same therapy using fluorouracil only for rectal cancer patients. Patients were
randomised in the two treatment arms by block randomisation taking the study center, the
lymph node involvement (negative, positive), and tumour grading (T1-3 vs. T4) into account.
The primary endpoint was disease-free survival, defined as the time between randomisation
and non-radical surgery of the primary tumour (R2 resection), locoregional recurrence after
R0/1 resection, metastatic disease or progression, or death from any cause, whichever oc-
curred first. The observed outcomes are a mix of exact dates (time to death or incomplete
removal of the primary tumour), right-censoring (end of follow-up or drop-out), and interval-
censoring (local or distant metastases). We are interested in a clustered Cox or Weibull model
for interval-censored survival times. The survivor functions, estimated separately for each of
the four strata defined by lymph node involvement and tumour grading, are given in Figure 9.

The implementation of marginally interpretable linear transformation models is currently not
able to deal with mixed exact and censored outcomes in the same cluster. We therefore recode
exact event times as being interval-censored by adding a 4-day window to each exact event
time (variable iDFS2).

R> ### convert "exact" event dates to interval-censoring (+/- one day)

R> tmp <- CAOsurv$iDFS

R> exact <- tmp[,3] == 1

R> tmp[exact,2] <- tmp[exact,1] + 2
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R> tmp[exact,1] <- pmax(tmp[exact,1] - 2, 0)

R> tmp[exact,3] <- 3

R> CAOsurv$iDFS2 <- tmp

We start with the random intercept model

P(Y > y | treatment) = exp

(

− exp

(

ϑ1 + ϑ2 log(y)− β5-FU + Ox
√

γ21 + 1

))

assuming a marginal Weibull model whose effects are scaled depending on the variance γ21
of a block-specific (interaction of lymph node involvement, tumor grading, and study center)
random intercept:

R> CAO_SR <- Survreg(iDFS2 ~ randarm, data = CAOsurv)

R> CAO_SR_mtram <- mtram(CAO_SR, ~ (1 | Block), data = CAOsurv,

+ Hessian = TRUE)

R> logLik(CAO_SR_mtram)

'log Lik.' -2081.542 (df=4)

R> (cf <- coef(CAO_SR_mtram))

(Intercept) log(iDFS2)

-6.2990054 0.7412855

randarm5-FU + Oxaliplatin gamma1

0.2328600 0.1683613

R> (OR <- exp(-cf["randarm5-FU + Oxaliplatin"] / sqrt(cf["gamma1"]^2 + 1)))

randarm5-FU + Oxaliplatin

0.794829

We are, of course, interested in the marginal treatment effect, that is, the hazards ratio

exp

(

−β5-FU + Ox/
√

γ21 + 1

)

.

We simply sample from the joint normal distribution of the maximum likelihood estimators
ϑ̂1, ϑ̂2, β̂5-FU + Ox, γ̂1 and compute confidence intervals for the marginal treatment effect 0.79
as

R> S <- solve(CAO_SR_mtram$Hessian)

R> # sqrt(diag(S))

R> rbeta <- rmvnorm(10000, mean = coef(CAO_SR_mtram),

+ sigma = S)

R> s <- rbeta[, ncol(rbeta)]

R> rbeta <- rbeta[, -ncol(rbeta)] / sqrt(s^2 + 1)

R> quantile(exp(-rbeta[, ncol(rbeta)]), prob = c(.025, .5, .975))
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2.5% 50% 97.5%

0.6473365 0.7954368 0.9848803

In a next step, we stratify with respect to lymph node involvement and tumor grading: For
each of the four strata, the parameters ϑ1 and ϑ2 are estimated separately:

R> CAO_SR_2 <- Survreg(iDFS2 | 0 + strat_n:strat_t ~ randarm, data = CAOsurv)

R> CAO_SR_2_mtram <- mtram(CAO_SR_2, ~ (1 | Block), data = CAOsurv,

+ Hessian = TRUE)

R> logLik(CAO_SR_2_mtram)

'log Lik.' -2067.797 (df=10)

R> (cf <- coef(CAO_SR_2_mtram))

(Intercept):strat_ncN0:strat_tcT1-3 log(iDFS2):strat_ncN0:strat_tcT1-3

-7.8833653 0.9584499

(Intercept):strat_ncN+:strat_tcT1-3 log(iDFS2):strat_ncN+:strat_tcT1-3

-6.2225174 0.7198965

(Intercept):strat_ncN0:strat_tcT4 log(iDFS2):strat_ncN0:strat_tcT4

-3.0467542 0.3711277

(Intercept):strat_ncN+:strat_tcT4 log(iDFS2):strat_ncN+:strat_tcT4

-4.8207089 0.6214653

randarm5-FU + Oxaliplatin gamma1

0.2240023 0.1474685

R> (OR_2 <- exp(-cf["randarm5-FU + Oxaliplatin"] / sqrt(cf["gamma1"]^2 + 1)))

randarm5-FU + Oxaliplatin

0.8012313

The corresponding confidence interval for the marginal treatment effect is then

2.5% 50% 97.5%

0.6496110 0.8021291 0.9830439

We now relax the Weibull assumption in the Cox model

P(Y > y | treatment) = exp

(

− exp

(

a(log(y))⊤ϑ+ β5-FU + Ox
√

γ21 + 1

))

(note the positive sign of the treatment effect).

R> CAO_Cox_2 <- Coxph(iDFS2 | 0 + strat_n:strat_t ~ randarm, data = CAOsurv,

+ support = c(1, 1700), log_first = TRUE, order = 4)

R> logLik(CAO_Cox_2)
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'log Lik.' -2021.878 (df=21)

R> CAO_Cox_2_mtram <- mtram(CAO_Cox_2, ~ (1 | Block), data = CAOsurv,

+ Hessian = TRUE)

R> logLik(CAO_Cox_2_mtram)

'log Lik.' -2025.516 (df=22)

R> coef(CAO_Cox_2_mtram)

Bs1(iDFS2):strat_ncN0:strat_tcT1-3 Bs2(iDFS2):strat_ncN0:strat_tcT1-3

-6.374623e+01 -2.692811e+00

Bs3(iDFS2):strat_ncN0:strat_tcT1-3 Bs4(iDFS2):strat_ncN0:strat_tcT1-3

-2.635696e+00 -2.632237e+00

Bs5(iDFS2):strat_ncN0:strat_tcT1-3 Bs1(iDFS2):strat_ncN+:strat_tcT1-3

-7.358348e-01 -2.515319e+01

Bs2(iDFS2):strat_ncN+:strat_tcT1-3 Bs3(iDFS2):strat_ncN+:strat_tcT1-3

-4.738795e+00 -3.962107e+00

Bs4(iDFS2):strat_ncN+:strat_tcT1-3 Bs5(iDFS2):strat_ncN+:strat_tcT1-3

-1.489242e+00 -9.786615e-01

Bs1(iDFS2):strat_ncN0:strat_tcT4 Bs2(iDFS2):strat_ncN0:strat_tcT4

-2.917610e+00 -2.681934e+00

Bs3(iDFS2):strat_ncN0:strat_tcT4 Bs4(iDFS2):strat_ncN0:strat_tcT4

-2.214111e+00 -5.892088e-01

Bs5(iDFS2):strat_ncN0:strat_tcT4 Bs1(iDFS2):strat_ncN+:strat_tcT4

-4.006982e-01 -3.998171e+01

Bs2(iDFS2):strat_ncN+:strat_tcT4 Bs3(iDFS2):strat_ncN+:strat_tcT4

-2.373470e+00 -1.500753e+00

Bs4(iDFS2):strat_ncN+:strat_tcT4 Bs5(iDFS2):strat_ncN+:strat_tcT4

-4.662989e-01 6.844420e-09

randarm5-FU + Oxaliplatin gamma1

-2.454812e-01 2.534131e-01

with confidence interval

2.5% 50% 97.5%

0.6475265 0.7865889 0.9587480

For the marginally interpretable models that can be derived from model CAO_Cox_2_mtram we
can compute the probabilistic index. This value is the meaning that over all study centers, a
randomly selected patient receiving Oxaliplatin has a 56% probability of staying disease-free
longer than a randomly selected patient receiving the standard treatment only, given that
they both have the same lymph node state and tumor grading.

R> nd <- CAOsurv[1:2, ]

R> tmp <- CAO_Cox_2

R> tmp$coef <- coef(CAO_Cox_2_mtram)[-22] / sqrt(coef(CAO_Cox_2_mtram)[22]^2 + 1)

R> (CAO_Cox_PI <- PI(tmp, newdata = nd[2, ], reference = nd[1, ],

+ one2one = TRUE, conf.level = .95))[1, ]
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Estimate lwr upr

0.5592107 0.5072277 0.6099271

but we can compute the same manually as follows:

R> ci_man <- quantile(-rbeta[, ncol(rbeta)], prob = c(.025, .5, .975))

R> (CAO_Cox_PIm <- PI(ci_man, link = "minimum extreme value"))

2.5% 50% 97.5%

0.5105302 0.5597259 0.6069705

We can fit mixed-effects transformation models (Tamási and Hothorn 2021; Támasi et al.
2022) as follows:

R> CAO_Cox_2_tramME <- CoxphME(iDFS2 | 0 + strat_n:strat_t ~ randarm + (1 | Block),

+ data = CAOsurv, log_first = TRUE)

From this conditional model, we can obtain the conditional hazard ratio with confidence
interval:

R> exp(coef(CAO_Cox_2_tramME))

randarm5-FU + Oxaliplatin

0.7906073

R> exp(confint(CAO_Cox_2_tramME, parm = "randarm5-FU + Oxaliplatin",

+ estimate = TRUE))

lwr upr est

randarm5-FU + Oxaliplatin 0.6406382 0.9756832 0.7906073

which is similar to the one of the marginally interpretable model.

6. Assessment of Unexplained Variability

Pollet and Nettle (2009) reported on an association between partner wealth and female self-
reported orgasm frequency. It was later pointed out (Herberich et al. 2010) that the finding
was due to an incorrectly implemented variable selection procedure based on a proportional
odds (cumulative logit) model for the ordinal variable corresponding to the question “When
having sex with your current partner, how often did you have orgasm?” with possible answer
categories y1 = Always, y2 = Often, y3 = Sometimes, y4 = Rarely, or y5 = Never. The
full model explains the conditional distribution of orgasm frequency by x = partner income,
partner height, the duration of the relationship, the respondents age, the difference between
both partners regarding education and wealth, the respondents education, health, happiness,
and place of living (regions in China) of the form

P(orgasm ≤ yk | x) = expit(ϑk + x⊤β)
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for i = 1, . . . , N = 1531 independent heterosexual couples. In this model, the threshold
parameters ϑ1, . . . , ϑ4 are monotonically increasing and independent of x, which implies the
proportional odds property, and the regression coefficients β can be interpreted as log-odds
ratios. We question the appropriateness of this model here by including a subject-specific
random intercept with standard deviation γ1. This gives rise to the marginal model

P(orgasm ≤ yk | x) = expit

(

ϑk + x⊤β
√

γ21 + 1

)

.

A value of γ1 close to zero corresponds to marginal distributions very similar to the pro-
portional odds model and, consequently, it is appropriate to interpret β as log-odds ratios.
Larger values of γ1 indicate a more variable distribution and thus the choice F = expit might
be questionable. McLain and Ghosh (2013) used a differently parameterised link function F
and pointed to an equivalent interpretation as unobserved heterogeneity.

We obtain

R> CHFLS_Polr <- Polr(orgasm ~ AincomeSD + AheightSD + RAdurationSD +

+ RageSD + edudiffSD + wealthdiffSD + Redu +

+ Rhealth + Rhappy + Region, data = orgAcc)

R> logLik(CHFLS_Polr)

'log Lik.' -1852.615 (df=27)

R> orgAcc$ID <- factor(1:nrow(orgAcc))

R> CHFLS_mtram <- mtram(CHFLS_Polr, ~ (1 | ID),

+ data = orgAcc)

R> logLik(CHFLS_mtram)

'log Lik.' -1852.782 (df=28)

R> coef(CHFLS_mtram)

orgasm1 orgasm2 orgasm3 orgasm4

-3.36220158 -1.52881197 1.38087043 3.56294225

AincomeSD AheightSD RAdurationSD RageSD

0.02869432 -0.02211786 0.09097009 -0.40303118

edudiffSD wealthdiffSD Redujcol Reduupmid

-0.19652655 -0.03951236 0.15395450 0.19396530

Redulowmid Reduprimary Redunoschool Rhealthnot good

-0.48578975 -1.08545321 -2.03959231 1.50402662

Rhealthfair Rhealthgood Rhealthexcellent Rhappynot too

1.88166459 2.04364883 2.07163249 0.30627395

Rhappyrelatively Rhappyvery RegionNortheast RegionNorth

0.83360135 1.13098151 0.45463373 0.22429881

RegionInlandS RegionCoastalE RegionCoastalS gamma1

0.55211015 0.22026234 0.65568781 0.52119277
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With γ̂1 = 0.521 and almost identical log-likelihoods for both models (−1852.615 without and
−1852.829 with variance parameter γ1), the amount of unexplained variation seems negligible
and interpretation of the effects as log-odds ratios is appropriate.
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A. Simulations

A.1. Binary probit models

With this example we want to compare the performance of mtram to the one of glmer from
package lme4 with Laplace approximation and with Adaptive Gauss-Hermite Quadrature
with 20 nodes, and glmmTMB from package glmmTMB (Brooks et al. 2017).

For these simulations, we consider 100 clusters of size 5. and variance τ =
√
3/π and β =

(−0.5, 0, 1, 2)⊤. We simulate data according to the following procedure, estimate the relevant
models and repeat this 100 times.

In Figure 10 we show the resulting coefficients. We can see that all functions performed
similarly in estimating the coefficienty.

R> N <- 100 # number of clusters

R> Ni <- 5 # size of clusters

R> cls <- gl(N, Ni)

R> tau <- sqrt(3)/pi

R> p <- 3

R> beta <- c(-.5, 0, 1, 2)

R>

R> x <- cbind(1, matrix(runif(N * Ni * 3), ncol = p))

R> prb <- pnorm(x %*% beta + rnorm(N, sd = tau)[cls])

R> y <- factor(rbinom(nrow(x), size = 1, prob = prb))

R> d <- data.frame(y = y, x[,-1], cls = cls)

A.2. Continuous response

We report the simulation studies conducted to assess the performance of mixed-effects mod-
els and marginally interpretable linear transformation models in cases where the model is
misspecified with respect to the data generating process.

For all simulations, we consider 100 clusters of size 5. and variance τ =
√
3/π and β =

(0, 1, 2)⊤.

We consider the following scenarios in the data generating process of a continuous response:

1. We simulate from a transformation model with inverse link function F = Φ. In this
setting, the conditional transformation model and the marginally interpretable linear
transformation coincide, so we expect the models fitted through tramME and mtram to
have identical coefficients.

R> N <- 100 # number of clusters

R> Ni <- 5 # size of clusters

R> cls <- gl(N, Ni)

R> tau <- sqrt(3)/pi

R> p <- 3

R> beta <- c(0, 1, 2)
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Figure 10: Simulated binary probit data: estimated coefficients obtained by fitting models
through glmer (Adaptive Gauss-Hermite Quadrature and Laplace approximation), glmmTMB
and exact discrete maximum-likelihood estimation with mtram. The red dashed lines indicate
the true values of the coefficients.

R>

R> x <- matrix(runif(N * Ni * 3), ncol = p)

R> y <- qlogis(pnorm(x %*% beta + rnorm(N, sd = tau)[cls] + rnorm(nrow(x))))

R> ## ^^^^^^^^^^^^^ <- h^{-1}

R> d <- data.frame(y = y, x, cls = cls)

2. We simulate from a conditional transformation model with inverse link function F =
expit. In this setting, the model fitted through tramME, which reflects the data gener-
ating process, should outperform the model fitted through mtram.

R> x <- matrix(runif(N * Ni * 3), ncol = p)

R> y <- qt(plogis(x %*% beta + rnorm(N, sd = tau)[cls] + rlogis(nrow(x))), df = 3)

R> ## ^^^^^^^^^^ <- h^{-1}

R> d <- data.frame(y = y, x, cls = cls)

3. We simulate from a marginally interpretable transformation model with inverse link
function F = expit. In this setting, we expect the model fitted through mtram, which
reflects the data generating process, to outperform the model fitted through tramME.

R> Ui <- matrix(1, ncol = 1, nrow = Ni)

R> S <- tau^2

R> Sigma <- S * tcrossprod(Ui) + diag(Ni)

R> D <- diag(sqrt(diag(Sigma)))

R> Z <- rmvnorm(N, sigma = Sigma)

R> x <- matrix(runif(N * Ni * 3), ncol = p)
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Figure 11: Simulated continuous data from a transformation model with F = Φ. We expect
the coefficients obtained through mtram and tramME to coincide. The red dashed lines indicate
the true values of the coefficients.

R> h1 <- function(x) qt(plogis(x), df = 3)

R> # ^^ <- h^{-1}

R> y <- h1(c(D %*% qlogis(pnorm(solve(D) %*% t(Z)))) + x %*% beta)

R> d <- data.frame(y = y, x, cls = cls)

The results can be seen in Figures 11, 12 and 13.

A.3. Interval-censored response

The continuous response simulated in this way can be readily converted to an interval-censored
response as follows:

R> d$yS <- Surv(floor(y), ceiling(y), type = "interval2")

or, for a smaller interval

R> d$yS <- Surv(floor(10*y)/10, ceiling(10*y)/10, type = "interval2")

Intervals of length 1

The results using the first version of the interval censoring (that is, intervals of length 1) can
be seen in Figures 14, 15, 16.

Intervals of length 0.1

The results using the first version of the interval censoring (that is, intervals of length 0.1)
can be seen in Figures 17, 18, 19.
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Figure 12: Simulated continuous data from a conditional model with F = expit. We expect
tramME to outperform mtram. The red dashed lines indicate the true values of the coefficients.
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Figure 13: Simulated continuous data from a marginally interpretable transformation model
with F = expit. We expect mtram to outperform tramME. The red dashed lines indicate the
true values of the coefficients.
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Figure 14: Simulated interval-censored data (interval of length 1) from a transformation model
with F = Φ. We expect the coefficients obtained through mtram and tramME to coincide. The
red dashed lines indicate the true values of the coefficients.
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Figure 15: Simulated interval-censored data (interval of length 1) from a conditional model
with F = expit. We expect tramME to outperform mtram. The red dashed lines indicate the
true values of the coefficients.
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Figure 16: Simulated interval-censored data (interval of length 1) from a marginally inter-
pretable transformation model with F = expit. We expect mtram to outperform tramME. The
red dashed lines indicate the true values of the coefficients.

 

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

m
tr
a
m

tr
a
m

M
E

β1

m
tr
a
m

tr
a
m

M
E

β2

m
tr
a
m

tr
a
m

M
E

β3

m
tr
a
m

tr
a
m

M
E

γ

Figure 17: Simulated interval-censored data (interval of length 0.1) from a transformation
model with F = Φ. We expect the coefficients obtained through mtram and tramME to
coincide. The red dashed lines indicate the true values of the coefficients.
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Figure 18: Simulated interval-censored data (interval of length 0.1) from a conditional model
with F = expit. We expect tramME to outperform mtram. The red dashed lines indicate the
true values of the coefficients.
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Figure 19: Simulated interval-censored data (interval of length 0.1) from a marginally inter-
pretable transformation model with F = expit. We expect mtram to outperform tramME. The
red dashed lines indicate the true values of the coefficients.
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