
Package ‘usethat’
September 20, 2021

Type Package

Title Automate Analytic Project Setup and Development

URL https://tidylab.github.io/usethat/,

https://github.com/tidylab/usethat

BugReports https://github.com/tidylab/usethat/issues

Version 0.3.0

Date 2021-09-01

Maintainer Harel Lustiger <tidylab@gmail.com>

Description Automate analytic project setup tasks that are otherwise performed
manually. This includes setting up docker, spinning up a microservice, and
more.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Language en-GB

Depends R (>= 3.5)

Suggests testthat

Imports microservices (>= 0.1.2), purrr, usethis, withr

NeedsCompilation no

Author Harel Lustiger [aut, cre] (<https://orcid.org/0000-0003-2953-9598>)

Repository CRAN

Date/Publication 2021-09-20 09:20:02 UTC

R topics documented:
add_service . 2
use_microservice . 3
use_na . 5
use_pipes . 6

Index 7

1

https://tidylab.github.io/usethat/
https://github.com/tidylab/usethat
https://github.com/tidylab/usethat/issues
https://orcid.org/0000-0003-2953-9598

2 add_service

add_service Add a Service Route to the Microservice

Description

Add a Service Route to the Microservice

Usage

add_service(path = ".", name, overwrite = FALSE)

Arguments

path (character) Where is the project root folder?

name (character) what is the service route name? For example, if name = "reposi-
tory" then the set of services would become available at http://127.0.0.1:8080/repository/.

overwrite (logical) Should existing destination files be overwritten?

Details

Lay the infrastructure for an additional set of services. That includes adding a unit test, adding an
endpoint, and extending the entrypointy.

Note: add_service adds a service to pre-existing plumber microservice which you could deploy
by calling use_microservice.

How It Works:
Given a path (.) to a folder and a name (repository)
When add_service is called
Then the function creates the following files:

tests/testthat/test-endpoint-plumber-repository.R
inst/endpoints/plumber-repository.R

And updates the following files:

inst/entrypoints/plumber-foreground.R

When to Use:
In scenarios where services are thematically linked to each other. Examples for themes that should
be mounted separately:

• âC~forecastingâC™ and âC~anomaly detectionâC™
• âC~userâC™ and âC~businessâC™

Value

No return value, called for side effects.

use_microservice 3

See Also

Other microservice utilities: use_microservice()

Examples

path <- tempfile()
dir.create(path, showWarnings = FALSE, recursive = TRUE)
use_microservice(path)

add_service(path, name = "repository")

list.files(path, recursive = TRUE)

use_microservice Use a plumber Microservice in an R Project

Description

Use a plumber Microservice in an R Project

Usage

use_microservice(path = ".", overwrite = FALSE)

Arguments

path (character) Where is the project root folder?

overwrite (logical) Should existing destination files be overwritten?

Details

How It Works:
Given a path to a folder
When use_microservice(path = ".") is called
Then the function creates the following files:

tests/testthat/test-endpoint-plumber-utility.R
inst/configurations/plumber.yml
inst/endpoints/plumber-utility.R
inst/entrypoints/plumber-background.R
inst/entrypoints/plumber-foreground.R

And updates the following files:

tests/testthat/helpers-xyz.R

4 use_microservice

And adds the following packages to the DESCRIPTION file:

type package version
Suggests config *
Suggests httptest *
Suggests httr *
Imports jsonlite *
Suggests pkgload *
Suggests plumber >= 1.0.0
Imports purrr *
Suggests testthat *
Suggests usethis *
Suggests promises *
Suggests future *

When to Use plumber:
• A Single user/machine applications.
• Scheduled tasks. For example, you could use AirFlow with HTTP Operators to automate

processes.
plumber Advantages:

• Comes with familiar way to document the microservice endpoint.
• Maturing package that comes with documentation, examples and support.

plumber Disadvantages:
• Runs on a single thread. That means that parallel algorithms such as random forest, can

only be run on one core.
• Serves only one caller at a time.
• CanâC™t make inward calls for other services, That means plumber canâC™t be re-

entrant. For example, if a microservice has three endpoints,read_table, write_table,
and orchestrator, where the orchestrator reads a data table, transforms it, and writes it
back, then the orchestrator canâC™t make inwards calls via HTTP to read_table and
write_table.

Note: While plumber is single-threaded by nature, it is possible to perform parallel execution
using the promises package. See links under References.

Workflow:
1. Deploy the Microservice infrastructure

microservices::use_microservice(path = ".")
remotes::install_deps()
devtools::document()

1. Spin-up the microservice by running source("./inst/entrypoints/plumber-background.R")

2. Run the microservice unit-test by pressing Ctrl+Shift+T on Windows
Congratulations! You have added a microservice to your application and tested that it works.

References:
• Parallel execution in plumber
• promises package

https://airflow.apache.org/docs/apache-airflow-providers-http/stable/operators.html
https://en.wikipedia.org/wiki/Reentrancy_(computing)
https://en.wikipedia.org/wiki/Reentrancy_(computing)
https://blog.rstudio.com/2021/03/29/plumber-v1-1-0/#parallel-exec
https://rstudio.github.io/promises/articles/overview.html

use_na 5

Value

No return value, called for side effects.

See Also

Other microservice utilities: add_service()

Examples

path <- tempfile()
use_microservice(path)

list.files(path, recursive = TRUE)

cat(read.dcf(file.path(path, "DESCRIPTION"), "Imports"))
cat(read.dcf(file.path(path, "DESCRIPTION"), "Suggests"))

use_na Use NA of different classes in your project

Description

R has several built-in NA values that correspond to the atomic data types, such as NA (logical),
NA_integer_ and NA_character_. Calling use_na() allows the programmer to have NA values of
any class. In addition, use_na() provides several useful NA values such as NA_list_, NA_Date_
and NA_POSIXct_.

Usage

use_na(path = "R", export = TRUE)

Arguments

path (character) A path pointing at where to copy the file.
export If TRUE, the file content is exported to NAMESPACE.

Details

The function copies a file with several NA values to ’path/utils-na.R’.

Value

No return value, called for side effects.

Examples

path <- tempfile()
use_na(path)
print(readLines(file.path(path, "utils-na.R")))

6 use_pipes

use_pipes Use different pipes in your package

Description

The function adds the useful operators to use in your project. These operators include:

• %>% Forward Pipe operator
• %||% NULL operator

Usage

use_pipes(path = "R", export = TRUE)

Arguments

path (character) A path pointing at where to copy the file.

export If TRUE, the file content is exported to NAMESPACE.

Details

The function:

1. Copies a file with several pipes ’path/utils-pipes.R’ and

2. Imports the purrrpackage in the project DESCRIPTION file

Value

No return value, called for side effects.

Examples

path <- tempfile()
use_pipes(path)
print(readLines(file.path(path, "utils-pipes.R")))

Index

∗ microservice utilities
add_service, 2
use_microservice, 3

add_service, 2, 5

use_microservice, 3, 3
use_na, 5
use_pipes, 6

7

	add_service
	use_microservice
	use_na
	use_pipes
	Index

