Package ‘tvgarch’

December 21, 2021

Type Package
Title Time Varying GARCH Modelling

Version 2.2
Date 2021-12-11
Author Susana Campos-Martins [aut, cre], Genaro Sucarrat [ctb]
Maintainer Susana Campos-Martins susana.martins@nuffield.ox.ac.uk
Description Simulation, estimation and inference for univariate and multivariate TV(s)$\operatorname{GARCH}(\mathrm{p}, \mathrm{q}, \mathrm{r})-\mathrm{X}$ models, where s indicates the number and shape of the transition functions, p is the ARCH order, q is the GARCH order, r is the asymmetry order, and ' X ' indicates that covariates can be included. In the multivariate case, variances are estimated equation by equation and dynamic conditional correlations are allowed. The TV long-term component of the variance as in the multiplicative TVGARCH model of Amado and Ter $\{\backslash " a\}$ svirta (2013) doi:10.1016/j.jeconom.2013.03.006 introduces non-stationarity whereas the GARCH-X short-term component describes conditional heteroscedasticity. Maximisation by parts leads to consistent and asymptotically normal estimates.
License GPL (>=2)
Depends R (>= 3.5.0), garchx, zoo, numDeriv, hier.part
URL https://sites.google.com/site/susanacamposmartins
NeedsCompilation no
Repository CRAN
Date/Publication 2021-12-21 10:30:02 UTC

R topics documented:

tvgarch-package 2
coef.mtvgarch 3
coef.tvgarch 5
coef.tvgarchTest 8
dccObj. 10
garchObj 11
mtvgarch 12
mtvgarchSim 14
tvgarch 16
tvgarchSim 18
tvgarchTest 20
Index 22
tvgarch-package Time Varying GARCH Modelling

Description

Simulation, estimation and inference for univariate and multivariate TV(s)-GARCH(p,q,r)-X models, where s indicates the number and shape of the transition functions, p is the ARCH order, q is the GARCH order, r is the asymmetry order, and ' X ' indicates that covariates can be included. The TV long-term component, as in the multiplicative TV-GARCH model of Amado and Ter\"asvirta (2013) doi:10.1016/j.jeconom.2013.03.006, introduces non-stationarity whereas the GARCH-X shortterm component describes conditional heteroscedasticity. Maximisation by parts leads to consistent and asymptotically normal estimates. In the multivariate case, conditional variances are estimated equation by equation and dynamic conditional correlations are allowed.

Details

Package:	tvgarch
Type:	Package
Version:	2.2
Date:	$2021-12-11$
License:	GPL>=2

Author(s)

Susana Campos-Martins, https://sites.google.com/site/susanacamposmartins
Maintainer: Susana Campos-Martins
Contributor: Genaro Sucarrat

See Also

tvgarchTest, tvgarch, mtvgarch, tvgarchSim, mtvgarchSim

Examples

```
set.seed(123)
```

\#\# Simulate from a TV(1)-GARCH(1,1) model (default):

```
ySim <- tvgarchSim(n = 1500)
## Test a GARCH(1,1) model against a TV(1)-GARCH(1,1) model:
yTest <- tvgarchTest(y = ySim)
yTest
## Estimate a TV(1)-GARCH(1,1) model (default):
yEst <- tvgarch(y = ySim)
yEst
```

 coef.mtvgarch Extraction functions for multivariate 'mtvgarch' objects

Description

Extraction functions for objects of class 'mtvgarch'.

Usage

\#\# S3 method for class 'mtvgarch'
coef(object, spec = c("sigma2", "tv", "garch", "cc"), ...)
\#\# S3 method for class 'mtvgarch'
fitted(object, spec = c("sigma2", "tv", "garch", "cc"), as.zoo = TRUE, ...)
\#\# S3 method for class 'mtvgarch'
logLik(object, ...)
\#\# S3 method for class 'mtvgarch'
nobs(object, ...)
\#\# S3 method for class 'mtvgarch'
plot(x, spec = c("sigma2", "tv", "garch"), ...)
\#\# S3 method for class 'mtvgarch'
predict(object, n.ahead $=10$, newxtv $=$ NULL,
newxreg $=$ NULL, newindex $=$ NULL, n.sim $=5000$,
as.zoo = TRUE, verbose = FALSE, ...)
\#\# S3 method for class 'mtvgarch'
print(x, ...)
\#\# S3 method for class 'mtvgarch'
quantile(x, probs $=0.025$, type $=7$, as.zoo $=$ TRUE, \ldots)
\#\# S3 method for class 'mtvgarch'
residuals(object, as.zoo = TRUE, ...)
\#\# S3 method for class 'mtvgarch'
summary (object, ...)
\#\# S3 method for class 'mtvgarch'
toLatex (object, digits = 4, ...)
\#\# S3 method for class 'mtvgarch'
vcov(object, spec = c("sigma2", "tv", "garch", "cc"), ...)

Arguments

object
spec

X
as.zoo
n. ahead
newxtv
newxreg
newindex
n.sim
verbose
probs
type
digits
...

Value

coef: parameter estimates.
fitted: fitted conditional variances and correlations.
logLik: optimised log-likelihood (normal density) values.
nobs: number of observations used in the estimation.
plot: plots of the fitted conditional volatilities.
predict: variance predictions. Column order differs when spillovers are allowed.
print: print of the estimation results.
quantile: fitted quantiles, i.e. the conditional standard deviation times the empirical quantile of the standardised innovations.
residuals: volatility standardised residuals.
summary: summary of estimation results.
vcov: coefficient variance-covariance matrices.

Author(s)

Susana Campos-Martins

References

Cristina Amado and Timo Ter\"asvirta (2013) Modelling volatility by variance decomposition, Journal of Econometrics 175, 142-153. Christian Francq and Jean-Michel Zakol"ian (2016) Estimating multivariate volatility models equation by equation, J. R. Stat. Soc. Ser. B Stat. Methodol 78, 613-635.

See Also

mtvgarch, mtvgarchSim, tvgarch, garchx, zoo

Examples

```
set.seed(123)
## Simulate from a bivariate CCC-TV(1)-GARCH(1,1) model (default):
mySim <- mtvgarchSim(n = 1500)
## Estimate a CCC-TV(1)-GARCH(1,1) model:
myEst <- mtvgarch(y = mySim)
## Print estimation results:
print(myEst)
## Extract and store conditional variances:
sigma2Est <- fitted(myEst)
## Plot:
plot(myEst)
## Generate predictions:
predict(myEst)
```

```
coef.tvgarch Extraction functions for univarate 'tvgarch' objects
```


Description

Extraction functions for objects of class 'tvgarch'.

Usage

```
    ## S3 method for class 'tvgarch'
    coef(object, spec = c("sigma2", "tv", "garch"), ...)
    ## S3 method for class 'tvgarch'
    fitted(object, spec = c("sigma2", "tv", "garch"),
                as.zoo = TRUE, ...)
        ## S3 method for class 'tvgarch'
    logLik(object, ...)
```

```
    ## S3 method for class 'tvgarch'
nobs(object, ...)
    ## S3 method for class 'tvgarch'
plot(x, spec = c("sigma2", "tv", "garch"), ...)
    ## S3 method for class 'tvgarch'
predict(object, n.ahead = 10, newxtv = NULL,
                newxreg = NULL, newindex = NULL, n.sim = 5000,
                as.zoo = TRUE, verbose = FALSE, ...)
    ## S3 method for class 'tvgarch'
print(x, ...)
    ## S3 method for class 'tvgarch'
quantile(x, probs = 0.025, names = TRUE, type = 7,
                                    as.zoo = TRUE, ...)
    ## S3 method for class 'tvgarch'
residuals(object, as.zoo = TRUE, ...)
    ## S3 method for class 'tvgarch'
summary(object, ...)
    ## S3 method for class 'tvgarch'
toLatex(object, digits = 4, ...)
    ## S3 method for class 'tvgarch'
vcov(object, spec = c("sigma2", "tv", "garch"), ...)
```


Arguments

object	an object of class 'tvgarch'.
spec	specifies whether the function should extract specific results. If "tv", extracts results for the TV component and if "garch" extracts results for the GARCHX component of TV-GARCH-X model. If "sigma2", extracts results for TV-GARCH-X model. Only relevant for TV-GARCH-X models. Otherwise, extracts results for GARCH-X model.
X	an object of class 'tvgarch'.
as.zoo	logical. If TRUE, then the returned result is of class zoo.
n . ahead	integer that determines how many steps ahead predictions should be generated.
newxtv	NULL or vector with the out-of-sample transition variable. If NULL, out-of-sample component g equals intercept.g. Only relevant for TV-GARCH-X models.
newxreg	vector or matrix with the out-of-sample regressor values.
newindex	a zoo-index for the out-of-sample predictions. If NULL (default), then $1: n$. ahead is used.
n. sim	integer, the number of simulations.
verbose	logical. If TRUE, then the simulations - in addition to the predictions - are returned.
probs	vector of probabilities.
names	logical, whether to return names or not.
type	integer that determines the algorithm used to compute the quantile, see quantile.
digits	integer, the number of digits in the printed LaTeX code.
	additional arguments.

Value

coef:	parameter estimates.
fitted:	fitted conditional variance.
logLik:	optimised log-likelihood (normal density) value.
nobs:	the number of observations used in the estimation.
plot:	plot of the fitted conditional volatility.
predict:	variance predictions.
print:	print of the estimation results.
quantile:	fitted quantiles, i.e. the conditional standard deviation times the empirical quan-
	tile of the standardised innovations.
residuals:	volatility standardised residuals.
summary:	summary of estimation results.
vcov:	coefficient variance-covariance matrix.

Author(s)

Susana Campos-Martins

References

Cristina Amado and Timo Ter\"asvirta (2013) Modelling volatility by variance decomposition, Journal of Econometrics 175, 142-153. Cristina Amado and Timo Ter\"asvirta (2014) Modelling changes in the unconditional variance of long stock return series, Journal of Empirical Finance 25, 15-35.

See Also

```
tvgarchTest, tvgarch, tvgarchSim, zoo
```


Examples

```
set.seed(123)
## Simulate from a TV(1)-GARCH(1,1) model (default):
ySim <- tvgarchSim(n = 1500)
## Estimate a TV(1)-GARCH(1,1) model:
yEst <- tvgarch(y = ySim)
## Print estimation results:
print(yEst)
## Extract and store conditional variances:
sigma2Est <- fitted(yEst)
## Plot:
plot(yEst)
```

```
## Generate predictions:
predict(yEst)
```

coef.tvgarchTest Extraction functions for univarate 'tvgarchTest' objects

Description

Extraction functions for objects of class 'tvgarchTest'. Results from the estimation of the model under the null hypothesis, i.e., a $\operatorname{GARCH}(1,1)$ model, can be extracted similar to an object of class 'tvgarch' with the exception of functions print.tvgarchTest() and summary.tvgarchTest().

Usage

```
    ## S3 method for class 'tvgarchTest'
    coef(object, ...)
    ## S3 method for class 'tvgarchTest'
    fitted(object,
    as.zoo = TRUE, ...)
    ## S3 method for class 'tvgarchTest'
    logLik(object, ...)
    ## S3 method for class 'tvgarchTest'
    nobs(object, ...)
    ## S3 method for class 'tvgarchTest'
    plot(x, ...)
    ## S3 method for class 'tvgarchTest'
    predict(object, n.ahead = 10, newxreg = NULL,
                                    newindex = NULL, n.sim = 5000,
                                    as.zoo = TRUE, verbose = FALSE, ...)
    ## S3 method for class 'tvgarchTest'
    print(x, ...)
    ## S3 method for class 'tvgarchTest'
    quantile(x, probs = 0.025, names = TRUE, type = 7,
                        as.zoo = TRUE, ...)
    ## S3 method for class 'tvgarchTest'
    residuals(object, as.zoo = TRUE, ...)
    ## S3 method for class 'tvgarchTest'
    summary(object, ...)
    ## S3 method for class 'tvgarchTest'
    toLatex(object, digits = 4, ...)
    ## S3 method for class 'tvgarchTest'
    vcov(object, ...)
```


Arguments

object an object of class 'tvgarchTest'.

X
as. zoo
n. ahead
newxreg
newindex
n.sim
verbose
probs
names
type
digits
. . .

Value
coef: parameter estimates.
fitted: fitted conditional variance.
logLik: optimised log-likelihood (normal density) value.
nobs: the number of observations used in the estimation.
plot: plot of the fitted conditional volatility.
predict: variance predictions.
quantile: fitted quantiles, i.e. the conditional standard deviation times the empirical quantile of the standardised innovations.
residuals: volatility standardised residuals.
summary: summary of test result.
vcov: coefficient variance-covariance matrix.

Author(s)
Susana Campos-Martins

References

Cristina Amado and Timo Ter\"asvirta (2013) Modelling volatility by variance decomposition, Journal of Econometrics 175, 142-153. Cristina Amado and Timo Ter\"asvirta (2014) Modelling changes in the unconditional variance of long stock return series, Journal of Empirical Finance 25, 15-35.

See Also

Examples

```
set.seed(123)
## Simulate from a TV(1)-GARCH(1,1) model (default):
ySim <- tvgarchSim(n = 1500)
## Test a GARCH(1,1) model against a TV(1)-GARCH(1,1) model:
yTest <- tvgarchTest(y = ySim)
## Print test and estimation results:
print(yTest)
## Estimated number of locations
summary(yTest)
## Extract and plot estimation results for GARCH(1,1) used in the test:
sigma2Test <- fitted(yTest)
plot(yTest)
## Estimate a TV(s)-GARCH(1,1) model:
s <- summary(yTest)
yEst <- tvgarch(y = ySim, order.g = s)
```

dccObj Auxiliary functions

Description

Auxiliary functions used in the estimation of the multivariate TV(s)-GARCH(p,q,r)-X model. Not intended for the average user.

Usage

dccObj(par.dcc, z, sigma2, flag)

Arguments

par.dcc numeric vector containing the ARCH- and GARCH-type coefficients in the dynamic conditional correlations.
z
matrix of standardized residuals.
sigma2
matrix of conditional variances.
flag integer. If 0 , returns a numeric vector with the values of the objective function; if 1 returns the the value of the objective function; if 2 , returns the fitted variance components.

Value

The values of the objective function or fitted dynamic conditional correlations.

Author(s)

Susana Campos-Martins

See Also

mtvgarch, fitted.mtvgarch, residuals.mtvgarch
garchObj Auxiliary functions

Description

Auxiliary functions used in the estimation of the univariate and multivariate TV(s)-GARCH(p,q,r)X model. Not intended for the average user.

Usage

```
tv(speed, location, xtv = NULL, n = NULL, opt = 0,
order.g = NULL, as.zoo = TRUE, verbose = FALSE)
tvObj(par.g, fixed.par.g, xtv, opt, order.g, fixed.h, y, iter0, flag)
garchObj(par.h, xreg, order.h, fixed.g, y, flag)
```


Arguments

speed	
location	
xtv	NULL or numeric vector with the values of the speed coefficients.
NULL or numeric vector with the values of the location coefficients.	
nULL or numeric vector, time series or zoo object to include as the transition	
variable in the TV component. If NULL, a continuous variable bounded between	
0 and 1 for n observations is constructed and used as the transition variable.	
integer indicating the number of observations of the continuous transition vari-	
able bounded between 0 and 1.	
integer, indicates whether the speed parameter in the TV component should be	
scaled. If 0, no scaling; if 1, speed/sd(xtv); if 2 , exp(speed). For function tv(),	
the default is 0.	

\(\left.$$
\begin{array}{ll}\text { fixed.par.g } & \begin{array}{l}\text { NULL or numeric vector with the values of the parameters fixed in the TV com- } \\
\text { ponent of form c(intercept.g,speed). } \\
\text { numeric vector, time series or zoo containing the values of GARCH-X com- } \\
\text { ponent). }\end{array}
$$

fixed.h

numeric vector, time series or zoo object.\end{array}\right]\)| logical. If FALSE, some parameters in the TV component are fixed during the |
| :--- |
| iter0 |
| iterative estimation. |
| integer. If 0, returns a numeric vector with the values of the objective func- |
| tion; if 1 returns the the value of the objective function; if 2, returns the fitted |
| variance components. |
| numeric vector with the values of the parameters in the GARCH-X component. |

Value

The values of the objective function or fitted variance components.

Author(s)

Susana Campos-Martins

See Also

tvgarch, fitted.tvgarch, residuals.tvgarch
mtvgarch Estimate a multivariate TV-GARCH-X model

Description

Equation by equation estimation of a multivariate multiplicative TV-GARCH-X model with dnamic conditional correlations. For each variance equation, the long-term or unconditional component (TV) and the short-term or conditional variance component (GARCH-X) are estimated separately using maximization by parts, where the iterative algorithm proceeds until convergence. Conditional on the variance estimates, the dynamic conditional correlations are estimated by maximum likelihood.

Usage

mtvgarch(y, order.g = c(1, 1), order.h = NULL, order.x = NULL, initial.values $=$ list(), xtv $=$ NULL, $x r e g=N U L L, ~ o p t ~=~ 2, ~ d c c ~=~ F A L S E, ~$ turbo $=$ TRUE, trace $=$ FALSE)

Arguments

y	numeric matrix, time series or zoo object.
order.g	integer matrix with each row indicating the order.g for each series; number of locations in each transition function of the TV components.
order.h	integer matrix with each row indicating the order.h for each series; the first column controls the GARCH order, the second the ARCH order and the third the asymmetry order of the GARCH-X components. If NULL, the default, all series are assumed to follow a $\operatorname{GARCH}(1,1,0)$.
order.x	NULL or binary matrix indicating which xreg variables should be included as covariates in the GARCH-X components. If provided and xreg is NULL, then the selected volatility spillovers are included as covariates.
initial.values	a list containing the initial parameter values passed on to the optimisation routines (constrOptim for the TV component and nlminb for the GARCH-X component). If list(), the default, then the values are chosen automatically. TV component: intercept.g - NULL or numeric vector, size - NULL or numeric matrix containing the size initial coefficients, speed - NULL or numeric matrix containing the speed initial coefficients, location - NULL or numeric matrix containing the location initial coefficients. GARCH-X component: intercept.h - numeric vector, arch - NULL or numeric matrix containing the ARCH initial coefficients, garch - NULL or numeric matrix containing the GARCH-type initial coefficients, asym - NULL or numeric matrix containing the asymmetry-type initial coefficients, par.xreg - NULL or numeric matrix containing the X-type initial coefficients, and R - initial correlation coefficients.
$x t v$	NULL or numeric vector, time series or zoo object to include as the transition variable in the TV component. If NULL, calendar time, scaled between 0 and 1, is used as the transition variable.
xreg	numeric vector, time series or zoo object to include as covariates in the GARCHX component.
opt	integer indicating whether the speed parameter in the TV component should be scaled. If 0 , no scaling; if 1 , speed/sd(xtv); if 2 , \exp (speed).
dcc	logical. If TRUE, dynamic conditional correlations are estimated. If FALSE (default), then the conditional correlations are constant.
turbo	logical. If FALSE (default), then the coefficient variance-covariance is computed during estimation, and the fitted values and residuals are attached to the returned object. If TRUE, then these operations are skipped, and hence estimation is faster. Note, however, that if turbo is set to TRUE, then the coefficient-covariance, fitted values and residuals can still be extracted subsequent to estimation with vcov.mtvgarch(), fitted.mtvgarch() and residuals.mtvgarch(), respectively.
trace	logical. If TRUE all output is printed.

Value

An object of class 'mtvgarch'.

Author(s)

Susana Campos-Martins

References

Cristina Amado and Timo Ter\"asvirta (2013) Modelling volatility by variance decomposition, Journal of Econometrics 175, 142-153. Christian Francq and Jean-Michel Zakol"ian (2016) Estimating multivariate volatility models equation by equation, J. R. Stat. Soc. Ser. B Stat. Methodol 78, 613635. Robert F. Engle (2002) Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models, Journal of Business and Economic Statistics 20, 339-350.

See Also

tvgarch, garchx, nlminb, constrOptim

Examples

```
set.seed(123)
## Simulate from a bivariate CCC-TV(1)-GARCH(1,1) model (default):
mySim <- mtvgarchSim(n = 1000)
## Estimate a CCC-TV(1)-GARCH(1,1) model (default):
myEst <- mtvgarch(y = mySim)
## Print estimation results:
print(myEst)
## Extract coefficients:
coef(myEst)
## Plot conditional volatilities:
plot(myEst)
## Generate predictions:
predict(myEst)
```

mtvgarchSim Simulate from a multivariate TV-GARCH-X model

Description

Simulate from a multivariate multiplicative TV(s)-GARCH(p,q,r)-X model.

Usage

mtvgarchSim(n, m = 2, order.g = c(1,1), order.h $=c(1,1,0,1,1,0)$, order. $x=$ NULL, intercept.g $=c(1.2,1)$, size $=c(3,5)$, speed $=c(10,25)$, location $=c(0.5,0.8)$, intercept.h $=c(0.2,0.3)$, arch $=c(0.10,0.05)$, garch $=c(0.80,0.90)$, asym $=$ NULL, $x t v=$ NULL, $x r e g=N U L L, ~ p a r . x r e g ~=~ N U L L, ~$ $\mathrm{R}=\mathrm{c}(1,0.6,0.6,1)$, dcc = FALSE, par.dcc $=$ NULL, opt $=0$, as.zoo $=$ TRUE, verbose $=$ FALSE, innovations $=$ NULL)

Arguments

n
m
order.g
order.h
order. x
intercept.g
size
speed
location
intercept.h
arch
garch
asym
$x t v$
xreg
par.xreg
R
dcc
par.dcc
opt
as.zoo
verbose
innovations
integer.
integer indicating the dimenson of the multivariate series.
integer matrix with each row indicating the number of locations in each transition function of the TV components; m rows and max.s columns.
integer matrix with each row indicating the order.h for each series; the first column controls the GARCH order, the second the ARCH order and the third the asymmetry order of the GARCH-X components.
NULL or binary matrix indicating which xreg variables should be included as covariates in the GARCH-X components. If provided and xreg is NULL, volatility spillovers for the selected series are included as covariates.

NULL or numeric vector.
NULL or numeric matrix containing the size coefficients. Only relevant for TVGARCH models.

NULL or numeric matrix containing the speed coefficients. Only relevant for TV-GARCH models.

NULL or numeric matrix containing the location coefficients; m rows and max.c columns. Only relevant for TV-GARCH models.
numeric matrix.
NULL or numeric matrix containing the ARCH coefficients.
NULL or numeric matrix containing the GARCH-type coefficients.
NULL or numeric matrix containing the asymmetry-type coefficients.
NULL or numeric vector, time series or zoo object to include as the transition variable in the TV component. If NULL, calendar time, scaled between 0 and 1, is used as the transition variable. Only relevant for TV-GARCH models.
numeric vector, matrix, time series or zoo object to include as covariates in the GARCH-X component.

NULL or numeric matrix containing the covariates initial coefficients.
matrix of (constant) conditional correlations.
logical. If TRUE, dynamic conditional correlations are estimated. If FALSE (default), then the conditional correlations are constant.
numeric vector containing the ARCH- and GARCH-type coefficients in the dynamic conditional correlations.
integer indicating whether the speed parameter in the TV component should be scaled. If 0 , no scaling; if 1, speed $/$ sd(xtv); if $2, \exp$ (speed). Only relevant for TV-GARCH models.
logical. If TRUE, then the returned result is of class zoo.
logical, if TRUE, the conditional variance and the innovations are also returned.
NULL or numeric matrix with the innovations. If NULL, then standard normal innovations are generated with rnorm.

Value

An object of class 'zoo' (if as. zoo = TRUE), otherwise a matrix or a list (if verbose $=$ TRUE), with the simulated values.

Author(s)

Susana Campos-Martins

See Also

mtvgarch, tvgarch, garchx, zoo

Examples

```
## Simulate from a bivariate CCC-TV(1)-GARCH(1,1) model (default):
mySim1 <- mtvgarchSim(n = 1500)
## Simulate from a bivariate CCC-TV(1)-GARCH(1,1)-X model
## (with volatility spillovers)
mySim2 <- mtvgarchSim(n = 1500, order.x = c(0,1,1,0), par.xreg =
c(0.03,0.04))
```

```
tvgarch Estimate a TV-GARCH-X model
```


Description

Quasi Maximum Likelihood (ML) estimation of a univariate multiplicative TV(s)-GARCH(p,q,r)X model, where s indicates the number and the shape of the transition functions, r is the asymmetry order, p is the ARCH order, q is the GARCH order, and ' X ' indicates that covariates can be included. Any transition variable, deterministic or stochastic, can be used to drive the transitions between the variance states. The TV long-term component introduces non-stationarity in the variance process, where the GARCH-X short-term component describes conditional heteroscedasticity. Maximization by parts leads to consistent and asymptotically normal estimates.

Usage

tvgarch(y, order.g = 1, order.h = c(1,1,0), xtv = NULL, xreg = NULL, initial.values $=$ list(), opt $=2$, turbo $=$ FALSE, trace $=$ FALSE)

Arguments

y numeric vector, time series or zoo object.
order.g integer vector of length s indicating the number of locations in each transition function of the TV component. Indicates whether a stationary GARCH or a nonstationary GARCH, i.e., TV-GARCH, shall be estimated.

order.h	integer vector of the form $\mathrm{c}(\mathrm{p}, \mathrm{q}, \mathrm{r})$. The first entry controls the GARCH order, the second the ARCH order and the third the asymmetry order of the GARCH-X component.
initial.values	a list containing the initial parameter values passed on to the optimisation routines (constrOptim for the TV component and nlminb for the GARCH-X component). If list(), the default, then the values are chosen automatically. TV component: intercept.g - NULL or numeric, size - NULL or numeric vector containing the size initial coefficients, speed - NULL or numeric vector containing the speed initial coefficients, location - NULL or numeric vector containing the location initial coefficients. GARCH-X or GARCH-X component of TV-GARCH-X: intercept.h - numeric, arch - NULL or numeric vector containing the ARCH initial coefficients, garch - NULL or numeric vector containing the GARCH-type initial coefficients, asym - NULL or numeric vector containing the assymetry-type initial coefficients, and par.xreg - NULL or numeric vector containing the X-type initial coefficients.
$x t v$	NULL or numeric vector, time series or zoo object to include as the transition variable in the TV component. If NULL, calendar time, scaled between 0 and 1, is used as the transition variable. Not relevant for stationary GARCH.
xreg	numeric vector, time series or zoo object to include as covariates in the GARCHX component.
opt	integer indicating whether the speed parameter in the TV component should be scaled. If 0 , no scaling; if 1 , speed/sd(xtv); if 2 , $\exp (s p e e d)$. Only relevant for TV-GARCH models.
turbo	logical. If FALSE (default), then the coefficient variance-covariance is computed during estimation, and the fitted values and residuals are attached to the returned object. If TRUE, then these operations are skipped, and hence estimation is faster. Note, however, that if turbo is set to TRUE, then the coefficient-covariance, fitted values and residuals can still be extracted subsequent to estimation with vcov.tvgarch(), fitted.tvgarch() and residuals.tvgarch(), respectively.
trace	logical. If TRUE all output is printed when estimating a TV-GARCH.

Value

An object of class 'tvgarch'.

Author(s)

Susana Campos-Martins

References

Cristina Amado and Timo Ter\"asvirta (2013) Modelling volatility by variance decomposition, Journal of Econometrics 175, 142-153. Cristina Amado and Timo Ter $\$ "asvirta (2014) Modelling changes in the unconditional variance of long stock return series, Journal of Empirical Finance 25, 15-35.

See Also

garchx, tvgarchSim, nlminb, constrOptim

Examples

```
set.seed(123)
## Simulate from a TV(1)-GARCH(1,1) model (default):
ySim <- tvgarchSim(n = 1500)
## Estimate a TV(1)-GARCH(1,1) model:
yEst <- tvgarch(y = ySim)
## Print estimation results:
print(yEst)
## Extract coefficients:
coef(yEst)
## Plot conditional volatilities:
plot(yEst)
## Extract log-likelihood:
logLik(yEst)
## Extract and store standardised residuals:
etaEst <- residuals(yEst)
## Generate predictions:
predict(yEst)
```

tvgarchSim

Description

Simulate from a univariate multiplicative TV(s)-GARCH(p,q,r)-X model.

Usage

tvgarchSim(n, order.g = 1, order.h $=c(1,1,0)$,
intercept.g = 1.2, size $=5$, speed $=25$, location $=0.5$, xtv $=$ NULL, intercept. $\mathrm{h}=0.2$, arch $=0.1$, garch $=0.8$, asym $=$ NULL, x reg $=$ NULL, opt $=0$, as.zoo $=$ TRUE, verbose $=$ FALSE, innovations $=$ NULL)

Arguments

n	integer.
order.g	integer vector of length s indicating the number of locations in each transition function of the TV component.
order.h	integer vector of the form $c(p, q, r)$. The first entry controls the GARCH order, the second the ARCH order and the third the asymmetry order of the GARCH-X component.
intercept.g	NULL or numeric with the value of the intercept in the TV component.
size	NULL or numeric vector with the values of the size coefficients.
speed	NULL or numeric vector with the values of the speed coefficients.
location	NULL or numeric vector with the values of the location coefficients.
$x t v$	NULL or numeric vector, time series or zoo object to include as the transition variable in the TV component. If NULL, calendar time, scaled between 0 and 1, is used as the transition variable.
opt	integer indicating whether the speed parameter in the TV component should be scaled. If 0 , no scaling; if 1 , speed/sd(xtv); if $2, \exp ($ speed $)$.
intercept.h	numeric with the value of the intercept in the GARCH-X component.
arch	NULL or numeric vector with the values of the ARCH-coefficients.
garch	NULL or numeric vector with the values of the GARCH-coefficients.
asym	NULL or numeric vector with the values of the asymmetry-coefficients.
xreg	NULL or numeric vector with the values of the X-term.
as.zoo	logical. If TRUE, then the returned result is of class zoo.
verbose	logical, if TRUE, the conditional variance and innovations are also returned.
innovations	NULL or numeric vector with the innovations. If NULL, then standard normal innovations are generated with rnorm.

Value

An object of class 'zoo' (if as.zoo = TRUE), otherwise a vector or a matrix (if verbose $=$ TRUE), with the simulated values.

Author(s)

Susana Campos-Martins

See Also

tvgarch, garchx, zoo

Examples

```
set.seed(123)
## Simulate from a TV(1)-GARCH(1,1) model (default):
ySim1 <- tvgarchSim(n = 1500)
## Simulate from a TV(2)-GARCH(1,1) model:
ySim2 <- tvgarchSim(n = 1500, order.g = c(1,2), size = c(0.5,-0.4),
    speed = c(1.5,2), location = c(0.2, 0.5,0.8))
## Simulate from a GARCH(1,1) model:
ySim3 <- tvgarchSim(n = 1500, order.g = NULL)
## Simulate from a TV(1)-GARCH(1,1,1)-X model:
ySim4 <- tvgarchSim(n = 1500, order.h = c(1,1,1), asym = 0.025, xreg = ySim3^2)
```

tvgarchTest Test of a multiplicative time-varying GARCH model

Description

Compute the non-robust and robust Lagrange-Multiplier (LM-)type test statistics for examining the null hypothesis of constant long-term variance, $\operatorname{GARCH}(1,1)$, against the alternative of a smoothly changing long-term component, TV-GARCH $(1,1)$.

Usage

tvgarchTest(y, xtv = NULL, alpha = 0.05)

Arguments

y	numeric vector, time series or zoo object.
$x t v$	NULL or numeric vector, time series or zoo object to include as the transition
variable in the TV component. If NULL, calendar time scaled between 0 and 1 is	
used as the transition variable.	
alpha	the significance level.

Value

An object of class 'tvgarchTest'.

Author(s)

Susana Campos-Martins

References

Cristina Amado and Timo Ter\"asvirta (2017) Specification and testing of multiplicative time varying GARCH models with applications, Econometric Reviews 36:4, 421-446.

See Also

tvgarch, garchx, tvgarchSim

Examples

```
set.seed(123)
## Simulate from a TV(1)-GARCH(1,1) model (default):
ySim <- tvgarchSim(n = 1500)
## Test of a TV(1)-GARCH(1,1) model:
yTest <- tvgarchTest(y = ySim)
orderG1 <- summary(yTest)
## Estimate a TV(1)-GARCH(1,1) model:
yEst <- tvgarch(y = ySim, order.g = orderG1)
```


Index

* Econometrics
coef.mtvgarch, 3
coef.tvgarch, 5
coef.tvgarchTest, 8
dcc0bj, 10
garchObj, 11
mtvgarchSim, 14
tvgarch, 16
tvgarch-package, 2
tvgarchSim, 18
tvgarchTest, 20
* Financial Econometrics
coef.mtvgarch, 3
coef.tvgarch, 5
coef.tvgarchTest, 8
dccObj, 10
garchObj, 11
mtvgarch, 12
mtvgarchSim, 14
tvgarch, 16
tvgarch-package, 2
tvgarchSim, 18
tvgarchTest, 20
* Nonlinear Time Series
coef.mtvgarch, 3
coef.tvgarch, 5
coef.tvgarchTest, 8
dccObj, 10 garchObj, 11
mtvgarch, 12
mtvgarchSim, 14
tvgarch, 16 tvgarch-package, 2
tvgarchSim, 18
tvgarchTest, 20
* Spillovers
mtvgarch, 12
* Time Varying Parameter Models coef.mtvgarch, 3

```
coef.tvgarch, 5
coef.tvgarchTest, 8
dcc0bj,10
garchObj,11
mtvgarch, 12
mtvgarchSim, 14
tvgarch, 16
tvgarch-package, 2
tvgarchSim,18
tvgarchTest, 20
```

coef.mtvgarch, 3
coef.tvgarch, 5
coef.tvgarchTest, 8
constrOptim, 13, 14, 17, 18
dccObj, 10
fitted.mtvgarch, 11
fitted.mtvgarch (coef.mtvgarch), 3
fitted.tvgarch, 12
fitted.tvgarch (coef.tvgarch), 5
fitted.tvgarchTest (coef.tvgarchTest), 8
garch0bj, 11
garchx, 5, 14, 16, 18, 19, 21
logLik.mtvgarch (coef.mtvgarch), 3
logLik.tvgarch (coef.tvgarch), 5
logLik.tvgarchTest (coef.tvgarchTest), 8
mtvgarch, 2, 5, 11, 12, 16
mtvgarchSim, 2, 5, 14
nlminb, $13,14,17,18$
nobs.mtvgarch (coef.mtvgarch), 3
nobs.tvgarch (coef.tvgarch), 5
nobs.tvgarchTest (coef.tvgarchTest), 8
plot.mtvgarch (coef.mtvgarch), 3
plot.tvgarch (coef.tvgarch), 5

```
plot.tvgarchTest (coef.tvgarchTest), 8
predict.mtvgarch (coef.mtvgarch), 3
predict.tvgarch (coef.tvgarch), 5
predict.tvgarchTest(coef.tvgarchTest),
    8
print.mtvgarch (coef.mtvgarch), 3
print.tvgarch (coef.tvgarch), 5
print.tvgarchTest(coef.tvgarchTest), 8
quantile, 4, 6,9
quantile.mtvgarch (coef.mtvgarch), 3
quantile.tvgarch (coef.tvgarch),5
quantile.tvgarchTest
    (coef.tvgarchTest), 8
residuals.mtvgarch, 11
residuals.mtvgarch (coef.mtvgarch), 3
residuals.tvgarch, 12
residuals.tvgarch (coef.tvgarch), 5
residuals.tvgarchTest
    (coef.tvgarchTest), 8
rnorm, 15, 19
summary.mtvgarch (coef.mtvgarch), 3
summary.tvgarch (coef.tvgarch), 5
summary.tvgarchTest (coef.tvgarchTest),
    8
toLatex.mtvgarch (coef.mtvgarch), 3
toLatex.tvgarch (coef.tvgarch), 5
toLatex.tvgarchTest (coef.tvgarchTest),
    8
tv (garchObj), 11
tvgarch, 2, 5, 7, 9, 12, 14, 16, 16, 19, 21
tvgarch-package, 2
tvgarchSim, 2, 7, 9, 18, 18, 21
tvgarchTest, 2, 7, 9, 20
tvObj (garchObj), 11
vcov.mtvgarch (coef.mtvgarch), 3
vcov.tvgarch (coef.tvgarch), 5
vcov.tvgarchTest (coef.tvgarchTest), 8
zoo, 4-7, 9, 11-13, 15, 16, 19, 20
```

