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ts_generate Generate ULIDs from timestamps
Description

This function generates a new Universally Unique Lexicographically Sortable Identifier from a
vector of POSIXct timestamps.

Usage

ts_generate(tsv)

Arguments

tsv vector of POSIXct values

Examples

ts_generate(as.POSIXct("2017-11-01 15:00:00", origin="1970-01-01"))
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ulid 3

ulid Generate Universally Unique Lexicographically Sortable Identifiers

Description

(grifted from https://github.com/ulid/spec)

Details
UUID can be suboptimal for many uses-cases because:

* Itisn’t the most character efficient way of encoding 128 bits of randomness

» UUID v1/v2 is impractical in many environments, as it requires access to a unique, stable
MAC address

» UUID v3/v5 requires a unique seed and produces randomly distributed IDs, which can cause
fragmentation in many data structures

» UUID v4 provides no other information than randomness which can cause fragmentation in
many data structures

Instead, herein is proposed ULID:
ulid() // @1ARZ3NDEKTSV4RRFFQ69G5FAV

* 128-bit compatibility with UUID
1.21e+24 unique ULIDs per millisecond

* Lexicographically sortable!

 Canonically encoded as a 26 character string, as opposed to the 36 character UUID
* Uses Crockford’s base32 for better efficiency and readability (5 bits per character)
* Case insensitive

* No special characters (URL safe)

* Monotonic sort order (correctly detects and handles the same millisecond)
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Timestamp Randomness

48bits 80bits
Components
Timestamp

* 48 bit integer
* UNIX-time in milliseconds
* Won’t run out of space till the year 10889 AD.


https://github.com/ulid/spec
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Randomness

* 80 bits

* Cryptographically secure source of randomness, if possible

Sorting

The left-most character must be sorted first, and the right-most character sorted last (lexical order).
The default ASCII character set must be used. Within the same millisecond, sort order is not
guaranteed.

* URL: https://gitlab.com/hrbrmstr/ulid
* BugReports: https://gitlab.com/hrbrmstr/ulid/issues

Author(s)
Bob Rudis (bob@rud.is)

ULIDgenerate Generate ULID

Description

ULIDgenerate() generates a new Universally Unique Lexicographically Sortable Identifier.

Usage

ULIDgenerate(n = 1L)
generate(n = 1L)

ulid_generate(n = 1L)

Arguments

n number of id’s to generate (default = 1)

Examples

ULIDgenerate()
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unmarshal Unmarshal a ULID into a data frame with timestamp and random bit-
string columns

Description

Unmarshal a ULID into a data frame with timestamp and random bitstring columns

Usage

unmarshal (ulids)
Arguments

ulids character ULIDs (e.g. created with ULIDgenerate())
Value

data frame (tibble)

Examples

unmarshal (ULIDgenerate())
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