varycoef: Modeling Spatially Varying Coefficients
Implements a maximum likelihood estimation (MLE)
method for estimation and prediction of Gaussian process-based
spatially varying coefficient (SVC) models
(Dambon et al. (2021a) <doi:10.1016/j.spasta.2020.100470>).
Covariance tapering (Furrer et al. (2006) <doi:10.1198/106186006X132178>) can
be applied such that the method scales to large data. Further, it implements
a joint variable selection of the fixed and random effects (Dambon et al.
(2021b) <arXiv:2101.01932>). The package and its capabilities are described
in (Dambon et al. (2021c) <arXiv:2106.02364>).
Version: |
0.3.3 |
Depends: |
R (≥ 3.5.0), spam |
Imports: |
glmnet, lhs, methods, mlr, mlrMBO, optimParallel (≥ 0.8-1), ParamHelpers, pbapply, smoof |
Suggests: |
DiceKriging, gstat, parallel, spData, sp |
Published: |
2022-05-31 |
Author: |
Jakob A. Dambon
[aut, cre],
Fabio Sigrist
[ctb],
Reinhard Furrer
[ctb] |
Maintainer: |
Jakob A. Dambon <jakob.dambon at math.uzh.ch> |
BugReports: |
https://github.com/jakobdambon/varycoef/issues |
License: |
GPL-2 |
URL: |
https://github.com/jakobdambon/varycoef |
NeedsCompilation: |
no |
Citation: |
varycoef citation info |
CRAN checks: |
varycoef results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=varycoef
to link to this page.