Package ‘ulid’

July 9, 2019

Type Package

Title Generate Universally Unique Lexicographically Sortable
Identifiers

Version 0.3.0
Date 2019-07-04
Maintainer Bob Rudis <bob@rud.is>

Description Universally unique identifiers ('UUIDs') can be suboptimal
for many uses-cases because they aren't the most character
efficient way of encoding 128 bits of randomness; v1/v2 versions
are impractical in many environments, as they require access to a
unique, stable MAC address; v3/v5 versions require a unique seed
and produce randomly distributed IDs, which can cause
fragmentation in many data structures; v4 provides no other
information than randomness which can cause fragmentation in many
data structures. 'ULIDs' (<https://github.com/ulid/spec>) have
128-bit compatibility with 'UUID', 1.21e+24 unique 'ULIDs' per
millisecond, are lexicographically sortable, canonically encoded
as a 26 character string, as opposed to the 36 character 'UUID',
use Crockford's 'base32' for better efficiency and readability (5
bits per character), are case insensitive, have no special
characters (i.e. are 'URL' safe) and have a onotonic sort order
(correctly detects and handles the same millisecond).

URL https://gitlab.com/hrbrmstr/ulid

BugReports https://gitlab.com/hrbrmstr/ulid/issues
SystemRequirements C++11

NeedsCompilation yes

Encoding UTF-8

License MIT + file LICENSE

Suggests covr, tinytest, knitr, rmarkdown

Depends R (>=3.2.0)

Imports Rcpp

https://gitlab.com/hrbrmstr/ulid
https://gitlab.com/hrbrmstr/ulid/issues

2 ts_generate

RoxygenNote 6.1.1
LinkingTo Rcpp
VignetteBuilder knitr

Author Bob Rudis [aut, cre] (<https://orcid.org/0000-0001-5670-2640>),
suyash [aut] (ULID C++ Port <https://github.com/suyash/ulid/>)

Repository CRAN
Date/Publication 2019-07-09 16:00:02 UTC

R topics documented:

TS_GENETALE v v e e e e e e e e e e 2
ulid . . e 3
ULIDgenerate ittt e e e e 4
unmarshal 5
Index 6
ts_generate Generate ULIDs from timestamps
Description

This function generates a new Universally Unique Lexicographically Sortable Identifier from a
vector of POSIXct timestamps.

Usage

ts_generate(tsv)

Arguments

tsv vector of POSIXct values

Examples

ts_generate(as.POSIXct("2017-11-01 15:00:00", origin="1970-01-01"))

https://github.com/ulid/spec

ulid 3

ulid Generate Universally Unique Lexicographically Sortable Identifiers

Description

(grifted from https://github.com/ulid/spec)

Details
UUID can be suboptimal for many uses-cases because:

* Itisn’t the most character efficient way of encoding 128 bits of randomness

» UUID v1/v2 is impractical in many environments, as it requires access to a unique, stable
MAC address

» UUID v3/v5 requires a unique seed and produces randomly distributed IDs, which can cause
fragmentation in many data structures

» UUID v4 provides no other information than randomness which can cause fragmentation in
many data structures

Instead, herein is proposed ULID:
ulid() // @1ARZ3NDEKTSV4RRFFQ69G5FAV

* 128-bit compatibility with UUID
1.21e+24 unique ULIDs per millisecond

* Lexicographically sortable!

 Canonically encoded as a 26 character string, as opposed to the 36 character UUID
* Uses Crockford’s base32 for better efficiency and readability (5 bits per character)
* Case insensitive

* No special characters (URL safe)

* Monotonic sort order (correctly detects and handles the same millisecond)

O1AN4Z07BY 79KA1307SR9X4MV3
R I |
Timestamp Randomness

48bits 80bits
Components
Timestamp

* 48 bit integer
* UNIX-time in milliseconds
* Won’t run out of space till the year 10889 AD.

https://github.com/ulid/spec

4 ULIDgenerate

Randomness

* 80 bits

* Cryptographically secure source of randomness, if possible

Sorting

The left-most character must be sorted first, and the right-most character sorted last (lexical order).
The default ASCII character set must be used. Within the same millisecond, sort order is not
guaranteed.

* URL: https://gitlab.com/hrbrmstr/ulid
* BugReports: https://gitlab.com/hrbrmstr/ulid/issues

Author(s)
Bob Rudis (bob@rud.is)

ULIDgenerate Generate ULID

Description

ULIDgenerate() generates a new Universally Unique Lexicographically Sortable Identifier.

Usage

ULIDgenerate(n = 1L)
generate(n = 1L)

ulid_generate(n = 1L)

Arguments

n number of id’s to generate (default = 1)

Examples

ULIDgenerate()

https://gitlab.com/hrbrmstr/ulid
https://gitlab.com/hrbrmstr/ulid/issues
https://github.com/ulid/spec

unmarshal

unmarshal Unmarshal a ULID into a data frame with timestamp and random bit-
string columns

Description

Unmarshal a ULID into a data frame with timestamp and random bitstring columns

Usage

unmarshal (ulids)
Arguments

ulids character ULIDs (e.g. created with ULIDgenerate())
Value

data frame (tibble)

Examples

unmarshal (ULIDgenerate())

Index

generate (ULIDgenerate), 4
ts_generate, 2

ulid, 3

ulid-package (ulid), 3
ulid_generate (ULIDgenerate), 4
ULIDgenerate, 4
ULIDgenerate(),4, 5
unmarshal, 5

	ts_generate
	ulid
	ULIDgenerate
	unmarshal
	Index

