Package 'vcdExtra'

April 21, 2022
Type Package
Title 'vcd' Extensions and Additions
Version 0.8-0
Date 2022-04-20
Language en-US
Author Michael Friendly [aut, cre],
Heather Turner [ctb],
Achim Zeileis [ctb],
Duncan Murdoch [ctb],
David Firth [ctb],
Matt Kumar [ctb],
Shuguang Sun [ctb]
Maintainer Michael Friendly friendly@yorku.ca
Depends R ($>=2.10$), vcd, gnm ($>=1.0-3$), grid
Suggests gmodels, Fahrmeir, effects, VGAM, plyr, lmtest, nnet, ggplot2, Sleuth2, car, lattice, stats4, rgl, AER, coin, Hmisc, knitr, rmarkdown
Imports MASS, grDevices, stats, utils, ca
Description Provides additional data sets, methods and documentation to complement the 'vcd' pack-
age for Visualizing Categorical Data
and the 'gnm' package for Generalized Nonlinear Models.
In particular, 'vcdExtra' extends mosaic, assoc and sieve plots from 'vcd' to handle 'glm()' and 'gnm()' models and
adds a 3D version in 'mosaic3d'. Additionally, methods are provided for comparing and visualiz-
ing lists of
'glm' and 'loglm' objects. This package is now a support package for the book, ' ${ }^{\text {Dis- }}$
crete Data Analysis with R" by
Michael Friendly and David Meyer.
License GPL (>= 2)
URL https://friendly.github.io/vcdExtra/
BugReports https://github.com/friendly/vcdExtra
VignetteBuilder knitr, rmarkdown
LazyLoad yes
LazyData yes
NeedsCompilation no
Repository CRAN
Date/Publication 2022-04-21 14:10:01 UTC
R topics documented:
vcdExtra-package 2
Abortion 4
Accident 5
AirCrash 7
Alligator 8
Bartlett 10
blogits 11
Burt 12
Caesar 13
Cancer 15
CMHtest 15
collapse.table 19
Cormorants 21
Crossings 22
cutfac 24
CyclingDeaths 25
datasets 26
DaytonSurvey 27
Depends 29
Detergent 30
Donner 31
Draft1970 33
Draft1970table 34
Dyke 36
expand.dft 37
Fungicide 39
Geissler 40
Gilby 41
GKgamma 42
Glass 44
glmlist 45
GSS 47
HairEyePlace 47
Hauser79 48
Heart 50
Heckman 51
HLtest 53
HospVisits 55
Hoyt 56
ICU 58
JobSat 60
Kway 61
logLik.loglm 63
loglin-utilities 64
logseries 68
LRstats 70
Mammograms 71
mcaplot 72
Mental 74
Mice 75
Mobility 76
modFit 76
mosaic.glm 77
mosaic.glmlist 81
mosaic3d 83
PhdPubs 86
print.Kappa 87
seq_loglm 88
seq_mosaic 90
ShakeWords 92
split3d 93
Summarise 94
Titanicp 96
Toxaemia 97
TV 98
update.xtabs 100
vcdExtra-deprecated 101
Vietnam 101
Vote1980 102
WorkerSat 103
Yamaguchi87 104
zero.test 106
vcdExtra-package Extensions and additions to vcd: Visualizing Categorical Data

Description

This package provides additional data sets, documentation, and a few functions designed to extend the vcd package for Visualizing Categorical Data and the gnm package for Generalized Nonlinear Models. In particular, vcdExtra extends mosaic, assoc and sieve plots from vcd to handle glm() and gnm() models and adds a 3D version in mosaic3d.
This package is now a support package for the book, Discrete Data Analysis with R by Michael Friendly and David Meyer, Chapman \& Hall/CRC, 2016, https://www.crcpress.com/

Discrete-Data-Analysis-with-R-Visualization-and-Modeling-Techniques-for/ Friendly-Meyer/9781498725835 with a number of additional data sets, and functions. The web site for the book is http://ddar.datavis.ca.

Details

Package:	vcdExtra
Type:	Package
Version:	$0.8-0$
Date:	2022-04-20
License:	GPL version 2 or newer
LazyLoad:	yes

The main purpose of this package is to serve as a sandbox for introducing extensions of mosaic plots and related graphical methods that apply to loglinear models fitted using glm() and related, generalized nonlinear models fitted with $g n m$ () in the gnm-package package. A related purpose is to fill in some holes in the analysis of categorical data in R, not provided in base R, the vcd, or other commonly used packages.

The method mosaic.glm extends the mosaic.loglm method in the ved package to this wider class of models. This method also works for the generalized nonlinear models fit with the gnm-package package, including models for square tables and models with multiplicative associations.
mosaic3d introduces a 3D generalization of mosaic displays using the rgl package.
In addition, there are several new data sets, a tutorial vignette,
vcd-tutorial Working with categorical data with R and the vcd package, vignette ("vcd-tutorial", package = "vcdExtra")
and a few functions for manipulating categorical data sets and working with models for categorical data.
A new class, glmlist, is introduced for working with collections of glm objects, e.g., Kway for fitting all K-way models from a basic marginal model, and LRstats for brief statistical summaries of goodness-of-fit for a collection of models.

For square tables with ordered factors, Crossings supplements the specification of terms in model formulas using Symm, Diag, Topo, etc. in the gnm-package.
Some of these extensions may be migrated into ved or gnm.
A collection of demos is included to illustrate fitting and visualizing a wide variety of models:
mental-glm Mental health data: mosaics for $\operatorname{glm}()$ and $g n m()$ models
occStatus Occupational status data: Compare mosaic using expected= to mosaic.glm
ucb-glm UCBAdmissions data: Conditional independence via $\log \operatorname{lm}()$ and $g \operatorname{lm}()$
vision-quasi VisualAcuity data: Quasi- and Symmetry models
yaish-unidiff Yaish data: Unidiff model for 3-way table
Wong2-3 Political views and support for women to work (U, R, C, R+C and RC(1) models)

Wong3-1 Political views, support for women to work and national welfare spending (3-way, marginal, and conditional independence models)
housing Visualize glm(), multinom() and polr() models from example (housing, package="MASS")
Use demo (package="vcdExtra") for a complete current list.
The vedExtra package now contains a large number of data sets illustrating various forms of categorical data analysis and related visualizations, from simple to advanced. Use data (package="vcdExtra") for a complete list, or datasets (package="vcdExtra") for an annotated one showing the class and dim for each data set.

Author(s)

Michael Friendly
Maintainer: Michael Friendly <friendly AT yorku.ca> II (ORCID ${ }^{1}$)

References

Friendly, M. Visualizing Categorical Data, Cary NC: SAS Institute, 2000. Web materials: http: //www.datavis.ca/books/vcd/.

Friendly, M. and Meyer, D. (2016). Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Boca Raton, FL: Chapman \& Hall/CRC. http: //ddar.datavis.ca.

Meyer, D.; Zeileis, A. \& Hornik, K. The Strucplot Framework: Visualizing Multi-way Contingency Tables with vcd Journal of Statistical Software, 2006, 17, 1-48. Available in R via vignette ("strucplot " , package = "vcd")

Turner, H. and Firth, D. Generalized nonlinear models in R: An overview of the gnm package, 2007, http://eprints.ncrm.ac.uk/472/. Available in R via vignette ("gnmOverview", package = "gnm").

See Also

gnm-package, for an extended range of models for contingency tables mosaic for details on mosaic displays within the strucplot framework.

Examples

```
example(mosaic.glm)
demo("mental-glm")
```

[^0]Abortion Abortion Opinion Data

Description

Opinions about abortion classified by gender and SES

Usage

data(Abortion)

Format

A 3-dimensional array resulting from cross-tabulating 3 variables for 1100 observations. The variable names and their levels are:

No	Name	Levels
1	Sex	"Female", "Male"
2	Status	"Lo", "Hi"
3	Support_Abortion	"Yes", "No"

Details

The combinations of Sex and Status represent four independent samples, having fixed SexStatus marginal totals. Thus the Sex:Status association must be included in any loglinear model. Support_Abortion is a natural response variable.

Source

Christensen, R. (1990). Log-Linear Models, New York, NY: Springer-Verlag, p. 92, Example 3.5.2. Christensen, R. (1997). Log-Linear Models and Logistic Regression, New York, NY: Springer, p. 100, Example 3.5.2.

Examples

```
data(Abortion)
# example goes here
ftable(Abortion)
mosaic(Abortion, shade=TRUE)
# stratified by Sex
fourfold(aperm(Abortion, 3:1))
# stratified by Status
fourfold(aperm(Abortion, c(3,1,2)))
```


Description

Bertin (1983) used these data to illustrate the cross-classification of data by numerous variables, each of which could have various types and could be assigned to various visual attributes.

For modeling and visualization purposes, the data can be treated as a 4-way table using loglinear models and mosaic displays, or as a frequency-weighted data frame using a binomial response for result ("Died" vs. "Injured") and plots of predicted probabilities.

Usage

data(Accident)

Format

A data frame in frequency form (comprising a $5 \times 2 \times 4 \times 2$ table) with 80 observations on the following 5 variables.
age an ordered factor with levels $0-9<10-19<20-29<30-49<50+$
result a factor with levels Died Injured
mode mode of transportation, a factor with levels 4-Wheeled Bicycle Motorcycle Pedestrian
gender a factor with levels Female Male
Freq a numeric vector

Details

age is an ordered factor, but arguably, mode should be treated as ordered, with levels Pedestrian <Bicycle<Motorcycle<4-Wheeled as Bertin does. This affects the parameterization in models, so we don't do this directly in the data frame.

Source

Bertin (1983), p. 30; original data from the Ministere des Travaux Publics

References

Bertin, J. (1983), Semiology of Graphics, University of Wisconsin Press.

Examples

```
# examples
data(Accident)
head(Accident)
# for graphs, reorder mode
Accident$mode <- ordered(Accident$mode,
    levels=levels(Accident $mode) [c(4, 2, 3,1)])
# Bertin's table
accident_tab <- xtabs(Freq ~ gender+mode+age+result, data=Accident)
structable(mode+gender ~ age+result, data=accident_tab)
## Loglinear models
## ----------------
# mutual independence
acc.mod0 <- glm(Freq ~ age+result+mode+gender, data=Accident, family=poisson)
LRstats(acc.mod0)
mosaic(acc.mod0, ~mode+age+gender+result)
# result as a response
acc.modl <- glm(Freq ~ age*mode*gender + result, data=Accident, family=poisson)
LRstats(acc.mod1)
mosaic(acc.mod1, ~mode+age+gender+result,
    labeling_args = list(abbreviate = c(gender=1, result=4)))
# allow two-way association of result with each explanatory variable
acc.mod2 <- glm(Freq ~ age*mode*gender + result*(age+mode+gender), data=Accident, family=poi
LRstats(acc.mod2)
mosaic(acc.mod2, ~mode+age+gender+result,
    labeling_args = list(abbreviate = c(gender=1, result=4)))
acc.mods <- glmlist(acc.mod0, acc.mod1, acc.mod2)
LRstats(acc.mods)
## Binomial (logistic regression) models for result
## ----------------------------------------------------
library(car) # for Anova()
acc.bin1 <- glm(result=='Died' ~ age+mode+gender,
    weights=Freq, data=Accident, family=binomial)
Anova(acc.bin1)
acc.bin2 <- glm(result=='Died' ~ (age+mode+gender)^2,
    weights=Freq, data=Accident, family=binomial)
Anova(acc.bin2)
acc.bin3 <- glm(result=='Died' ~ (age+mode+gender)^3,
    weights=Freq, data=Accident, family=binomial)
Anova(acc.bin3)
# compare models
anova(acc.bin1, acc.bin2, acc.bin3, test="Chisq")
```

```
# visualize probability of death with effect plots
## Not run:
library(effects)
plot(allEffects(acc.bin1), ylab='Pr (Died)')
plot(allEffects(acc.bin2), ylab='Pr (Died)')
## End(Not run)
#
```

```
AirCrash Air Crash Data
```


Description

Data on all fatal commercial airplane crashes from 1993-2015. Excludes small planes (less than 6 passengers) and non-commercial (cargo, military, private) aircraft.

Usage

data("AirCrash")

Format

A data frame with 439 observations on the following 5 variables.
Phase phase of the flight, a factor with levels en route landing standing take-off unknown

Cause a factor with levels criminal human error mechanical unknown weather
date date of crash, a Date
Fatalities number of fatalities, a numeric vector
Year year, a numeric vector

Details

Phase of the flight was cleaned by combining related variants, spelling, etc.

Source

Originally from David McCandless, http://www.informationisbeautiful.net/visualizations/ plane-truth-every-single-commercial-plane-crash-visualized/, with the data at https://docs.google.com/spreadsheets/d/10vDq4_BtbR6nSnnHnjD5hVC3HQ-ulZPGbo0RDG edit?usp=drive_web, downloaded April 14, 2015.

References

Rick Wicklin, http://blogs.sas.com/content/iml/2015/03/30/visualizing-airline-crashes. html

Examples

```
data(AirCrash)
aircrash.tab <- xtabs(~Phase + Cause, data=AirCrash)
mosaic(aircrash.tab, shade=TRUE)
# fix label overlap
mosaic(aircrash.tab, shade=TRUE,
        labeling_args=list (rot_labels=c (30, 30, 30, 30)))
# reorder by Phase
phase.ord <- rev(c(3,4,1,2,5))
mosaic(aircrash.tab[phase.ord,], shade=TRUE,
    labeling_args=list(rot_labels=c(30, 30, 30, 30)), offset_varnames=0.5)
# reorder by frequency
phase.ord <- order(rowSums(aircrash.tab), decreasing=TRUE)
cause.ord <- order(colSums(aircrash.tab), decreasing=TRUE)
mosaic(aircrash.tab[phase.ord,cause.ord], shade=TRUE,
    labeling_args=list(rot_labels=c(30, 30, 30, 30)))
```

library (ca)
aircrash.ca <- ca(aircrash.tab)
plot (aircrash.ca)
Alligator
Alligator Food Choice

Description

The Alligator data, from Agresti (2002), comes from a study of the primary food choices of alligators in four Florida lakes. Researchers classified the stomach contents of 219 captured alligators into five categories: Fish (the most common primary food choice), Invertebrate (snails, insects, crayfish, etc.), Reptile (turtles, alligators), Bird, and Other (amphibians, plants, household pets, stones, and other debris).

Usage

data(Alligator)

Format

A frequency data frame with 80 observations on the following 5 variables.
lake a factor with levels George Hancock Oklawaha Trafford
sex a factor with levels female male
size alligator size, a factor with levels large ($>2.3 \mathrm{~m}$) small ($<=2.3 \mathrm{~m}$)
food primary food choice, a factor with levels bird fish invert other reptile
count cell frequency, a numeric vector

Details

The table contains a fair number of 0 counts.
food is the response variable. fish is the most frequent choice, and often taken as a baseline category in multinomial response models.

Source

Agresti, A. (2002). Categorical Data Analysis, New York: Wiley, 2nd Ed., Table 7.1

Examples

```
data(Alligator)
# change from frequency data.frame to table
allitable <- xtabs(count~lake+sex+size+food, data=Alligator)
# Agresti's Table 7.1
structable(food~lake+sex+size, allitable)
plot(allitable, shade=TRUE)
# mutual independence model
mosaic(~food+lake+size, allitable, shade=TRUE)
# food jointly independent of lake and size
mosaic(~food+lake+size, allitable, shade=TRUE, expected=~lake:size+food)
if (require(nnet)) {
# multinomial logit model
mod1 <- multinom(food ~ lake+size+sex, data=Alligator, weights=count)
}
```

```
    Bartlett
```

 Bartlett data on plum root cuttings

Description

In an experiment to investigate the effect of cutting length (two levels) and planting time (two levels) on the survival of plum root cuttings, 240 cuttings were planted for each of the 2×2 combinations of these factors, and their survival was later recorded.
Bartlett (1935) used these data to illustrate a method for testing for no three-way interaction in a contingency table.

Usage

data(Bartlett)

Format

A 3-dimensional array resulting from cross-tabulating 3 variables for 960 observations. The variable names and their levels are:

No	Name	Levels
1	Alive	"Alive", "Dead"
2	Time	"Now", "Spring"
3	Length	"Long", "Short"

Source

Hand, D. and Daly, F. and Lunn, A. D.and McConway, K. J. and Ostrowski, E. (1994). A Handbook of Small Data Sets. London: Chapman \& Hall, p. 15, \# 19.

References

Bartlett, M. S. (1935). Contingency Table Interactions Journal of the Royal Statistical Society, Supplement, 1935, 2, 248-252.

Examples

```
data(Bartlett)
fourfold(Bartlett, mfrow=c(1,2))
mosaic(Bartlett, shade=TRUE)
pairs(Bartlett, gp=shading_Friendly)
```


Description

This function calculates the log odds and log odds ratio for two binary responses classified by one or more stratifying variables.
It is useful for plotting the results of bivariate logistic regression models, such as those fit using vglm in the VGAM.

Usage

```
blogits(Y, add, colnames, row.vars, rev=FALSE)
```


Arguments

Y A four-column matrix or data frame whose columns correspond to the 2×2 combinations of two binary responses.
add Constant added to all cells to allow for zero frequencies. The default is 0.5 if $\operatorname{any}(\mathrm{Y})==0$ and 0 otherwise.
colnames Names for the columns of the results. The default is c ("logit1", "logit2", "logor"). If less than three names are supplied, the remaining ones are filled in from the default.
row. vars A data frame or matrix giving the factor levels of one or more factors corresponding to the rows of Y
rev A logical, indicating whether the order of the columns in Y should be reversed.

Details

For two binary variables with levels 0,1 the logits are calculated assuming the columns in Y are given in the order $11,10,01,00$, so the logits give the log odds of the 1 response compared to 0 . If this is not the case, either use rev=TRUE or supply Y [, 4:1] as the first argument.

Value

A data frame with nrow (Y) rows and $3+\mathrm{ncol}$ (row.vars) columns

Author(s)

Michael Friendly

References

Friendly, M. and Meyer, D. (2016). Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Boca Raton, FL: Chapman \& Hall/CRC. http: //ddar.datavis.ca.

See Also

> vglm

Examples

```
data(Toxaemia)
tox.tab <- xtabs(Freq~class + smoke + hyper + urea, Toxaemia)
# reshape to 4-column matrix
toxaemia <- t(matrix(aperm(tox.tab), 4, 15))
colnames(toxaemia) <- c("hu", "hU", "Hu", "HU")
rowlabs <- expand.grid(smoke=c("0", "1-19", "20+"), class=factor(1:5))
toxaemia <- cbind(toxaemia, rowlabs)
# logits for H and U
logitsTox <- blogits(toxaemia[,4:1], add=0.5, colnames=c("logitH", "logitW"), row.vars=rowla
logitsTox
```

Burt Burt (1950) Data on Hair, Eyes, Head and Stature

Description

Cyril Burt (1950) gave these data, on a sample of 100 people from Liverpool, to illustrate the application of a method of factor analysis (later called multiple correspondence analysis) applied to categorical data.
He presented these data initially in the form that has come to be called a "Burt table", giving the univariate and bivariate frequencies for an n-way frequency table.

Usage

```
data("Burt")
```


Format

A frequency data frame (representing a $3 \times 3 \times 2 \times 2$ frequency table) with 36 observations on the following 5 variables.

Hair hair color, a factor with levels Fair Red Dark
Eyes eye color, a factor with levels Light Mixed Dark
Head head shape, a factor with levels Narrow Wide
Stature height, a factor with levels Tall Short
Freq a numeric vector

Details

Burt says: "In all, 217 individuals were examined, about two-thirds of them males. But, partly to simplify the calculations and partly because the later observations were rather more trustworthy, I shall here restrict my analysis to the data obtained from the last hundred males in the series."
Head and St ature reflect a binary coding where people are classified according to whether they are below or above the average for the population.

Source

Burt, C. (1950). The factorial analysis of qualitative data, British Journal of Statistical Psychology, 3(3), 166-185. Table IX.

Examples

```
data(Burt)
mosaic(Freq ~ Hair + Eyes + Head + Stature, data=Burt, shade=TRUE)
#or
burt.tab <- xtabs(Freq ~ Hair + Eyes + Head + Stature, data=Burt)
mosaic(burt.tab, shade=TRUE)
```


Caesar Risk Factors for Infection in Caesarian Births

Description

Data from infection from birth by Caesarian section, classified by Risk (two levels), whether Antibiotics were used (two levels) and whether the Caesarian section was Planned or not. The outcome is Infection (three levels).

Usage

data(Caesar)

Format

A 4-dimensional array resulting from cross-tabulating 4 variables for 251 observations. The variable names and their levels are:

No	Name	Levels
1	Infection	"Type 1", "Type 2", "None"
2	Risk	"Yes", "No" (presence of risk factors)
3	Antibiotics	"Yes", "No" (were antibiotics given?)
4	Planned	"Yes", "No" (was the C section planned?)

Details

Infection is regarded as the response variable here. There are quite a few 0 cells here, particularly when Risk is absent and the Caesarian section was unplanned. Should these be treated as structural or sampling zeros?

Source

Fahrmeir, L. \& Tutz, G. (1994). Multivariate Statistical Modelling Based on Generalized Linear Models New York: Springer Verlag, Table 1.1.

See Also

caesar for the same data recorded as a frequency data frame with other variables.

Examples

```
data(Caesar)
#display table; note that there are quite a few 0 cells
structable(Caesar)
require(MASS)
# baseline model, Infection as response
Caesar.mod0 <- loglm(~Infection + (Risk*Antibiotics*Planned), data=Caesar)
# NB: Pearson chisq cannot be computed due to the 0 cells
Caesar.modo
mosaic(Caesar.mod0, main="Baseline model")
# Illustrate handling structural zeros
zeros <- 0+ (Caesar >0)
zeros[1,,1,1] <- 1
structable(zeros)
# fit model excluding possible structural zeros
Caesar.mod0s <- loglm(~Infection + (Risk*Antibiotics*Planned), data=Caesar,
start=zeros)
Caesar.mod0s
anova(Caesar.mod0, Caesar.mod0s, test="Chisq")
mosaic (Caesar.mod0s)
# what terms to add?
add1(Caesar.mod0, ~.^2, test="Chisq")
# add Association of Infection:Antibiotics
Caesar.mod1 <- update(Caesar.mod0, ~.+Infection:Antibiotics)
anova(Caesar.mod0, Caesar.mod1, test="Chisq")
mosaic(Caesar.mod1, gp=shading_Friendly, main="Adding Infection:Antibiotics")
```


Cancer Survival of Breast Cancer Patients

Description

Three year survival of 474 breast cancer patients according to nuclear grade and diagnostic center.

Usage

```
data(Cancer)
```


Format

A 3-dimensional array resulting from cross-tabulating 3 variables for 474 observations. The variable names and their levels are:

No	Name	Levels
1	Survival	"Died", "Surv"
2	Grade	"Malignant", "Benign"
3	Center	"Boston", "Glamorgan"

Source

Lindsey, J. K. (1995). Analysis of Frequency and Count Data Oxford, UK: Oxford University Press. p. 38, Table 2.5.

Whittaker, J. (1990) Graphical Models in Applied Multivariate Statistics New York: John Wiley and Sons, p. 220.

Examples

```
    data(Cancer)
    # example goes here
```

CMHtest Generalized Cochran-Mantel-Haenszel Tests

Description

Provides generalized Cochran-Mantel-Haenszel tests of association of two possibly ordered factors, optionally stratified other factor(s). With strata, CMHtest calculates these tests for each level of the stratifying variables and also provides overall tests controlling for the strata.

For ordinal factors, more powerful tests than the test for general association (independence) are obtained by assigning scores to the row and column categories.

Usage

```
CMHtest(x, ...)
## S3 method for class 'formula'
CMHtest(formula, data = NULL, subset = NULL, na.action = NULL, ...)
## Default S3 method:
CMHtest(x, strata = NULL,
    rscores = 1:R, cscores = 1:C,
    types = c("cor", "rmeans", "cmeans", "general"),
    overall=FALSE, details=overall, ...)
## S3 method for class 'CMHtest'
print(x, digits = max(getOption("digits") - 2, 3), ...)
```


Arguments

x
formula
data
subset
na.action
strata For a 3- or higher-way table, the names or numbers of the factors to be treated as strata. By default, the first 2 factors are treated as the main table variables, and all others considered stratifying factors.
rscores Row scores. Either a set of numbers (typically integers, 1:R) or the string "midrank" for standardized midrank scores, or NULL to exclude tests that depend on row scores.
cscores Column scores. Same as for row scores.
types Types of CMH tests to compute: Any one or more of c ("cor", "cmeans", "rmeans", "general" or "ALL" for all of these.
overall logical. Whether to calculate overall tests, controlling for the stratifying factors.
details logical. Whether to include computational details in the result
. . . Other arguments passed to default method.
digits Digits to print.

Details

The standard χ^{2} tests for association in a two-way table treat both table factors as nominal (unordered) categories. When one or both factors of a two-way table are quantitative or ordinal, more powerful tests of association may be obtained by taking ordinality into account using row and or column scores to test for linear trends or differences in row or column means.
The CMH analysis for a two-way table produces generalized Cochran-Mantel-Haenszel statistics (Landis etal., 1978).

These include the CMH correlation statistic ("cor"), treating both factors as ordered. For a given statum, with equally spaced row and column scores, this CMH statistic reduces to $(n-1) r^{2}$, where r is the Pearson correlation between X and Y. With "midrank" scores, this CMH statistic is analogous to $(n-1) r_{S}^{2}$, using the Spearman rank correlation.
The ANOVA (row mean scores and column mean scores) statistics, treat the columns and rows respectively as ordinal, and are sensitive to mean shifts over columns or rows. These are transforms of the F statistics from one-way ANOVAs with equally spaced scores and to Kruskal-Wallis tests with "midrank" scores.

The CMH general association statistic treat both factors as unordered, and give a test closely related to the Pearson χ^{2} test. When there is more than one stratum, the overall general CMH statistic gives a stratum-adjusted Pearson χ^{2}, equivalent to what is calculated by mantelhaen.test.
For a 3+ way table, one table of CMH tests is produced for each combination of the factors identified as strata. If overall=TRUE, an additional table is calculated for the same two primary variables, controlling for (pooling over) the strata variables.

These overall tests implicitly assume no interactions between the primary variables and the strata and they will have low power in the presence of interactions.

Value

An object of class "CMHtest ", a list with the following 4 components:
table A matrix containing the test statistics, with columns Chisq, Df and Prob
names The names of the table row and column variables
rscore Row scores
cscore Column scores
If details==TRUE, additional components are included.
If there are strata, the result is a list of "CMHtest" objects. If overall=TRUE another component, labeled ALL is appended to the list.

Author(s)

Michael Friendly

References

Stokes, M. E. \& Davis, C. S. \& Koch, G., (2000). Categorical Data Analysis using the SAS System, 2nd Ed., Cary, NC: SAS Institute, pp 74-75, 92-101, 124-129. Details of the computation
are given at: http://support.sas.com/documentation/cdl/en/statug/63033/ HTML/default/viewer.htm\#statug_freq_a0000000648.htm
Cochran, W. G. (1954), Some Methods for Strengthening the Common χ^{2} Tests, Biometrics, 10, 417-451.
Landis, R. J., Heyman, E. R., and Koch, G. G. (1978). Average Partial Association in Threeway Contingency Tables: A Review and Discussion of Alternative Tests, International Statistical Review, 46, 237-254.
Mantel, N. (1963), Chi-square Tests with One Degree of Freedom: Extensions of the MantelHaenszel Procedure," Journal of the American Statistical Association, 58, 690-700.

See Also

cmh_test provides the CMH test of general association; lbl_test provides the CMH correlation test of linear by linear association.
mantelhaen.test provides the overall general Cochran-Mantel-Haenszel chi-squared test of the null that two nominal variables are conditionally independent in each stratum, assuming that there is no three-way interaction

Examples

```
data(JobSat, package="vcdExtra")
CMHtest(JobSat)
CMHtest(JobSat, rscores="midrank", cscores="midrank")
# formula interface
CMHtest(~ ., data=JobSat)
# A 3-way table (both factors ordinal)
data(MSPatients, package="vcd")
CMHtest(MSPatients)
# also calculate overall tests, controlling for Patient
CMHtest(MSPatients, overall=TRUE)
# compare with mantelhaen.test
mantelhaen.test(MSPatients)
# formula interface
CMHtest(~ ., data=MSPatients, overall=TRUE)
# using a frequency data.frame
CMHtest(xtabs(Freq~ses+mental, data=Mental))
# or, more simply
CMHtest(Freq~ses+mental, data=Mental)
# conditioning formulae
CMHtest(Freq~right+left|gender, data=VisualAcuity)
CMHtest(Freq ~ attitude+memory|education+age, data=Punishment)
```

```
# Stokes etal, Table 5.1, p 92: two unordered factors
parties <- matrix(
c(221, 160, 360, 140,
    200, 291, 160, 311,
    208, 106, 316, 97), nrow=3, ncol=4, byrow=TRUE)
dimnames(parties) <- list(party=c("Dem", "Indep", "Rep"),
    neighborhood=c("Bayside", "Highland", "Longview", "Sheffield"))
CMHtest(parties, rscores=NULL, cscores=NULL)
# compare with Pearson chisquare
chisq.test(parties)
```

```
collapse.table Collapse Levels of a Table
```


Description

Collapse (or re-label) variables in a contingency table, array or ftable object by re-assigning levels of the table variables.

Usage

collapse.table(table, ...)

Arguments

table Atable, array or ftable object
. . A collection of one or more assignments of factors of the table to a list of levels

Details

Each of the . . . arguments must be of the form variable = levels, where variable is the name of one of the table dimensions, and levels is a character or numeric vector of length equal to the corresponding dimension of the table.

Value

A xtabs and table object, representing the original table with one or more of its factors collapsed or rearranged into other levels.

Author(s)

Michael Friendly

See Also

expand.dft expands a frequency data frame to case form.
margin.table "collapses" a table in a different way, by summing over table dimensions.

Examples

```
# create some sample data in table form
sex <- c("Male", "Female")
age <- letters[1:6]
education <- c("low", 'med', 'high')
data <- expand.grid(sex=sex, age=age, education=education)
counts <- rpois(36, 100)
data <- cbind(data, counts)
t1 <- xtabs(counts ~ sex + age + education, data=data)
structable(t1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \#\# & & a & b & C & d & e & f \\
\hline \#\# sex & education & & & & & & \\
\hline \#\# Male & low & 119 & 101 & 109 & 85 & 99 & 93 \\
\hline \#\# & med & 94 & 98 & 103 & 108 & 84 & 84 \\
\hline \#\# & high & 81 & 88 & 96 & 110 & 100 & 92 \\
\hline \#\# Female & low & 107 & 104 & 95 & 86 & 103 & 96 \\
\hline \#\# & med & 104 & 98 & 94 & 95 & 110 & 106 \\
\hline \#\# & high & 93 & 85 & 90 & 109 & 99 & 86 \\
\hline
\end{tabular}
# collapse age to 3 levels
t2 <- collapse.table(t1, age=c("A", "A", "B", "B", "C", "C"))
structable(t2)
\begin{tabular}{llrrrr} 
\#\# & & age & A & B & C \\
\#\# sex & education & & & \\
\#\# Male & low & 220 & 194 & 192 \\
\#\# & med & 192 & 211 & 168 \\
\#\# & high & 169 & 206 & 192 \\
\#\# Female & low & 211 & 181 & 199 \\
\#\# & med & 202 & 189 & 216 \\
\#\# & high & 178 & 199 & 185
\end{tabular}
# collapse age to 3 levels and pool education: "low" and "med" to "low"
t3 <- collapse.table(t1, age=c("A", "A", "B", "B", "C", "C"),
    education=c("low", "low", "high"))
structable(t3)
\begin{tabular}{lllrrr} 
\#\# & & age & A & B & C \\
\#\# sex & education & & & \\
\#\# Male & low & 412 & 405 & 360 \\
\#\# & high & 169 & 206 & 192 \\
\#\# Female & low & 413 & 370 & 415 \\
\#\# & high & 178 & 199 & 185
\end{tabular}
# change labels for levels of education to 1:3
t4 <- collapse.table(t1, education=1:3)
structable(t4)
```

\#\#			age	a	b	C	d	e	f
\#\#	sex	education							
\#\#	Male	1		119	101	109	85	99	93
\#\#		2		94	98	103	108	84	84
\#\#		3		81	88	96	110	100	92
\#\#	Female	1		107	104	95	86	103	96
\#\#		2		104	98	94	95	110	106
\#\#		3		93	85	90	109	99	86

Description

Male double-crested cormorants use advertising behavior to attract females for breeding. In this study by Meagan McRae (2015), cormorants were observed two or three times a week at six stations in a tree-nesting colony for an entire season, April 10, 2014-July 10, 2014. The number of advertising birds was counted and these observations were classified by characteristics of the trees and nests.
The goal is to determine how this behavior varies temporally over the season and spatially, as well as with characteristics of nesting sites.

Usage

```
data("Cormorants")
```


Format

A data frame with 343 observations on the following 8 variables.
category Time of season, divided into 3 categories based on breeding chronology, an ordered factor with levels Pre<Incubation < Chicks Present
week Week of the season
station Station of observations on two different peninsulas in a park, a factor with levels B1 B2 C1 C2 C3 C4
nest Type of nest, an ordered factor with levels no < partial < full
height Relative height of bird in the tree, an ordered factor with levels low < mid<high
density Number of other nests in the tree, an ordered factor with levels zero<few < moderate <high
tree_health Health of the tree the bird is advertising in, a factor with levels dead healthy count Number of birds advertising, a numeric vector

Details

Observations were made on only 2 days in weeks 3 and 4, but 3 days in all other weeks. One should use \log (days) as an offset, so that the response measures rate.

```
Cormorants$days <-ifelse (Cormorants$week %in% 3:4,2,3)
```


Source

McRae, M. (2015). Spatial, Habitat and Frequency Changes in Double-crested Cormorant Advertising Display in a Tree-nesting Colony. Unpublished MA project, Environmental Studies, York University.

Examples

```
data(Cormorants)
str(Cormorants)
if (require("ggplot2")) {
    print(ggplot(Cormorants, aes(count)) + geom_histogram(binwidth=0.5) +
    labs(x="Number of birds advertising"))
# Quick look at the data, on the log scale, for plots of `count ~ week`,
# stratified by something else.
    print(ggplot(Cormorants, aes(week, count, color=height)) + geom_jitter() +
    stat_smooth(method="loess", size=2) + scale_y_log10(breaks=c(1,2,5,10)) +
    geom_vline(xintercept=c(4.5, 9.5)))
}
# ### models using week
fit1 <-glm(count ~ week + station + nest + height + density + tree_health, data=Cormorants,
        family = poisson)
if (requireNamespace("car"))
    car::Anova(fit1)
# plot fitted effects
if (requireNamespace("effects"))
    plot(effects::allEffects(fit1))
```

Crossings Crossings Interaction of Factors

Description

Given two ordered factors in a square, $n \mathrm{x} n$ frequency table, Crossings creates an $\mathrm{n}-1$ column matrix corresponding to different degrees of difficulty in crossing from one level to the next, as described by Goodman (1972).

Usage

Crossings(...)

Arguments

. .
Two factors

Value

For two factors of n levels, returns a binary indicator matrix of $n * n$ rows and $n-1$ columns.

Author(s)

Michael Friendly and Heather Turner

References

Goodman, L. (1972). Some multiplicative models for the analysis of cross-classified data. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA: University of California Press, pp. 649-696.

See Also

$\mathrm{glm}, \mathrm{gnm}$ for model fitting functions for frequency tables
Diag, Mult, Symm, Topo for similar extensions to terms in model formulas.

Examples

```
data(Hauser79)
# display table
structable(~Father+Son, data=Hauser79)
hauser.indep <- gnm(Freq ~ Father + Son, data=Hauser79, family=poisson)
hauser.CR <- update(hauser.indep, ~ . + Crossings(Father,Son))
LRstats(hauser.CR)
hauser.CRdiag <- update(hauser.indep, ~ . + Crossings(Father,Son) + Diag(Father,Son))
LRstats(hauser.CRdiag)
```

cutfac Cut a Numeric Variable to a Factor

Description

cut fac acts like cut, dividing the range of x into intervals and coding the values in x according in which interval they fall. However, it gives nicer labels for the factor levels and by default chooses convenient breaks among the values based on deciles.
It is particularly useful for plots in which one wants to make a numeric variable discrete for the purpose of getting boxplots, spinograms or mosaic plots.

Usage

cutfac (x, breaks = NULL, $q=10)$

Arguments

x
a numeric vector which is to be converted to a factor by cutting
q the number of quantile groups used to define breaks, if that has not been specified.

Details

By default, cut chooses breaks by equal lengths of the range of x, whereas cutfac uses quantile to choose breaks of roughly equal count.

Value

A factor corresponding to x is returned

Author(s)

Achim Zeileis

References

Friendly, M. and Meyer, D. (2016). Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Boca Raton, FL: Chapman \& Hall/CRC. http: //ddar.datavis.ca.

See Also

```
cut,quantile
```


Examples

```
if (require(AER)) {
data("NMES1988", package="AER")
nmes <- NMES1988[, c(1, 6:8, 13, 15, 18)]
plot(log(visits+1) ~ cutfac(chronic), data = nmes,
    ylab = "Physician office visits (log scale)",
    xlab = "Number of chronic conditions", main = "chronic")
plot(log(visits+1) ~ cutfac(hospital, c(0:2, 8)), data = nmes,
    ylab = "Physician office visits (log scale)",
    xlab = "Number of hospital stays", main = "hospital")
}
```


Description

A data frame containing the number of deaths of cyclists in London from 2005 through 2012 in each fortnightly period. Aberdein \& Spiegelhalter (2013) discuss these data in relation to the observation that six cyclists died in London between Nov. 5 and Nov. 13, 2013.

Usage

data(CyclingDeaths)

Format

A data frame with 208 observations on the following 2 variables.
date a Date
deaths number of deaths, a numeric vector

Source

https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data, STATS 19 data, 2005-2012, using the files Casualty0512.csv and Accidents 0512 .csv

References

Aberdein, Jody and Spiegelhalter, David (2013). Have London's roads become more dangerous for cyclists? Significance, 10(6), 46-48.

Examples

```
data(CyclingDeaths)
plot(deaths ~ date, data=CyclingDeaths, type="h",
lwd=3, ylab="Number of deaths", axes=FALSE)
axis(1, at=seq(as.Date('2005-01-01'), by='years', length.out=9), labels=2005:2013)
axis(2, at=0:3)
# make a one-way frequency table
CyclingDeaths.tab <- table(CyclingDeaths$deaths)
gf <- goodfit(CyclingDeaths.tab)
gf
summary(gf)
rootogram(gf, xlab="Number of Deaths")
distplot(CyclingDeaths.tab)
# prob of 6 or more deaths in one fortnight
lambda <- gf$par$lambda
ppois(5, lambda, lower.tail=FALSE)
```

datasets Information on Data Sets in Packages

Description

The dat a function is used both to load data sets from packages, and give a display of the names and titles of data sets in one or more packages, however it does not return a result that can be easily used to get additional information about the nature of data sets in packages.

The datasets () function is designed to produce a more useful summary display of data sets in one or more packages. It extracts the class and dimension information (dim or codelength) of each item, and formats these to provide additional descriptors.

Usage

```
datasets(package, allClass=FALSE,
    incPackage=length(package) > 1,
    maxTitle=NULL)
```


Arguments

package	a character vector giving the package(s) to look in
allClass	include all classes of the item (TRUE) or just the last class (FALSE)?
incPackage	include the package name in result?
maxTitle	maximum length of data set Title

Details

The requested packages must be installed, and are silently loaded in order to extract class and size information.

Value

A data.frame whose rows correspond to data sets found in package. The columns (for a single package) are:

Item	data set name
class	class
dim	an abbreviation of the dimensions of the data set
Title	data set title

Author(s)

Michael Friendly, with R-help from Curt Seeliger

See Also

```
data,
```


Examples

```
datasets("vcdExtra")
datasets(c("vcd", "vcdExtra"))
datasets("datasets", maxTitle=50)
```

DaytonSurvey Dayton Student Survey on Substance Use

Description

This data, from Agresti (2002), Table 9.1, gives the result of a 1992 survey in Dayton Ohio of 2276 high school seniors on whether they had ever used alcohol, cigarettes and marijuana.

Usage

data(DaytonSurvey)

Format

A frequency data frame with 32 observations on the following 6 variables.
cigarette a factor with levels Yes No
alcohol a factor with levels Yes No
marijuana a factor with levels Yes No
sex a factor with levels female male
race a factor with levels white other
Freq a numeric vector

Details

Agresti uses the letters G (sex), R (race), A (alcohol), C (cigarette), M (marijuana) to refer to the table variables, and this usage is followed in the examples below.
Background variables include sex and race of the respondent (GR), typically treated as explanatory, so that any model for the full table should include the term sex: race. Models for the reduced table, collapsed over sex and race are not entirely unreasonable, but don't permit the estimation of the effects of these variables on the responses.
The full 5 -way table contains a number of cells with counts of 0 or 1 , as well as many cells with large counts, and even the ACM table collapsed over GR has some small cell counts. Consequently, residuals for these models in mosaic displays are best represented as standardized (adjusted) residuals.

Source

Agresti, A. (2002). Categorical Data Analysis, 2nd Ed., New York: Wiley-Interscience, Table 9.1, p. 362.

References

Thompson, L. (2009). R (and S-PLUS) Manual to Accompany Agresti’s Categorical Data, http://www.stat.ufl.edu/~aa/cda/Th

Examples

```
data(DaytonSurvey)
mod.GR <- glm(Freq ~ . + sex*race, data=DaytonSurvey, family=poisson) # mutual independence
mod.homog.assoc <- glm(Freq ~ .^2, data=DaytonSurvey, family=poisson) # homogeneous associa
# collapse over sex and race
Dayton.ACM <- aggregate(Freq ~ cigarette+alcohol+marijuana, data=DaytonSurvey, FUN=sum)
```


Description

This one-way table gives the type-token distribution of the number of dependencies declared in 4983 packages listed on CRAN on January 17, 2014.

Usage

data(Depends)

Format

The format is: 'table’ int [1:15(1d)] $9861347993685375298155653219 \ldots$ - $\operatorname{attr}(*$, "dimnames")=List of 1 ..\$ Depends: chr [1:15] "0" "1" "2" "3" ...

Source

Using code from https://blog.revolutionanalytics.com/2013/12/a-look-at-the-distribution html

Examples

```
data(Depends)
plot(Depends, xlab="Number of Dependencies", ylab="Number of R Packages", lwd=8)
## Not run:
# The code below, from Joseph Rickert, downloads and tabulates the data
p <- as.data.frame(available.packages(),stringsAsFactors=FALSE)
names(p)
pkgs <- data.frame(p[,c(1,4)]) # Pick out Package names and Depends
row.names(pkgs) <- NULL # Get rid of row names
pkgs <- pkgs[complete.cases(pkgs[,2]),] # Remove NAs
pkgs$Depends2 <-strsplit(pkgs$Depends,",") # split list of Depends
pkgs$numDepends <- as.numeric(lapply(pkgs$Depends2,length)) # Count number of dependencies
zeros <- c(rep(0,dim(p)[1] - dim(pkgs)[1])) # Account for packages with no dependencies
Deps <- as.vector(c(zeros,pkgs$numDepends)) # Set up to tablate
Depends <- table(Deps)
## End(Not run)
```

Detergent Detergent preference data

Description

Cross-classification of a sample of 1008 consumers according to (a) the softness of the laundry water used, (b) previous use of detergent Brand M , (c) the temperature of laundry water used and (d) expressed preference for Brand X or Brand M in a blind trial.

Usage

data(Detergent)

Format

A 4-dimensional array resulting from cross-tabulating 4 variables for 1008 observations. The variable names and their levels are:

No	Name	Levels
1	Temperature	"High", "Low"
2	M_User	"Yes", "No"
3	Preference	"BrandX", "BrandM"
4	Water_softness	"Soft", "Medium", "Hard"

Source

Fienberg, S. E. (1980). The Analysis of Cross-Classified Categorical Data Cambridge, MA: MIT Press, p. 71.

References

Ries, P. N. \& Smith, H. (1963). The use of chi-square for preference testing in multidimensional problems. Chemical Engineering Progress, 59, 39-43.

Examples

```
data(Detergent)
# example goes here
mosaic(Detergent, shade=TRUE)
require(MASS)
(det.mod0 <- loglm(~ Preference + Temperature + M_User + Water_softness, data=Detergent))
# examine addition of two-way terms
add1(det.mod0, ~ .^2, test="Chisq")
# model for Preference as a response
```

```
(det.mod1 <- loglm(~ Preference + (Temperature * M_User * Water_softness), data=Detergent))
mosaic(det.mod0)
```

Donner Survival in the Donner Party

Description

This data frame contains information on the members of the Donner Party, a group of people who attempted to migrate to California in 1846. They were trapped by an early blizzard on the eastern side of the Sierra Nevada mountains, and before they could be rescued, nearly half of the party had died.
What factors affected who lived and who died?

Usage

data(Donner)

Format

A data frame with 90 observations on the following 5 variables.
family family name, a factor with 10 levels
age age of person, a numeric vector
sex a factor with levels Female Male
survived a numeric vector, 0 or 1
death date of death for those who died before rescue, a POSIXct

Details

This data frame uses the person's name as row labels. family reflects a recoding of the last names of individuals to reduce the number of factor levels. The main families in the Donner party were: Donner, Graves, Breen and Reed. The families of Murphy, Foster and Pike are grouped as 'MurFosPik', those of Fosdick and Wolfinger are coded as 'FosdWolf', and all others as 'Other'.

Source

D. K. Grayson, 1990, "Donner party deaths: A demographic assessment", J. Anthropological Research, 46, 223-242.
Johnson, K. (1996). Unfortunate Emigrants: Narratives of the Donner Party. Logan, UT: Utah State University Press. Additions, and dates of death from http://user.xmission.com/ ~octa/DonnerParty/Roster.htm.

References

Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth: A Course in Methods of Data Analysis, (2nd ed), Duxbury.
Friendly, M. and Meyer, D. (2016). Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Boca Raton, FL: Chapman \& Hall/CRC. http: //ddar.datavis.ca.

See Also

donner in alr3, case2001 in Sleuth2(adults only) provide similar data sets.

Examples

```
# conditional density plots
op <- par(mfrow=c(1,2), cex.lab=1.5)
cdplot(factor(survived) ~ age, subset=sex=='Male', data=Donner,
    main="Donner party: Males", ylevels=2:1, ylab="Survived", yaxlabels=c("yes", "no"))
with(Donner, rug(jitter(age[sex=="Male"]), col="white", quiet=TRUE))
cdplot(factor(survived) ~ age, subset=sex=='Female', data=Donner,
        main="Donner party: Females", ylevels=2:1, ylab="Survived", yaxlabels=c("yes", "no"))
with(Donner, rug(jitter(age[sex=="Female"]), col="white", quiet=TRUE))
par(op)
# fit some models
    (modl <- glm(survived ~ age + sex, data=Donner, family=binomial))
(mod2 <- glm(survived ~ age * sex, data=Donner, family=binomial))
anova(mod2, test="Chisq")
(mod3 <- glm(survived ~ poly(age,2) * sex, data=Donner, family=binomial))
anova(mod3, test="Chisq")
LRstats(glmlist(mod1, mod2, mod3))
# plot fitted probabilities from mod2 and mod3
# idea from: http://www.ling.upenn.edu/~joseff/rstudy/summer2010_ggplot2_intro.html
library(ggplot2)
# separate linear fits on age for M/F
ggplot(Donner, aes(age, survived, color = sex)) +
    geom_point(position = position_jitter(height = 0.02, width = 0)) +
    stat_smooth(method = "glm", method.args = list(family = binomial), formula = y ~ x,
        alpha = 0.2, size=2, aes(fill = sex))
# separate quadratics
ggplot(Donner, aes(age, survived, color = sex)) +
    geom_point(position = position_jitter(height = 0.02, width = 0)) +
    stat_smooth(method = "glm", method.args = list(family = binomial), formula = y ~ poly(x,2)
            alpha = 0.2, size=2, aes(fill = sex))
```

```
Draft1970 USA 1970 Draft Lottery Data
```


Description

This data set gives the results of the 1970 US draft lottery, in the form of a data frame.

Usage

```
data(Draft1970)
```


Format

A data frame with 366 observations on the following 3 variables.
Day day of the year, 1:366
Rank draft priority rank of people born on that day
Month an ordered factor with levels Jan < Feb...<Dec

Details

The draft lottery was used to determine the order in which eligible men would be called to the Selective Service draft. The days of the year (including February 29) were represented by the numbers 1 through 366 written on slips of paper. The slips were placed in separate plastic capsules that were mixed in a shoebox and then dumped into a deep glass jar. Capsules were drawn from the jar one at a time.
The first number drawn was 258 (September 14), so all registrants with that birthday were assigned lottery number Rank 1. The second number drawn corresponded to April 24, and so forth. All men of draft age (born 1944 to 1950) who shared a birthdate would be called to serve at once. The first 195 birthdates drawn were later called to serve in the order they were drawn; the last of these was September 24.

Source

Starr, N. (1997). Nonrandom Risk: The 1970 Draft Lottery, Journal of Statistics Education, v.5, n. 2 http://jse.amstat.org/v5n2/datasets.starr.html

References

Fienberg, S. E. (1971), "Randomization and Social Affairs: The 1970 Draft Lottery," Science, 171, 255-261.
https://en.wikipedia.org/wiki/Draft_lottery_(1969)

See Also

```
Draft1970table
```


Examples

```
data(Draft1970)
# scatterplot
plot(Rank ~ Day, data=Draft1970)
with(Draft1970, lines(lowess(Day, Rank), col="red", lwd=2))
abline(lm(Rank ~ Day, data=Draft1970), col="blue")
# boxplots
plot(Rank ~ Month, data=Draft1970, col="bisque")
lm(Rank ~ Month, data=Draft1970)
anova(lm(Rank ~ Month, data=Draft1970))
# make the table version
Draft1970$Risk <- cut(Draft1970$Rank, breaks=3, labels=c("High", "Med", "Low"))
with(Draft1970, table(Month, Risk))
```

Draft1970table USA 1970 Draft Lottery Table

Description

This data set gives the results of the 1970 US draft lottery, in the form of a frequency table. The rows are months of the year, Jan-Dec and columns give the number of days in that month which fall into each of three draft risk categories High, Medium, and Low, corresponding to the chances of being called to serve in the US army.

Usage

data(Draft1970table)

Format

The format is: 'table' int [1:12, 1:3] $97589111213109 \ldots$ - attr(*, "dimnames")=List of 2 .. $\$$ Month: chr [1:12] "Jan" "Feb" "Mar" "Apr"\$ Risk : chr [1:3] "High" "Med" "Low"

Details

The lottery numbers are divided into three categories of risk of being called for the draft - High, Medium, and Low - each representing roughly one third of the days in a year. Those birthdays having the highest risk have lottery numbers 1-122, medium risk have numbers 123-244, and the lowest risk category contains lottery numbers 245-366.

Source

This data is available in several forms, but the table version was obtained from
https://sas.uwaterloo.ca/~rwoldfor/software/eikosograms/data/draft-70

References

Fienberg, S. E. (1971), "Randomization and Social Affairs: The 1970 Draft Lottery," Science, 171, 255-261.
Starr, N. (1997). Nonrandom Risk: The 1970 Draft Lottery, Journal of Statistics Education, v.5, n. 2 http://jse.amstat.org/v5n2/datasets.starr.html

See Also

```
Draft1970
```


Examples

```
data(Draft1970table)
chisq.test(Draft1970table)
# plot.table -> graphics:::mosaicplot
plot(Draft1970table, shade=TRUE)
mosaic(Draft1970table, gp=shading_Friendly)
# correspondence analysis
if(require(ca)) {
    ca(Draft1970table)
    plot(ca(Draft1970table))
}
# convert to a frequency data frame with ordered factors
Draft1970df <- as.data.frame(Draft1970table)
Draft1970df <- within(Draft1970df, {
    Month <- ordered(Month)
    Risk <- ordered(Risk, levels=rev(levels(Risk)))
    })
str(Draft1970df)
# similar model, as a Poisson GLM
indep <- glm(Freq ~ Month + Risk, family = poisson, data = Draft1970df)
mosaic(indep, residuals_type="rstandard", gp=shading_Friendly)
# numeric scores for tests of ordinal factors
Cscore <- as.numeric(Draft1970df$Risk)
Rscore <- as.numeric(Draft1970df$Month)
# linear x linear association between Month and Risk
linlin <- glm(Freq ~ Month + Risk + Rscore:Cscore, family = poisson, data = Draftl970df)
# compare models
anova(indep, linlin, test="Chisq")
mosaic(linlin, residuals_type="rstandard", gp=shading_Friendly)
```

Dyke Sources of Knowledge of Cancer

Description

Observational data on a sample of 1729 individuals, cross-classified in a $2^{\wedge} 5$ table according to their sources of information (read newspapers, listen to the radio, do 'solid' reading, attend lectures) and whether they have good or poor knowledge regarding cancer. Knowledge of cancer is often treated as the response.

Usage

data(Dyke)

Format

A 5-dimensional array resulting from cross-tabulating 5 variables for 1729 observations. The variable names and their levels are:

No	Name	Levels
1	Knowledge	"Good", "Poor"
2	Reading	"No", "Yes"
3	Radio	"No", "Yes"
4	Lectures	"No", "Yes"
5	Newspaper	"No", "Yes"

Source

Fienberg, S. E. (1980). The Analysis of Cross-Classified Categorical Data Cambridge, MA: MIT Press, p. 85, Table 5-6.

References

Dyke, G. V. and Patterson, H. D. (1952). Analysis of factorial arrangements when the data are proportions. Biometrics, 8, 1-12.
Lindsey, J. K. (1993). Models for Repeated Measurements Oxford, UK: Oxford University Press, p. 57.

Examples

```
data(Dyke)
# independence model
mosaic(Dyke, shade=TRUE)
# null model, Knowledge as response, independent of others
require(MASS)
```

```
dyke.mod0 <- loglm(~ Knowledge + (Reading * Radio * Lectures * Newspaper), data=Dyke)
dyke.mod0
mosaic(dyke.mod0)
# view as doubledecker plot
Dyke <- Dyke[2:1,,,,] # make Good the highlighted value of Knowledge
doubledecker(Knowledge ~ ., data=Dyke)
# better version, with some options
doubledecker(Knowledge ~ Lectures + Reading + Newspaper + Radio, data=Dyke,
margins = c(1,6, length(dim(Dyke)) + 1, 1),
fill_boxes=list(rep(c("white", gray(.90)),4))
)
# separate (conditional) plots for those who attend lectures and those who do not
doubledecker(Knowledge ~ Reading + Newspaper + Radio, data=Dyke[,,,1,],
main="Do not attend lectures",
margins = c(1,6, length(dim(Dyke)) + 1, 1),
fill_boxes=list(rep(c("white", gray(.90)),3))
)
doubledecker(Knowledge ~ Reading + Newspaper + Radio, data=Dyke[,, ,2,],
main="Attend lectures",
margins = c(1,6, length(dim(Dyke)) + 1, 1),
fill_boxes=list(rep(c("white", gray(.90)),3))
)
drop1(dyke.mod0, test="Chisq")
```

expand.dft Expand a frequency table to case form

Description

Converts a frequency table, given either as a table object or a data frame in frequency form to a data frame representing individual observations in the table.

Usage

expand.dft(x, var.names = NULL, freq = "Freq", ...)
expand.table(x, var.names = NULL, freq = "Freq", ...)

Arguments

x
A table object, or a data frame in frequency form containing factors and one numeric variable representing the cell frequency for that combination of factors.
var. names A list of variable names for the factors, if you wish to override those already in the table
freq The name of the frequency variable in the table
Other arguments passed down to type. convert. In particular, pay attention to na.strings (default: na.strings=NA if there are missing cells) and as.is (default: as.is=FALSE, converting character vectors to factors).

Details

```
expand.table is a synonym for expand.dft.
```


Value

A data frame containing the factors in the table and as many observations as are represented by the total of the freq variable.

Author(s)

Mark Schwarz

References

Originally posted on R-Help, Jan 20, 2009, http://tolstoy.newcastle.edu.au/R/e6/help/09/01/1873.html
Friendly, M. and Meyer, D. (2016). Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Boca Raton, FL: Chapman \& Hall/CRC. http: //ddar.datavis.ca.

See Also

```
type.convert, expandCategorical
```


Examples

```
library(vcd)
art <- xtabs(~Treatment + Improved, data = Arthritis)
art
artdf <- expand.dft(art)
str(artdf)
# 1D case
(tab <- table(sample(head(letters), 20, replace=TRUE)))
expand.table(tab, var.names="letter")
```


Description

Data from Gart (1971) on the carcinogenic effects of a certain fungicide in two strains of mice. Of interest is how the association between group (Control, Treated) and outcome (Tumor, No Tumor) varies with sex and strain of the mice.
Breslow (1976) used this data to illustrate the application of linear models to log odds ratios.

Usage

data(Fungicide)

Format

The data comprise a set of four 2×2 tables classifying 403 mice, either Control or Treated and whether or not a tumor was later observed. The four groups represent the combinations of sex and strain of mice. The format is: num [1:2, 1:2, 1:2, 1:2] $547412328414104 \ldots$ - $\operatorname{attr}(*$, "dimnames")=List of 4 .. $\$$ group : chr [1:2] "Control" "Treated" .. \$ outcome: chr [1:2] "Tumor" "NoTumor" ..\$ sex : chr [1:2] "M" "F" ..\$ strain : chr [1:2] "1" "2"

Details

All tables have some small cells, so a continuity correction is recommended.

Source

Gart, J. J. (1971). The comparison of proportions: a review of significance tests, confidence intervals and adjustments for stratification. International Statistical Review, 39, 148-169.

References

Breslow, N. (1976), Regression analysis of the log odds ratio: A method for retrospective studies, Biometrics, 32(3), 409-416.

Examples

```
data(Fungicide)
# loddsratio was moved to vcd; requires vcd_1.3-3+
## Not run:
if (require(vcd)) {
fung.lor <- loddsratio(Fungicide, correct=TRUE)
fung.lor
confint(fung.lor)
}
## End(Not run)
```

```
# visualize odds ratios in fourfold plots
cotabplot(Fungicide, panel=cotab_fourfold)
# -- fourfold() requires vcd >= 1.2-10
fourfold(Fungicide, p_adjust_method="none")
```

 Geissler Geissler's Data on the Human Sex Ratio

Description

Geissler (1889) published data on the distributions of boys and girls in families in Saxony, collected for the period 1876-1885. The Geiss ler data tabulates the family composition of 991,958 families by the number of boys and girls listed in the table supplied by Edwards (1958, Table 1).

Usage

data(Geissler)

Format

A data frame with 90 observations on the following 4 variables. The rows represent the non-NA entries in Edwards' table.
boys number of boys in the family, $0: 12$
girls number of girls in the family, $0: 12$
size family size: boys+girls
Freq number of families with this sex composition

Details

The data on family composition was available because, on the birth of a child, the parents had to state the sex of all their children on the birth certificate. These family records are not necessarily independent, because a given family may have had several children during this 10 year period, included as multiple records.

Source

Edwards, A. W. F. (1958). An Analysis Of Geissler's Data On The Human Sex Ratio. Annals of Human Genetics, 23, 6-15.

References

Friendly, M. and Meyer, D. (2016). Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Boca Raton, FL: Chapman \& Hall/CRC. http: //ddar.datavis.ca.
Geissler, A. (1889). Beitrage zur Frage des Geschlechts verhaltnisses der Geborenen Z. K. Sachsischen Statistischen Bureaus, 35, n.p.

Lindsey, J. K. \& Altham, P. M. E. (1998). Analysis of the human sex ratio by using overdispersion models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47, 149-157.

See Also

Saxony, containing the data for families of size 12.

Examples

```
data(Geissler)
## maybe str(Geissler) ; plot(Geissler) ...
# reproduce Saxony data, families of size 12
Saxonyl2<-subset(Geissler, size==12, select=c(boys, Freq))
rownames(Saxony12)<-NULL
# make a 1-way table
xtabs(Freq~boys, Saxony12)
# extract data for other family sizes
Saxony11<-subset(Geissler, size==11, select=c(boys, Freq))
rownames(Saxony11)<-NULL
Saxony10<-subset(Geissler, size==10, select=c(boys, Freq))
rownames(Saxony10)<-NULL
```


Description

Schoolboys were classified according to their clothing and to their teachers rating of "dullness" (lack of intelligence), in a 5×7 table originally from Gilby (1911). Anscombe (1981) presents a slightly collapsed 4×6 table, used here, where the last two categories of clothing were pooled as were the first two categories of dullness due to small counts.
Both Dullnes and Clothing are ordered categories, so models and methods that examine their association in terms of ordinal categories are profitable.

Usage

data(Gilby)

Format

A 2-dimensional array resulting from cross-tabulating 2 variables for 1725 observations. The variable names and their levels are:

```
No Name Levels
    1 \text { Dullness "Ment. defective", "Slow", "Slow Intell", "Fairly Intell", "Capable", "V.Ab,}
    2 Clothing "V.Wellclad", "Wellclad", "Passable", "Insufficient"
```


Source

Anscombe, F. J. (1981). Computing in Statistical Science Through APL. New York: SpringerVerlag, p. 302

References

Gilby, W. H. (1911). On the significance of the teacher's appreciation of general intelligence. Biometrika, 8, 93-108 (esp. p. 94). [Quoted by Kendall (1943,..., 1953) Table 13.1, p 320.]

Examples

```
data(Gilby)
mosaic(Gilby, shade=TRUE)
# correspondence analysis to see relations among categories
if(require(ca)){
ca(Gilby)
plot(ca(Gilby))
title(xlab="Dimension 1", ylab="Dimension 2")
}
```


Description

The Goodman-Kruskal γ statistic is a measure of association for ordinal factors in a two-way table proposed by Goodman and Kruskal (1954).

Usage

GKgamma (x, level $=0.95$)

Arguments

x
A two-way frequency table, in matrix or table form. The rows and columns are considered to be ordinal factors
level Confidence level for a significance test of $\gamma \neq=$

Value
Returns an object of class "GKgamma" with 6 components, as follows
gamma The gamma statistic
C Total number of concordant pairs in the table
D Total number of discordant pairs in the table
sigma Standard error of gamma
CIlevel Confidence level
CI Confidence interval

Author(s)

Michael Friendly; original version by Laura Thompson

References

Agresti, A. Categorical Data Analysis. John Wiley \& Sons, 2002, pp. 57-59.
Goodman, L. A., \& Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, 732-764.

Goodman, L. A., \& Kruskal, W. H. (1963). Measures of association for cross classifications III: Approximate sampling theory. Journal of the American Statistical Association, 58, 310-364.

See Also

```
assocstats, Kappa
```


Examples

```
data(JobSat)
GKgamma(JobSat)
```


Description

Glass(1954) gave this 5×5 table on the occupations of 3500 British fathers and their sons.

Usage

data("Glass")

Format

A frequency data frame with 25 observations on the following 3 variables representing a 5×5 table with 3500 cases.
father a factor with levels Managerial Professional Skilled Supervisory Unskilled
son a factor with levels Managerial Professional Skilled Supervisory Unskilled
Freq a numeric vector

Details

The occupational categories in order of status are: (1) Professional $\backslash \&$ High Administrative (2) Managerial, Executive
\& High Supervisory (3) Low Inspectional $\backslash \&$ Supervisory (4) Routine Non-

However, to make the point that factors are ordered alphabetically by default, Friendly
\& Meyer (2016) introduce this data set in the form given here.

Source

Glass, D. V. (1954), Social Mobility in Britain. The Free Press.

References

Bishop, Y. M. M. and Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice, MIT Press.
Friendly, M. and Meyer, D. (2016). Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Boca Raton, FL: Chapman \& Hall/CRC. http: //ddar.datavis.ca.

Examples

```
data(Glass)
glass.tab <- xtabs(Freq ~ father + son, data=Glass)
largs <- list(set_varnames=list(father="Father's Occupation", son="Son's Occupation"),
    abbreviate=10)
```

```
gargs <- list(interpolate=c(1, 2,4,8))
mosaic(glass.tab, shade=TRUE, labeling_args=largs, gp_args=gargs,
    main="Alphabetic order", legend=FALSE, rot_labels=c(20,90,0,70))
# reorder by status
ord <- c(2, 1, 4, 3, 5)
mosaic(glass.tab[ord, ord], shade=TRUE, labeling_args=largs, gp_args=gargs,
    main="Effect order", legend=FALSE, rot_labels=c(20,90,0,70))
```

glmlist Create a Model List Object

Description

glmlist creates a glmlist object containing a list of fitted glm objects with their names. $\log \operatorname{lmlist}$ does the same for loglm objects.
The intention is to provide object classes to facilitate model comparison, extraction, summary and plotting of model components, etc., perhaps using lapply or similar.
There exists a anova.glm method for glmlist objects. Here, a coef method is also defined, collecting the coefficients from all models in a single object of type determined by result.

Usage

```
glmlist(...)
loglmlist(...)
## S3 method for class 'glmlist'
coef(object, result=c("list", "matrix", "data.frame"), ...)
```


Arguments

...	One or more model objects, as appropriate to the function, optionally assigned names as in list.
object	a glmlist object
result	type of the result to be returned

Details

The arguments to glmlist or $\operatorname{loglmlist~are~of~the~form~value~or~name=value.~}$
Any objects which do not inherit the appropriate class glm or loglm are excluded, with a warning. In the coef method, coefficients from the different models are matched by name in the list of unique names across all models.

Value

An object of class glmlist loglmlist, just like a list, except that each model is given a name attribute.

Author(s)

Michael Friendly; coef method by John Fox

See Also

The function llist in package Hmisc is similar, but perplexingly more general.
The function anova.glm also handles glmlist objects
LRstats gives LR statistics and tests for a glmlist object.

Examples

```
data(Mental)
indep <- glm(Freq ~ mental+ses,
    family = poisson, data = Mental)
Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)
coleff <- glm(Freq ~ mental + ses + Rscore:ses,
    family = poisson, data = Mental)
roweff <- glm(Freq ~ mental + ses + mental:Cscore,
            family = poisson, data = Mental)
linlin <- glm(Freq ~ mental + ses + Rscore:Cscore,
    family = poisson, data = Mental)
# use object names
mods <- glmlist(indep, coleff, roweff, linlin)
names(mods)
# assign new names
mods <- glmlist(Indep=indep, Col=coleff, Row=roweff, LinxLin=linlin)
names(mods)
LRstats(mods)
coef(mods, result='data.frame')
#extract model components
unlist(lapply(mods, deviance))
res <- lapply(mods, residuals)
boxplot(as.data.frame(res), main="Residuals from various models")
```


Description

Data from the General Social Survey, 1991, on the relation between sex and party affiliation.

Usage

```
data(GSS)
```


Format

A data frame in frequency form with 6 observations on the following 3 variables.
sex a factor with levels female male
party a factor with levels dem indep rep
count a numeric vector

Source

Agresti, A. Categorical Data Analysis John Wiley \& Sons, 2002, Table 3.11, p. 106.

Examples

```
data(GSS)
## maybe str(GSS) ; plot(GSS) ...
(GSStab <- xtabs(count ~ sex + party, data=GSS))
mod.glm <- glm(count ~ sex + party, family = poisson, data = GSS)
```


Description

A three-way frequency table crossing eye color and hair color in two places, Caithness and Aberdeen, Scotland. These data were of interest to Fisher (1940) and others because there are mixtures of people of Nordic, Celtic and Anglo-Saxon origin. One or both tables have been widely analyzed in conjunction with RC and canonical correlation models for categorical data, e.g., Becker and Clogg (1989).

Usage

```
    data(HairEyePlace)
```


Format

The format is: num $[1: 4,1: 5,1: 2] 32668834398381168448241584 \ldots$ - $\operatorname{attr}(*$, "dimnames")=List of 3 .. $\$$ Eye : chr [1:4] "Blue" "Light" "Medium" "Dark" .. \$ Hair : chr [1:5] "Fair" "Red" "Medium" "Dark"\$ Place: chr [1:2] "Caithness" "Aberdeen"

Details

The hair and eye colors are ordered as in the original source, suggesting that they form ordered categories.

Source

This data was taken from the colors data in logmult.

References

Becker, M. P., and Clogg, C. C. (1989). Analysis of Sets of Two-Way Contingency Tables Using Association Models. Journal of the American Statistical Association, 84(405), 142-151.
Fisher, R.A. (1940) The precision of discriminant functions. Annals of Eugenics, 10, 422-429.

Examples

```
data(HairEyePlace)
# separate mosaics
mosaic(HairEyePlace[,,1], shade=TRUE, main="Caithness")
mosaic(HairEyePlace[,,2], shade=TRUE, main="Aberdeen")
# condition on Place
mosaic(~Hair + Eye |Place, data=HairEyePlace, shade=TRUE, legend=FALSE)
cotabplot(~Hair+Eye|Place, data=HairEyePlace, shade=TRUE, legend=FALSE)
```


Description

Hauser (1979) presented this two-way frequency table, cross-classifying occupational categories of sons and fathers in the United States.

Usage

```
data(Hauser79)
```


Format

A frequency data frame with 25 observations on the following 3 variables, representing the crossclassification of 19912 individuals by father's occupation and son's first occupation.

Son a factor with levels UpNM LoNM UpM LoM Farm
Father a factor with levels UpNM LoNM UpM LoM Farm
Freq a numeric vector

Source

R.M. Hauser (1979), Some exploratory methods for modeling mobility tables and other crossclassified data. In: K.F. Schuessler (Ed.), Sociological Methodology, 1980, Jossey-Bass, San Francisco, pp. 413-458.

References

Powers, D.A. and Xie, Y. (2008). Statistical Methods for Categorical Data Analysis, Bingley, UK: Emerald.

Examples

```
data(Hauser79)
str(Hauser79)
# display table
structable(~Father+Son, data=Hauser79)
#Examples from Powers & Xie, Table 4.15
# independence model
mosaic(Freq ~ Father + Son, data=Hauser79, shade=TRUE)
hauser.indep <- gnm(Freq ~ Father + Son, data=Hauser79, family=poisson)
mosaic(hauser.indep, ~Father+Son, main="Independence model", gp=shading_Friendly)
hauser.quasi <- update(hauser.indep, ~ . + Diag(Father,Son))
mosaic(hauser.quasi, ~Father+Son, main="Quasi-independence model", gp=shading_Friendly)
hauser.qsymm <- update(hauser.indep, ~ . + Diag(Father,Son) + Symm(Father,Son))
mosaic(hauser.qsymm, ~Father+Son, main="Quasi-symmetry model", gp=shading_Friendly)
#mosaic(hauser.qsymm, ~Father+Son, main="Quasi-symmetry model")
# numeric scores for row/column effects
Sscore <- as.numeric(Hauser79$Son)
Fscore <- as.numeric(Hauser79$Father)
# row effects model
hauser.roweff <- update(hauser.indep, ~ . + Father*Sscore)
LRstats(hauser.roweff)
# uniform association
```

```
hauser.UA <- update(hauser.indep, ~ . + Fscore*Sscore)
LRstats(hauser.UA)
# uniform association, omitting diagonals
hauser.UAdiag <- update(hauser.indep, ~ . + Fscore*Sscore + Diag(Father,Son))
LRstats(hauser.UAdiag)
# Levels for Hauser 5-level model
levels <- matrix(c(
    2, 4, 5, 5, 5,
    3, 4, 5, 5, 5,
    5, 5, 5, 5, 5,
    5, 5, 5, 4, 4,
    5, 5, 5, 4, 1
    ), 5, 5, byrow=TRUE)
hauser.topo <- update(hauser.indep, ~ . + Topo(Father, Son, spec=levels))
mosaic(hauser.topo, ~Father+Son, main="Topological model", gp=shading_Friendly)
hauser.RC <- update(hauser.indep, ~ . + Mult(Father, Son), verbose=FALSE)
mosaic(hauser.RC, ~Father+Son, main="RC model", gp=shading_Friendly)
LRstats(hauser.RC)
# crossings models
hauser.CR <- update(hauser.indep, ~ . + Crossings(Father,Son))
mosaic(hauser.topo, ~Father+Son, main="Crossings model", gp=shading_Friendly)
LRstats(hauser.CR)
hauser.CRdiag <- update(hauser.indep, ~ . + Crossings(Father,Son) + Diag(Father,Son))
LRstats(hauser.CRdiag)
# compare model fit statistics
modlist <- glmlist(hauser.indep, hauser.roweff, hauser.UA, hauser.UAdiag,
    hauser.quasi, hauser.qsymm, hauser.topo,
    hauser.RC, hauser.CR, hauser.CRdiag)
sumry <- LRstats(modlist)
sumry[order(sumry$AIC, decreasing=TRUE),]
# or, more simply
LRstats(modlist, sortby="AIC")
mods <- substring(rownames(sumry), 8)
with(sumry,
{plot(Df, AIC, cex=1.3, pch=19, xlab='Degrees of freedom', ylab='AIC')
text(Df, AIC, mods, adj=c(0.5,-.5), col='red', xpd=TRUE)
})
```


Description

Classification of individuals by gender, occupational category and occurrence of heart disease

Usage

```
data(Heart)
```


Format

A 3-dimensional array resulting from cross-tabulating 3 variables for 21522 observations. The variable names and their levels are:

No	Name	Levels
1	Disease	"Disease", "None"
2	Gender	"Male", "Female"
3	Occup	"Unempl", "WhiteCol", "BlueCol"

Source

Karger, (1980).

Examples

data(Heart)
\# example goes here

Heckman Labour Force Participation of Married Women 1967-1971

Description

1583 married women were surveyed over the years 1967-1971, recording whether or not they were employed in the labor force.
The data, originally from Heckman \& Willis (1977) provide an example of modeling longitudinal categorical data, e.g., with markov chain models for dependence over time.

Usage

data(Heckman)

Format

A 5-dimensional array resulting from cross-tabulating 5 variables for 1583 observations. The variable names and their levels are:

No	Name	Levels
1	e1971	"71Yes", "No"
2	e1970	"70Yes", "No"
3	e1969	"69Yes", "No"
4	e1968	"68Yes", "No"
5	e1967	"67Yes", "No"

Details

Lindsey (1993) fits an initial set of logistic regression models examining the dependence of employment in 1971 (e1971) on successive subsets of the previous years, e1970, e1969, ..e1967.
Alternatively, one can examine markov chain models of first-order (dependence on previous year), second-order (dependence on previous two years), etc.

Source

Lindsey, J. K. (1993). Models for Repeated Measurements Oxford, UK: Oxford University Press, p. 185.

References

Heckman, J.J. \& Willis, R.J. (1977). "A beta-logistic model for the analysis of sequential labor force participation by married women." Journal of Political Economy, 85: 27-58

Examples

```
data(Heckman)
# independence model
mosaic(Heckman, shade=TRUE)
# same, as a loglm()
require(MASS)
(heckman.mod0 <- loglm(~ e1971+e1970+e1969+e1968+e1967, data=Heckman))
mosaic(heckman.mod0, main="Independence model")
# first-order markov chain: bad fit
(heckman.modl <- loglm(~ e1971*e1970 + e1970*e1969 +e1969*e1968 + e1968*e1967, data=Heckman)
mosaic(heckman.modl, main="1st order markov chain model")
# second-order markov chain: bad fit
(heckman.mod2 <- loglm(~ e1971*e1970*e1969 + e1970*e1969*e1968 +e1969*e1968*e1967, data=Heck
mosaic(heckman.mod2, main="2nd order markov chain model")
# third-order markov chain: fits OK
(heckman.mod3 <- loglm(~ e1971*e1970*e1969*e1968 + e1970*e1969*e1968*e1967, data=Heckman))
```

```
mosaic(heckman.mod2, main="3rd order markov chain model")
```

HLtest Hosmer-Lemeshow Goodness of Fit Test

Description

The HLtest function computes the classical Hosmer-Lemeshow (1980) goodness of fit test for a binomial glm object in logistic regression

The general idea is to assesses whether or not the observed event rates match expected event rates in subgroups of the model population. The Hosmer-Lemeshow test specifically identifies subgroups as the deciles of fitted event values, or other quantiles as determined by the g argument. Given these subgroups, a simple chisquare test on $g-2$ df is used.

In addition to print and summary methods, a plot method is supplied to visualize the discrepancies between observed and fitted frequencies.

Usage

```
HosmerLemeshow(model, g = 10)
HLtest(model, g = 10)
## S3 method for class 'HLtest'
print(x, ...)
## S3 method for class 'HLtest'
summary(object, ...)
## S3 method for class 'HLtest'
plot(x, ...)
## S3 method for class 'HLtest'
rootogram(x, ...)
```


Arguments

model A glm model object in the binomial family
9
Number of groups used to partition the fitted values for the GOF test.
x, object
A HLtest object
...
Other arguments passed down to methods

Value

A class HLtest object with the following components:

table	A data.frame describing the results of partitioning the data into g groups with the following columns: cut, total, obs, exp, chi
chisq	The chisquare statistics
df	Degrees of freedom
p.value	p value
groups	Number of groups
call	model call

Author(s)

Michael Friendly

References

Hosmer, David W., Lemeshow, Stanley (1980). A goodness-of-fit test for multiple logistic regression model. Communications in Statistics, Series A, 9, 1043-1069.
Hosmer, David W., Lemeshow, Stanley (2000). Applied Logistic Regression, New York: Wiley, ISBN 0-471-61553-6
Lemeshow, S. and Hosmer, D.W. (1982). A review of goodness of fit statistics for use in the development of logistic regression models. American Journal of Epidemiology, 115(1), 92-106.

See Also

```
rootogram, ~~~
```


Examples

```
data(birthwt, package="MASS")
# how to do this without attach?
attach(birthwt)
race = factor(race, labels = c("white", "black", "other"))
ptd = factor(ptl > 0)
ftv = factor(ftv)
levels(ftv)[-(1:2)] = "2+"
bwt <- data.frame(low = factor(low), age, lwt, race,
        smoke = (smoke > 0), ptd, ht = (ht > 0), ui = (ui > 0), ftv)
detach(birthwt)
options(contrasts = c("contr.treatment", "contr.poly"))
BWmod <- glm(low ~ ., family=binomial, data=bwt)
(hlt <- HLtest (BWmod))
str(hlt)
summary(hlt)
plot(hlt)
```

```
# basic model
BWmod0 <- glm(low ~ age, family=binomial, data=bwt)
(hlt0 <- HLtest(BWmod0))
str(hlt0)
summary(hlt0)
plot(hlt0)
```

HospVisits Hospital Visits Data

Description

Length of stay in hospital for 132 schizophrenic patients, classified by visiting patterns, originally from Wing (1962).

Usage

```
data("HospVisits")
```


Format

A 3 by 3 frequency table, with format: table [1:3, 1:3] 436916111831016 - $\operatorname{attr}(*$, "dimnames")=List of 2 ..\$ visit: chr [1:3] "Regular" "Infrequent" "Never" ..\$ stay : chr [1:3] "2-9" "10-19" " $20+$ "

Details

Both table variables can be considered ordinal. The variable visit refers to visiting patterns recorded hospital. The category labels are abbreviations of those given by Goodman (1983); e.g., "Regular" is short for "received visitors regularly or patient went home". The variable stay refers to length of stay in hospital, in year groups.

Source

Goodman, L. A. (1983) The analysis of dependence in cross-classifications having ordered categories, using log-linear models for frequencies and log-linear models for odds. Biometrics, 39, 149-160.

References

Wing, J. K. (1962). Institutionalism in Mental Hospitals, British Journal of Social and Clinical Psychology, 1 (1), 38-51.

Examples

```
data(HospVisits)
mosaic(HospVisits, gp=shading_Friendly)
library(ca)
ca(HospVisits)
# surprisingly 1D !
plot(ca(HospVisits))
```

Hoyt Minnesota High School Graduates

Description

Minnesota high school graduates of June 1930 were classified with respect to (a) Rank by thirds in their graduating class, (b) post-high school Status in April 1939 (4 levels), (c) Sex, (d) father's Occupational status (7 levels, from 1=High to 7=Low).

The data were first presented by Hoyt et al. (1959) and have been analyzed by Fienberg(1980), Plackett(1974) and others.

Usage

data(Hoyt)

Format

A 4-dimensional array resulting from cross-tabulating 4 variables for 13968 observations. The variable names and their levels are:

No	Name	Levels
1	Status	"College", "School", "Job", "Other"
2	Rank	"Low", "Middle", "High"
3	Occupation	"1", "2", "3", "4", "5", "6", "7"
4	Sex	"Male", "Female"

Details

Post high-school Status is natural to consider as the response. Rank and father's Occupation are ordinal variables.

Source

Fienberg, S. E. (1980). The Analysis of Cross-Classified Categorical Data. Cambridge, MA: MIT Press, p. 91-92.
R. L. Plackett, (1974). The Analysis of Categorical Data. London: Griffin.

References

Hoyt, C. J., Krishnaiah, P. R. and Torrance, E. P. (1959) Analysis of complex contingency tables, Journal of Experimental Education 27, 187-194.

See Also

minn 38 provides the same data as a data frame.

Examples

```
data(Hoyt)
# display the table
structable(Status+Sex ~ Rank+Occupation, data=Hoyt)
# mosaic for independence model
plot(Hoyt, shade=TRUE)
# examine all pairwise mosaics
pairs(Hoyt, shade=TRUE)
# collapse Status to College vs. Non-College
Hoyt1 <- collapse.table(Hoyt, Status=c("College", rep("Non-College",3)))
plot(Hoyt1, shade=TRUE)
#################################################
# fitting models with loglm, plotting with mosaic
#################################################
# fit baseline log-linear model for Status as response
require(MASS)
hoyt.modo <- loglm(~ Status + (Sex*Rank*Occupation), data=Hoyt1)
hoyt.modo
mosaic(hoyt.mod0, gp=shading_Friendly, main="Baseline model: Status + (Sex*Rank*Occ)")
# add one-way association of Status with factors
hoyt.mod1 <- loglm(~ Status * (Sex + Rank + Occupation) + (Sex*Rank*Occupation), data=Hoyt1)
hoyt.mod1
mosaic(hoyt.mod1, gp=shading_Friendly, main="Status * (Sex + Rank + Occ)")
# can we drop any terms?
drop1(hoyt.mod1, test="Chisq")
# assess model fit
anova(hoyt.mod0, hoyt.mod1)
# what terms to add?
add1 (hoyt.mod1, ~.^2, test="Chisq")
# add interaction of Sex:Occupation on Status
hoyt.mod2 <- update(hoyt.mod1, ~.+Status:Sex:Occupation)
mosaic(hoyt.mod2, gp=shading_Friendly, main="Adding Status:Sex:Occupation")
```

```
# compare model fits
anova(hoyt.mod0, hoyt.mod1, hoyt.mod2)
# Alternatively, try stepwise analysis, heading toward the saturated model
steps <- step(hoyt.mod0, direction="forward", scope=~Status*Sex*Rank*Occupation)
# display anova
steps$anova
```

ICU
ICU data set

Description

The ICU data set consists of a sample of 200 subjects who were part of a much larger study on survival of patients following admission to an adult intensive care unit (ICU), derived from Hosmer, Lemeshow and Sturdivant (2013) and Friendly (2000).
The major goal of this study was to develop a logistic regression model to predict the probability of survival to hospital discharge of these patients and to study the risk factors associated with ICU mortality. The clinical details of the study are described in Lemeshow, Teres, Avrunin, and Pastides (1988).

This data set is often used to illustrate model selection methods for logistic regression.

Usage

data(ICU)

Format

A data frame with 200 observations on the following 22 variables.
died Died before discharge?, a factor with levels No Yes
age Patient age, a numeric vector
sex Patient sex, a factor with levels Female Male
race Patient race, a factor with levels Black Other White. Also represented here as white.
service Service at ICU Admission, a factor with levels Medical Surgical
cancer Cancer part of present problem?, a factor with levels No Yes
renal History of chronic renal failure?, a factor with levels No Yes
infect Infection probable at ICU admission?, a factor with levels No Yes
cpr Patient received CPR prior to ICU admission?, a factor with levels No Yes
systolic Systolic blood pressure at admission (mm Hg), a numeric vector
hrtrate Heart rate at ICU Admission (beats/min), a numeric vector
previcu Previous admission to an ICU within 6 Months?, a factor with levels No Yes
admit Type of admission, a factor with levels Elective Emergency
fracture Admission with a long bone, multiple, neck, single area, or hip fracture? a factor with levels No Yes
po2 PO2 from initial blood gases, a factor with levels $>60<=60$
ph pH from initial blood gases, a factor with levels $>=7.25<7.25$
pco PCO2 from initial blood gases, a factor with levels $<=45>45$
bic Bicarbonate (HCO3) level from initial blood gases, a factor with levels $>=18<18$
creat in Creatinine, from initial blood gases, a factor with levels $<=2>2$
coma Level of unconsciousness at admission to ICU, a factor with levels None Stupor Coma
white a recoding of race, a factor with levels White Non-white
uncons a recoding of coma a factor with levels No Yes

Details

Patient ID numbers are the rownames of the data frame.
Note that the last two variables white and uncons are a recoding of respectively race and coma to binary variables.

Source

M. Friendly (2000), Visualizing Categorical Data, Appendix B.4. SAS Institute, Cary, NC.

Hosmer, D. W. Jr., Lemeshow, S. and Sturdivant, R. X. (2013) Applied Logistic Regression, NY: Wiley, Third Edition.

References

Lemeshow, S., Teres, D., Avrunin, J. S., Pastides, H. (1988). Predicting the Outcome of Intensive Care Unit Patients. Journal of the American Statistical Association, 83, 348-356.

Examples

```
data(ICU)
# remove redundant variables (race, coma)
ICU1 <- ICU[,-c(4,20)]
# fit full model
icu.full <- glm(died ~ ., data=ICU1, family=binomial)
summary(icu.full)
# simpler model (found from a "best" subsets procedure)
icu.modl <- glm(died ~ age + sex + cancer + systolic + admit + uncons, data=ICU1, family=bin
summary(icu.mod1)
# even simpler model
icu.mod2 <- glm(died ~ age + cancer + admit + uncons, data=ICU1, family=binomial)
summary(icu.mod2)
```

```
anova(icu.mod2, icu.mod1, icu.full, test="Chisq")
## Reproduce Fig 6.12 from VCD
icu.fit <- data.frame(ICU, prob=predict(icu.mod2, type="response"))
# combine categorical risk factors to a single string
risks <- ICU[, c("cancer", "admit", "uncons")]
risks[,1] <- ifelse(risks[,1]=="Yes", "Cancer", "")
risks[,2] <- ifelse(risks[,2]=="Emergency", "Emerg", "")
risks[,3] <- ifelse(risks[,3]=="Yes", "Uncons", "")
risks <- apply(risks, 1, paste, collapse="")
risks[risks==""] <- "(none)"
icu.fit$risks <- risks
library(ggplot2)
ggplot(icu.fit, aes(x=age, y=prob, color=risks)) +
geom_point(size=2) +
geom_line(size=1.25, alpha=0.5) +
theme_bw() + ylab("Probability of death")
```

JobSat

Cross-classification of job satisfaction by income

Description

This data set is a contingency table of job satisfaction by income for a small sample of black males from the 1996 General Social Survey, as used by Agresti (2002) for an example.

Usage

```
data(JobSat)
```


Format

A 4×4 contingency table of income by satisfaction, with the following structure:

```
table [1:4, 1:4] 1 2 1 0 3 3 6 1 10 10 ...
- attr(*, "dimnames")=List of 2
    ..$ income : chr [1:4] "< 15k" "15-25k" "25-40k" "> 40k"
    ..$ satisfaction: chr [1:4] "VeryD" "LittleD" "ModerateS" "VeryS"
```


Details

Both income and satisfaction are ordinal variables, and are so ordered in the table. Measures of association, visualizations, and models should take ordinality into account.

Source

Agresti, A. Categorical Data Analysis John Wiley \& Sons, 2002, Table 2.8, p. 57.

Examples

```
data(JobSat)
assocstats(JobSat)
GKgamma (JobSat)
```


Description

Generate and fit all 0 -way, 1-way, 2-way, ... k-way terms in a glm.
This function is designed mainly for hierarchical loglinear models (or glms in the poisson family), where it is desired to find the highest-order terms necessary to achieve a satisfactory fit.
Using anova on the resulting glmlist object will then give sequential tests of the pooled contributions of all terms of degree $k+1$ over and above those of degree k.
This function is also intended as an example of a generating function for glmlist objects, to facilitate model comparison, extraction, summary and plotting of model components, etc., perhaps using lapply or similar.

Usage

```
Kway(formula, family=poisson, data, ..., order = nt, prefix = "kway")
```


Arguments

formula	a two-sided formula for the 1-way effects in the model. The LHS should be the response, and the RHS should be the first-order terms connected by + signs.
family	a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.) an optional data frame, list or environment (or object coercible by as. data. frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment (formula), typically the environ- ment from which glm is called.
data	Other arguments passed to glm
order	Highest order interaction of the models generated. Defaults to the number of terms in the model formula.
prefix	Prefix used to label the models fit in the glmlist object.

Details

With y as the response in the formula, the 0 -way (null) model is $\mathrm{y} \sim 1$. The 1 -way ("main effects") model is that specified in the formula argument. The k-way model is generated using the formula $. \sim .^{\wedge} \mathrm{k}$. With the default order $=n t$, the final model is the saturated model.
As presently written, the function requires a two-sided formula with an explicit response on the LHS. For frequency data in table form (e.g., produced by xtabs) you the data argument is coerced to a data.frame, so you should supply the formula in the form Freq ~

Value

An object of class glmlist, of length order+1 containing the 0 -way, 1 -way, ... models up to degree order.

Author(s)

Michael Friendly and Heather Turner

See Also

glmlist, Summarise (soon to be deprecated), LRstats

Examples

```
## artificial data
factors <- expand.grid(A=factor(1:3), B=factor(1:2), C=factor(1:3), D=factor(1:2))
Freq <- rpois(nrow(factors), lambda=40)
df <- cbind(factors, Freq)
mods3 <- Kway(Freq ~ A + B + C, data=df, family=poisson)
LRstats (mods3)
mods4 <- Kway(Freq ~ A + B + C + D, data=df, family=poisson)
LRstats(mods4)
# JobSatisfaction data
data(JobSatisfaction, package="vcd")
modSat <- Kway(Freq ~ management+supervisor+own, data=JobSatisfaction,
    family=poisson, prefix="JobSat")
LRstats(modSat)
anova(modSat, test="Chisq")
# Rochdale data: very sparse, in table form
data(Rochdale, package="vcd")
## Not run:
modRoch <- Kway(Freq~EconActive + Age + HusbandEmployed + Child +
                            Education + HusbandEducation + Asian + HouseholdWorking,
    data=Rochdale, family=poisson)
LRstats(modRoch)
## End(Not run)
```

logLik.loglm Log-Likelihood of a loglm Object

Description

Calculates the log-likelihood value of the loglm model represented by object evaluated at the estimated coefficients.

It allows the use of AIC and BIC, which require that a logLik method exists to extract the corresponding log-likelihood for the model.

Usage

\#\# S3 method for class 'loglm'
logLik(object, ..., zero=1E-10)

Arguments

object A loglm object
. . . For compatibility with the S3 generic; not used here
zero value used to replace zero frequencies in calculating the log-likelihood

Details

If cell frequencies have not been stored with the $\log \operatorname{lm}$ object (via the argument keep. frequencies $=$ TRUE), they are obtained using update.
This function calculates the log-likelihood in a way that allows for non-integer frequencies, such as the case where 0.5 has been added to all cell frequencies to allow for sampling zeros. If the frequencies still contain zero values, those are replaced by the value of start.

For integer frequencies, it gives the same result as the corresponding model fit using glm , whereas $g l m$ returns -Inf if there are any non-integer frequencies.

Value

Returns an object of class logLik. This is a number with one attribute, "df" (degrees of freedom), giving the number of (estimated) parameters in the model.

Author(s)

Achim Zeileis

See Also

$\log \operatorname{lm}, A I C, B I C$,

Examples

```
data(Titanic, package="datasets")
require(MASS)
titanic.mod1 <- loglm(~ (Class * Age * Sex) + Survived, data=Titanic)
titanic.mod2 <- loglm(~ (Class * Age * Sex) + Survived*(Class + Age + Sex), data=Titanic)
titanic.mod3 <- loglm(~ (Class * Age * Sex) + Survived*(Class + Age * Sex), data=Titanic)
logLik(titanic.mod1)
AIC(titanic.mod1, titanic.mod2, titanic.mod3)
BIC(titanic.mod1, titanic.mod2, titanic.mod3)
# compare with models fit using glm()
titanic <- as.data.frame(Titanic)
titanic.glm1 <- glm(Freq ~ (Class * Age * Sex) + Survived,
    data=titanic, family=poisson)
titanic.glm2 <- glm(Freq ~ (Class * Age * Sex) + Survived\star(Class + Age + Sex),
    data=titanic, family=poisson)
titanic.glm3 <- glm(Freq ~ (Class * Age * Sex) + Survived*(Class + Age * Sex),
    data=titanic, family=poisson)
logLik(titanic.glm1)
AIC(titanic.glm1, titanic.glm2, titanic.glm3)
BIC(titanic.glm1, titanic.glm2, titanic.glm3)
```

loglin-utilities Loglinear Model Utilities

Description

These functions generate lists of terms to specify a loglinear model in a form compatible with \log in and also provide for conversion to an equivalent $\log \operatorname{lm}$ specification or a shorthand character string representation.
They allow for a more conceptual way to specify such models by a function for their type, as opposed to just an uninterpreted list of model terms and also allow easy specification of marginal models for a given contingency table.

They are intended to be used as tools in higher-level modeling and graphics functions, but can also be used directly.

Usage

```
conditional(nf, table = NULL, factors = 1:nf, with = nf)
joint(nf, table = NULL, factors = 1:nf, with = nf)
markov(nf, factors = 1:nf, order = 1)
```

```
mutual(nf, table = NULL, factors = 1:nf)
saturated(nf, table = NULL, factors = 1:nf)
loglin2formula(x, env = parent.frame())
loglin2string(x, brackets = c("[", "]"), sep = ",", collapse = " ", abbrev)
```


Arguments

nf	number of factors for which to generate the model
table	a contingency table used only for factor names in the model, typically the output from table and possibly permuted with aperm
factors	names of factors used in the model formula when table is not specified
with	For joint and conditional models, with gives the indices of the factors against which all others are considered jointly or conditionally independent
order	For markov, this gives the order of the Markov chain model for the factors. An order=1 Markov chain allows associations among sequential pairs of factors, e.g., $[A, B],[B, C],[C, D] \ldots$ An order=2 Markov chain allows associations among sequential triples.
x	For the $\log \operatorname{lin} 2 *$ functions, a list of terms in a loglinear model, such as returned by conditional, joint,...
env	For loglin2formula, environment in which to evaluate the formula
brackets	For $\log \operatorname{lin} 2$ string, characters to use to surround model terms. Either a single character string containing two characters (e.g., ' [] ' or a character vector of length two.
sep	For loglin2string, the separator character string used for factor names within a given model term
collapse	For loglin2string, the character string used between terms in the the model string
abbrev	For loglin2string, whether and how to abbreviate the terms in the string representation. This has not yet been implemented.

Details

The main model specification functions, conditional, joint, markov, ..., saturated, return a list of vectors indicating the marginal totals to be fit, via the margin argument to loglin. Each element of this list corresponds to a high-order term in a hierarchical loglinear model, where, e.g., a term like $c(" A ", " B$ ") is equivalent to the $\log \operatorname{lm}$ term "A: B " and hence automatically includes all low-order terms.

Note that these can be used to supply the expected argument for the default mosaic function, when the data is supplied as a contingency table.

The table below shows some typical results in terms of the standard shorthand notation for loglinear models, with factors $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$, where brackets are used to delimit the high-order terms in the loglinear model.

function	3-way	4-way	5-way
mutual	$[\mathrm{A}][\mathrm{B}][\mathrm{C}]$	$[\mathrm{A}][\mathrm{B}][\mathrm{C}][\mathrm{D}]$	$[\mathrm{A}][\mathrm{B}][\mathrm{C}][\mathrm{D}][\mathrm{E}]$
joint	$[\mathrm{AB}][\mathrm{C}]$	$[\mathrm{ABC}][\mathrm{D}]$	$[\mathrm{ABCE}][\mathrm{E}]$
joint (with=1)	$[\mathrm{A}][\mathrm{BC}]$	$[\mathrm{A}][\mathrm{BCD}]$	$[\mathrm{A}][\mathrm{BCDE}]$
conditional	$[\mathrm{AC}][\mathrm{BC}]$	$[\mathrm{AD}][\mathrm{BD}][\mathrm{CD}]$	$[\mathrm{AE}][\mathrm{BE}][\mathrm{CE}][\mathrm{DE}]$
condit (with=1)	$[\mathrm{AB}][\mathrm{AC}]$	$[\mathrm{AB}][\mathrm{AC}][\mathrm{AD}]$	$[\mathrm{AB}][\mathrm{AC}][\mathrm{AD}][\mathrm{AE}]$
markov (order=1)	$[\mathrm{AB}][\mathrm{BC}]$	$[\mathrm{AB}][\mathrm{BC}][\mathrm{CD}]$	$[\mathrm{AB}][\mathrm{BC}][\mathrm{CD}][\mathrm{DE}]$
markov (order=2)	$[\mathrm{A}][\mathrm{B}][\mathrm{C}]$	$[\mathrm{ABC}][\mathrm{BCD}]$	$[\mathrm{ABC}][\mathrm{BCD}][\mathrm{CDE}]$
saturated	$[\mathrm{ABC}]$	$[\mathrm{ABCD}]$	$[\mathrm{ABCDE}]$

loglin2 formula converts the output of one of these to a model formula suitable as the formula for of loglm.
loglin2string converts the output of one of these to a string describing the loglinear model in the shorthand bracket notation, e.g., " [A, B] [A, C] ".

Value

For the main model specification functions, conditional, joint, markov, ..., the result is a list of vectors (terms), where the elements in each vector are the names of the factors. The elements of the list are given names term1,term $2, \ldots$.

Author(s)

Michael Friendly

References

These functions were inspired by the original SAS implementation of mosaic displays, described in the User's Guide, http://www.datavis.ca/mosaics/mosaics.pdf

See Also

$\log l i n, \log l m$

Examples

```
joint(3, table=HairEyeColor)
# as a formula or string
loglin2formula(joint(3, table=HairEyeColor))
loglin2string(joint(3, table=HairEyeColor))
joint(2, HairEyeColor) # marginal model for [Hair] [Eye]
# other possibilities
joint(4, factors=letters, with=1)
joint(5, factors=LETTERS)
joint(5, factors=LETTERS, with=4:5)
conditional(4)
```

```
conditional(4, with=3:4)
# use in mosaic displays or other strucplots
mosaic(HairEyeColor, expected=joint(3))
mosaic(HairEyeColor, expected=conditional(3))
# use with MASS::loglm
cond3 <- loglin2formula(conditional(3, table=HairEyeColor))
cond3 <- loglin2formula(conditional(3)) # same, with factors 1,2,3
require(MASS)
loglm(cond3, data=HairEyeColor)
saturated(3, HairEyeColor)
loglin2formula(saturated(3, HairEyeColor))
loglin2string(saturated(3, HairEyeColor))
loglin2string(saturated(3, HairEyeColor), brackets='{}', sep=', ')
```


logseries The Logarithmic Series Distribution

Description

The logarithmic series distribution is a long-tailed distribution introduced by Fisher etal. (1943) in connection with data on the abundance of individuals classified by species.

These functions provide the density, distribution function, quantile function and random generation for the logarithmic series distribution with parameter prob.

Usage

```
dlogseries(x, prob = 0.5, log = FALSE)
plogseries(q, prob = 0.5, lower.tail = TRUE, log.p = FALSE)
qlogseries(p, prob = 0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rlogseries(n, prob = 0.5)
```


Arguments

```
    x, q
    vector of quantiles representing the number of events.
    prob parameter for the distribution, 0 < prob < 1
    log, log.p logical; if TRUE, probabilities p are given as log (p)
    lower.tail logical; if TRUE (default), probabilities are P[X\leqx], otherwise, P[X>x].
    p vector of probabilities
    max.value maximum value returned by qlogseries
    n number of observations for rlogseries
```


Details

The logarithmic series distribution with prob $=p$ has density

$$
p(x)=\alpha p^{x} / x
$$

for $x=1,2, \ldots$, where $\alpha=-1 / \log (1-p)$ and $0<p<1$. Note that counts $\mathrm{x}==2$ cannot occur.

Value

dlogseries gives the density, plogseries gives the distribution function, qlogseries gives the quantile function, and rlogseries generates random deviates.

Author(s)

Michael Friendly, using original code modified from the gmlss. dist package by Mikis Stasinopoulos.

References

```
https://en.wikipedia.org/wiki/Logarithmic_distribution
```

Fisher, R. A. and Corbet, A. S. and Williams, C. B. (1943). The relation between the number of species and the number of individuals Journal of Animal Ecology, 12, 42-58.

See Also

```
Distributions, ~~~
```


Examples

```
XL <-expand.grid(x=1:5, p=c(0.33, 0.66, 0.99))
lgs.df <- data.frame(XL, prob=dlogseries(XL[,"x"], XL[,"p"]))
lgs.df$p = factor(lgs.df$p)
str(lgs.df)
require(lattice)
mycol <- palette() [2:4]
xyplot( prob ~ x, data=lgs.df, groups=p,
xlab=list('Number of events (k)', cex=1.25),
ylab=list('Probability', cex=1.25),
type='b', pch=15:17, lwd=2, cex=1.25, col=mycol,
key = list(
title = 'p',
points = list(pch=15:17, col=mycol, cex=1.25),
lines = list(lwd=2, col=mycol),
text = list(levels(lgs.df$p)),
x=0.9, y=0.98, corner=c (x=1, y=1)
)
)
# random numbers
```

```
hist(rlogseries(200, prob=.4), xlab='x')
hist(rlogseries(200, prob=.8), xlab='x')
```

```
LRstats
```


Brief Summary of Model Fit for glm and loglm Models

Description

For glm objects, the print and summary methods give too much information if all one wants to see is a brief summary of model goodness of fit, and there is no easy way to display a compact comparison of model goodness of fit for a collection of models fit to the same data. All loglm models have equivalent glm forms, but the print and summary methods give quite different results.
LRstats provides a brief summary for one or more models fit to the same dataset for which logLik and nobs methods exist (e.g., glm and loglm models).

Usage

```
LRstats(object, ...)
## S3 method for class 'glmlist'
LRstats(object, ..., saturated = NULL, sortby = NULL)
## S3 method for class 'loglmlist'
LRstats(object, ..., saturated = NULL, sortby = NULL)
## Default S3 method:
LRstats(object, ..., saturated = NULL, sortby = NULL)
```


Arguments

object	a fitted model object for which there exists a logLik method to extract the corre- sponding log-likelihood
\ldots	optionally more fitted model objects
saturated	saturated model log likelihood reference value (use 0 if deviance is not available)
sortby	either a numeric or character string specifying the column in the result by which the rows are sorted (in decreasing order)

Details

The function relies on residual degrees of freedom for the LR chisq test being available in the model object. This is true for objects inheriting from $1 \mathrm{~m}, \mathrm{glm}, \operatorname{loglm}, \mathrm{polr}$ and negbin.

Value

A data frame (also of class anova) with columns c ("AIC", "BIC", "LR Chisq", "Df", "Pr (>Chisq)"). Row names are taken from the names of the model object(s).

Author(s)

Achim Zeileis

See Also

```
logLik, glm, loglm,
logLik.loglm, modFit
```


Examples

```
data(Mental)
indep <- glm(Freq ~ mental+ses,
    family = poisson, data = Mental)
LRstats(indep)
Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)
coleff <- glm(Freq ~ mental + ses + Rscore:ses,
    family = poisson, data = Mental)
roweff <- glm(Freq ~ mental + ses + mental:Cscore,
    family = poisson, data = Mental)
linlin <- glm(Freq ~ mental + ses + Rscore:Cscore,
    family = poisson, data = Mental)
# compare models
LRstats(indep, coleff, roweff, linlin)
```

Mammograms Mammogram Ratings

Description

Kundel \& Polansky (2003) give (possibly contrived) data on a set of 110 mammograms rated by two readers.

Usage

data(Mammograms)

Format

A frequency table in matrix form. The format is: num [1:4, 1:4] 346201085128 ... $\operatorname{attr}(*$, "dimnames")=List of 2 ..\$ Reader2: chr [1:4] "Absent" "Minimal" "Moderate" "Severe" ..\$ Reader1: chr [1:4] "Absent" "Minimal" "Moderate" "Severe"

Source

Kundel, H. L. \& Polansky, M. (2003), "Measurement of Observer Agreement", Radiology, 228, 303-308, Table A1

Examples

```
data (Mammograms)
B <- agreementplot(Mammograms, main="Mammogram ratings")
# agreement measures
B
Kappa (Mammograms)
## other displays
mosaic(Mammograms, shade=TRUE)
sieve(Mammograms, pop = FALSE, shade = TRUE)
labeling_cells(text = Mammograms, gp_text = gpar(fontface = 2, cex=1.75))(as.table(Mammogram
```

```
mcaplot Simple and enhanced plot of MCA solutions
```


Description

This function is intended as an alternative to plot.mjca for plotting multiple correspondence analysis solutions. It provides more flexibility for labeling factor levels and connecting them with lines. It does not support some features of plot.mjca (centroids, supplementary points, arrows, etc.)

Usage

```
mcaplot(obj, map = "symmetric", dim = 1:2,
    col = c("blue", "red", "brown", "black", "green3", "purple"),
    pch = 15:20, cex = 1.2, pos = 3, lines = TRUE, lwd = 2,
    legend = FALSE, legend.pos = "topright",
    xlab = "_auto_", ylab = "_auto_",
    rev.axes = c(FALSE, FALSE),
    ...)
```


Arguments

obj An "mjca" object
map \quad Character string specifying the map type, i.e., the scaling applied to coordinates for different types of MCA representations. Allowed options include: "symmetric" (default), "rowprincipal", "colprincipal", "symbiplot", "rowgab", "colgab", "rowgreen", "colgreen". See mjca for details.
dim Dimensions to plot, an integer vector of length 2

col	Vector of colors, one for each factor in the MCA
pch	Vector of point symbols for the category levels, one for each factor
cex	Character size for points and level labels
pos	Position of level labels relative to the category points; either a single number or a vector of length equal to the number of category points.
lines	A logical or an integer vector indicating which factors are to be joined with lines using multilines
lwd	Line width(s) for the lines
legend	Logical; draw a legend for the factor names?
legend.pos	Position of the legend in the plot, as in legend
xlab,ylab	Labels for horizontal and vertical axes. The default, "_auto_" means that the function auto-generates a label of the form "Dimension X ($\mathrm{xx} . \mathrm{x} \%$) "
rev.axes	A logical vector of length 2 , where TRUE reverses the direction of the corresponding axis
. .	Arguments passed down to plot

Value

Returns the coordinates of the category points invisibly

Author(s)

Michael Friendly

See Also

mjca, plot.mjca
cacoord returns CA and MCA coordinates, multilines draw multiple lines according to a factor,

Examples

```
require(ca)
data(Titanic)
titanic.mca <- mjca(Titanic)
mcaplot(titanic.mca, legend=TRUE, legend.pos="topleft")
data(HairEyeColor)
haireye.mca <- mjca(HairEyeColor)
mcaplot(haireye.mca, legend=TRUE, cex.lab=1.3)
```

Mental Mental impairment and parents SES

Description

A 6×4 contingency table representing the cross-classification of mental health status (mental) of 1660 young New York residents by their parents' socioeconomic status (ses).

Usage

```
data(Mental)
```


Format

A data frame frequency table with 24 observations on the following 3 variables.
ses an ordered factor with levels $1<2<3<4<5<6$
mental an ordered factor with levels Well<Mild<Moderate<Impaired
Freq cell frequency: a numeric vector

Details

Both ses and mental can be treated as ordered factors or integer scores. For ses, 1="High" and 6="Low".

Source

Haberman, S. J. The Analysis of Qualitative Data: New Developments, Academic Press, 1979, Vol. II, p. 375.
Srole, L.; Langner, T. S.; Michael, S. T.; Kirkpatrick, P.; Opler, M. K. \& Rennie, T. A. C. Mental Health in the Metropolis: The Midtown Manhattan Study, NYU Press, 1978, p. 289

References

Friendly, M. Visualizing Categorical Data, Cary, NC: SAS Institute, 2000, Appendix B.7.

Examples

```
data(Mental)
str(Mental)
(Mental.tab <- xtabs(Freq ~ ses+mental, data=Mental))
# mosaic and sieve plots
mosaic(Mental.tab, gp=shading_Friendly)
sieve(Mental.tab, gp=shading_Friendly)
library(ca)
plot(ca(Mental.tab), main="Mental impairment & SES")
```

```
    title(xlab="Dim 1", ylab="Dim 2")
```

Mice Mice Depletion Data

Description

Data from Kastenbaum and Lamphiear (1959). The table gives the number of depletions (deaths) in 657 litters of mice, classified by litter size and treatment. This data set has become a classic in the analysis of contingency tables, yet unfortunately little information on the details of the experiment has been published.

Usage

```
    data("Mice")
```


Format

A frequency data frame with 30 observations on the following 4 variables, representing a $5 \times 2 \times 3$ contingency table.
litter litter size, a numeric vector
treatment treatment, a factor with levels A B
deaths number of depletions, a factor with levels $012+$
Freq cell frequency, a numeric vector

Source

Goodman, L. A. (1983) The analysis of dependence in cross-classifications having ordered categories, using log-linear models for frequencies and log-linear models for odds. Biometrics, 39, 149-160.

References

Kastenbaum, M. A. \& Lamphiear, D. E. (1959) Calculation of chi-square to calculate the no threefactor interaction hypothesis. Biometrics, 15, 107-115.

Examples

```
data(Mice)
# make a table
ftable(mice.tab <- xtabs(Freq ~ litter + treatment + deaths, data=Mice))
library(vcd)
mosaic(mice.tab, shade=TRUE)
```


Mobility Social Mobility data

Description

Data on social mobility, recording the occupational category of fathers and their sons.

Usage

data(Mobility)

Format

A 2-dimensional array resulting from cross-tabulating 2 variables for 19912 observations. The variable names and their levels are:

No Name

1 Son's_Occupation\} \tab \code\{"UpNonMan", "LoNonMan", "UpManual", "LoManual", "Farm"\}

Source

Falguerolles, A. de and Mathieu, J. R. (1988). Proceedings of COMPSTAT 88, Copenhagen, Denmark, Springer-Verlag.

Featherman, D. L. and Hauser, R. M. Occupations and social mobility in the United States. Sociological Microjournal, 12, Fiche 62. Copenhagen: Sociological Institute.

Examples

data(Mobility)
\# example goes here

```
modF it Brief Summary of Model Fit for a glm or loglm Object
```


Description

Formats a brief summary of model fit for a $g l m$ or loglm object, showing the likelihood ratio Chisq (df) value and or AIC. Useful for inclusion in a plot title or annotation.

Usage

```
modFit(x, ...)
## S3 method for class 'glm'
modFit(x, stats="chisq", digits=2, ...)
## S3 method for class 'loglm'
modFit(x, stats="chisq", digits=2, ...)
```


Arguments

x	A glm or loglm object
\ldots	Arguments passed down
stats	One or more of chisq or aic, determining the statistics displayed.
digits	Number of digits after the decimal point in displayed statistics.

Value

A character string containing the formatted values of the chosen statistics.

Author(s)

Michael Friendly

See Also

Summarise (soon to be deprecated), LRstats

Examples

```
data(Mental)
require(MASS)
(Mental.tab <- xtabs(Freq ~ ses+mental, data=Mental))
(Mental.mod <- loglm(~ses+mental, Mental.tab))
Mental.mod
modFit(Mental.mod)
# use to label mosaic()
mosaic(Mental.mod, main=paste("Independence model,", modFit(Mental.mod)))
```

```
mosaic.glm
```

Mosaic plots for fitted generalized linear and generalized nonlinear models

Description

Produces mosaic plots (and other plots in the strucplot framework) for a log-linear model fitted with glm or for a generalized nonlinear model fitted with gnm.
These methods extend the range of strucplot visualizations well beyond the models that can be fit with $\log \mathrm{lm}$. They are intended for models for counts using the Poisson family (or quasi-poisson), but should be sensible as long as (a) the response variable is non-negative and (b) the predictors visualized in the strucplot are discrete factors.

Usage

```
## S3 method for class 'glm'
mosaic(x, formula = NULL, panel = mosaic,
    type = c("observed", "expected"),
    residuals = NULL,
    residuals_type = c("pearson", "deviance", "rstandard"),
    gp = shading_hcl, gp_args = list(), ...)
## S3 method for class 'glm'
sieve(x, ...)
## S3 method for class 'glm'
assoc(x, ...)
```


Arguments

$x \quad$ A glm or $g n m$ object. The response variable, typically a cell frequency, should be non-negative.
formula A one-sided formula with the indexing factors of the plot separated by ' + ', determining the order in which the variables are used in the mosaic. A formula must be provided unless x\$data inherits from class "table" - in which case the indexing factors of this table are used, or the factors in $x \$ d a t a$ (or model.frame(x) if $x \$ d a t a$ is an environment) exactly cross-classify the data in which case this set of cross-classifying factors are used.
panel Panel function used to draw the plot for visualizing the observed values, residuals and expected values. Currently, one of "mosaic", "assoc", or "sieve" in vcd.
type A character string indicating whether the "observed" or the "expected" values of the table should be visualized by the area of the tiles or bars.
residuals An optional array or vector of residuals corresponding to the cells in the data, for example, as calculated by residuals.glm(x), residuals.gnm(x).
residuals_type
If the residuals argument is NULL, residuals are calculated internally and used in the display. In this case, residual_type can be "pearson", "deviance" or "rstandard". Otherwise (when residuals is supplied), residuals_type is used as a label for the legend in the plot.
gp Object of class "gpar", shading function or a corresponding generating function (see strucplot Details and shadings). Ignored if shade = FALSE.
gp_args A list of arguments for the shading-generating function, if specified.
... Other arguments passed to the panel function e.g., mosaic

Details

For both poisson family generalized linear models and loglinear models, standardized residuals provided by rstandard (sometimes called adjusted residuals) are often preferred because they have constant unit asymptotic variance.
The sieve and assoc methods are simple convenience interfaces to this plot method, setting the panel argument accordingly.

Value

The structable visualized by strucplot is returned invisibly.

Author(s)

Heather Turner, Michael Friendly, with help from Achim Zeileis

See Also

glm, gnm, plot.loglm, mosaic

Examples

```
GSStab <- xtabs(count ~ sex + party, data=GSS)
# using the data in table form
mod.glm1 <- glm(Freq ~ sex + party, family = poisson, data = GSStab)
res <- residuals(mod.glm1)
std <- rstandard(mod.glm1)
# For mosaic.default(), need to re-shape residuals to conform to data
stdtab <- array(std, dim=dim(GSStab), dimnames=dimnames(GSStab))
mosaic(GSStab, gp=shading_Friendly, residuals=stdtab, residuals_type="Std\nresiduals",
        labeling = labeling_residuals)
# Using externally calculated residuals with the glm() object
mosaic.glm(mod.glm1, residuals=std, labeling = labeling_residuals, shade=TRUE)
# Using residuals_type
mosaic.glm(mod.glm1, residuals_type="rstandard", labeling = labeling_residuals, shade=TRUE)
## Ordinal factors and structured associations
data(Mental)
xtabs(Freq ~ mental+ses, data=Mental)
long.labels <- list(set_varnames = c(mental="Mental Health Status", ses="Parent SES"))
# fit independence model
# Residual deviance: 47.418 on 15 degrees of freedom
indep <- glm(Freq ~ mental+ses,
    family = poisson, data = Mental)
long.labels <- list(set_varnames = c(mental="Mental Health Status",
                        ses="Parent SES"))
```

```
mosaic(indep,residuals_type="rstandard", labeling_args = long.labels, labeling=labeling_resi
# or, show as a sieve diagram
mosaic(indep, labeling_args = long.labels, panel=sieve, gp=shading_Friendly)
# fit linear x linear (uniform) association. Use integer scores for rows/cols
Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)
linlin <- glm(Freq ~ mental + ses + Rscore:Cscore,
    family = poisson, data = Mental)
mosaic(linlin,residuals_type="rstandard",
    labeling_args = long.labels, labeling=labeling_residuals, suppress=1, gp=shading_Friendly,
    main="Lin x Lin model")
## Goodman Row-Column association model fits even better (deviance 3.57, df 8)
if (require(gnm)) {
Mental$mental <- C(Mental$mental, treatment)
Mental$ses <- C(Mental$ses, treatment)
RC1model <- gnm(Freq ~ ses + mental + Mult(ses, mental),
                    family = poisson, data = Mental)
mosaic(RC1model,residuals_type="rstandard",
    labeling_args = long.labels, labeling=labeling_residuals, suppress=1, gp=shading_Friendly,
    main="RC1 model")
    }
    ############# UCB Admissions data, fit using glm()
    structable(Dept ~ Admit+Gender, UCBAdmissions)
berkeley <- as.data.frame(UCBAdmissions)
berk.glm1 <- glm(Freq ~ Dept * (Gender+Admit), data=berkeley, family="poisson")
summary(berk.glm1)
mosaic(berk.glm1, gp=shading_Friendly, labeling=labeling_residuals, formula=~Admit+Dept+Gend
# the same, displaying studentized residuals; note use of formula to reorder factors in the
mosaic(berk.glm1, residuals_type="rstandard", labeling=labeling_residuals, shade=TRUE,
formula=~Admit+Dept+Gender, main="Model: [DeptGender][DeptAdmit]")
## all two-way model
berk.glm2 <- glm(Freq ~ (Dept + Gender + Admit)^2, data=berkeley, family="poisson")
summary(berk.glm2)
mosaic.glm(berk.glm2, residuals_type="rstandard", labeling = labeling_residuals, shade=TRUE,
formula=~Admit+Dept+Gender, main="Model: [DeptGender][DeptAdmit][AdmitGender]")
anova(berk.glm1, berk.glm2, test="Chisq")
# Add 1 df term for association of [GenderAdmit] only in Dept A
berkeley <- within(berkeley, dept1AG <- (Dept=='A')*(Gender=='Female')*(Admit=='Admitted'))
berkeley[1:6,]
berk.glm3 <- glm(Freq ~ Dept * (Gender+Admit) + dept1AG, data=berkeley, family="poisson")
summary(berk.glm3)
mosaic.glm(berk.glm3, residuals_type="rstandard", labeling = labeling_residuals, shade=TRUE,
formula=~Admit+Dept+Gender, main="Model: [DeptGender][DeptAdmit] + DeptA*[GA]")
anova(berk.glm1, berk.glm3, test="Chisq")
```

```
mosaic.glmlist Mosaic Displaysforglmlist and logllmlist Objects
```


Description

This function provides a convenient interface for viewing mosaic displays associated with a collection of glm models for frequency tables that have been stored in a glmlist or loglmlist object. You can plot either selected models individually, or mosaics for all models in an array of viewports.

Usage

```
## S3 method for class 'glmlist'
mosaic(x, selection,
    panel=mosaic,
    type=c("observed", "expected"),
    legend=ask | !missing(selection),
    main=NULL,
    ask=TRUE, graphics=TRUE, rows, cols, newpage=TRUE,
    ...)
    ## S3 method for class 'loglmlist'
    mosaic(x, selection,
    panel=mosaic,
    type=c("observed", "expected"),
    legend=ask | !missing(selection),
    main=NULL,
    ask=TRUE, graphics=TRUE, rows, cols, newpage=TRUE,
    ...)
```


Arguments

x	a glmlist or loglmlist object
selection	the index or name of one $g l \mathrm{~m}$ or $\log \mathrm{lm}$ object in x. If no selection is specified, a menu of models is presented or all models are plotted.
panel	a strucplot panel function, typically mosaic or sieve
type	a character string indicating whether the "observed" or the "expected" values of the table should be visualized
legend	logical: show a legend for residuals in the mosaic display(s)? The default be- havior is to include a legend when only a single plot is shown, i.e., if ask is TRUE or a selection has been specified.
main	either a logical, or a vector of character strings used for plotting the main title. If main is a logical and TRUE, the name of the selected glm object is used.

```
ask logical: should the function display a menu of models, when one is not specified
    in selection? If selection is not supplied and ask is TRUE (the default),
    a menu of model names is presented; if ask is FALSE, mosaics for all models
    are plotted in an array.
graphics logical: use a graphic dialog box when ask=TRUE?
rows,cols when ask=FALSE, the number of rows and columns in which to plot the mo-
    saics.
newpage start a new page? (only applies to ask=FALSE)
... other arguments passed to mosaic.glm and ultimately to mosaic.
```


Details

Most details of the plots produced can be controlled via ... arguments as shown in some of the examples below. In particular, with panel=sieve you need to also pass gp=shading_Friendly to get a color version.

Value

Returns the result of mosaic.glm.

Author(s)

Michael Friendly

References

David Meyer, Achim Zeileis, and Kurt Hornik (2006). The Strucplot Framework: Visualizing Multi-Way Contingency Tables with vcd. Journal of Statistical Software, 17(3), 1-48.
doi: 10.18637/jss.v017.i03², available as vignette ("strucplot", package="vcd").

See Also

glmlist, loglmlist, Kway
mosaic.glm, mosaic, strucplot, for the many parameters that control the details of mosaic plots.

Examples

```
data(JobSatisfaction, package="vcd")
# view all pairwise mosaics
pairs(xtabs(Freq~management+supervisor+own, data=JobSatisfaction),
        shade=TRUE, diag_panel=pairs_diagonal_mosaic)
modSat <- Kway(Freq ~ management+supervisor+own, data=JobSatisfaction,
                                    family=poisson, prefix="JobSat")
names(modSat)
```

[^1]```
Not run:
mosaic(modSat) # uses menu, if interactive()
End(Not run)
mosaic(modSat, "JobSat.1") # model label
mosaic(modSat, 2) # model index
supply a formula to determine the order of variables in the mosaic
mosaic(modSat, 2, formula=~own+supervisor+management)
mosaic(modSat, ask=FALSE) # uses viewports
use a different panel function, label the observed valued in the cells
mosaic(modSat, 1, main=TRUE, panel=sieve, gp=shading_Friendly, labeling=labeling_values)
data(Mental)
indep <- glm(Freq ~ mental+ses,
 family = poisson, data = Mental)
Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)
coleff <- glm(Freq ~ mental + ses + Rscore:ses,
 family = poisson, data = Mental)
roweff <- glm(Freq ~ mental + ses + mental:Cscore,
 family = poisson, data = Mental)
linlin <- glm(Freq ~ mental + ses + Rscore:Cscore,
 family = poisson, data = Mental)
assign names for the plot labels
modMental <- glmlist(Indep=indep, ColEff=coleff, RowEff=roweff, `Lin x Lin`=linlin)
mosaic(modMental, ask=FALSE, margins=c(3,1,1,2), labeling_args=list(abbreviate_labs=5))
```


## 3D Mosaic Plots

## Description

Produces a 3D mosaic plot for a contingency table (or a link [MASS ] $\operatorname{loglm}\}$ model) using the rgl-package.
Generalizing the 2D mosaic plot, this begins with a given 3D shape (a unit cube), and successively sub-divides it along the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ dimensions according to the table margins, generating a nested set of 3D tiles. The volume of the resulting tiles is therefore proportional to the frequency represented in the table cells. Residuals from a given loglinear model are then used to color or shade each of the tiles.
This is a developing implementation. The arguments and details are subject to change.

## Usage

```
mosaic3d(x, ...)
S3 method for class 'loglm'
mosaic3d(x, type = c("observed", "expected"),
 residuals_type = c("pearson", "deviance"), ...)
Default S3 method:
mosaic3d(x, expected = NULL, residuals = NULL,
type = c("observed", "expected"), residuals_type = NULL,
shape = rgl::cube3d(alpha = alpha), alpha = 0.5,
spacing = 0.1, split_dir = 1:3, shading = shading_basic, interpolate=c(2,4),
zero_size=.05,
label_edge,
labeling_args = list(), newpage = TRUE, box=FALSE, ...)
```


## Arguments

x
A link[MASS]\{loglm\} model object. Alternatively, a multidimensional array or table or structable of frequencies in a contingency table. In the present implementation, the dimensions are taken in sequential order. Use link[base] \{aperm\} or structable to change this.
expected optionally, for contingency tables, an array of expected frequencies of the same dimension as x , or alternatively the corresponding loglinear model specification as used by link[stats] \{loglin\} or link[MASS]\{loglm\} (see structable for details).
residuals optionally, an array of residuals of the same dimension as $x$ (see details).
type a character string indicating whether the "observed" or the "expected" frequencies in the table should be visualized by the volume of the 3D tiles.
residuals_type
a character string indicating the type of residuals to be computed when none are supplied. If residuals is NULL, residuals_type must be one of "pearson" (default; giving components of Pearson's chi-squared), "deviance" (giving components of the likelihood ratio chi-squared), or "FT" for the FreemanTukey residuals. The value of this argument can be abbreviated.
shape The initial 3D shape on which the mosaic is based. Typically this is a call to an rgl function, and must produce a shape 3 d object. The default is a "unit cube" on $(-1,+1)$, with transparency specified by alpha.
alpha Specifies the transparency of the 3D tiles used to compose the 3D mosaic.
spacing A number or vector giving the total amount of space used to separate the 3D tiles along each of the dimensions of the table. The values specified are re-cycled to the number of table dimensions.
split_dir A numeric vector composed of the integers 1:3 or a character vector composed of $c(" x ", " y ", " z ")$, where split_dir[i] specifies the axis along which the tiles should be split for dimension i of the table. The values specified are re-cycled to the number of table dimensions.

```
shading A function, taking an array or vector of residuals for the given model, returning a vector of colors. At present, only the default shading=shading_basic is provided. This is roughly equivalent to the use of the shade argument in mosaicplot or to the use of gp=shading_Friendly in mosaic.
interpolate a vector of interpolation values for the shading function.
zero_size The radius of a small sphere used to mark zero cells in the display.
label_edge A character vector composed of \(c("-", "+")\) indicating whether the labels for a given table dimension are to be written at the minima ("-") or maxima ("+") of the other dimensions in the plot. The default is rep (c (' \(-'^{\prime},{ }^{\prime}\) '), each=3, length=ndim), meaning that the first three table variables are labeled at the minima, and successive ones at the maxima.
labeling_args
This argument is intended to be used to specify details of the rendering of labels for the table dimensions, but at present has no effect.
newpage logical indicating whether a new page should be created for the plot or not.
box logical indicating whether a bounding box should be drawn around the plot.
... Other arguments passed down to mosaic. default or 3D functions.
```


## Details

Friendly (1995), Friendly [Sect. 4.5](2000) and Theus and Lauer (1999) have all used the idea of 3D mosaic displays to explain various aspects of loglinear models (the iterative proportional fitting algorithm, the structure of various models for 3-way and n-way tables, etc.), but no implementation of 3D mosaics was previously available.
For the default method, residuals, used to color and shade the 3D tiles, can be passed explicitly, or, more typically, are computed as needed from observed and expected frequencies. In this case, the expected frequencies are optionally computed for a specified loglinear model given by the expected argument. For the loglm method, residuals and observed frequencies are calculated from the model object.

## Value

Invisibly, the list of shape3d objects used to draw the 3D mosaic, with names corresponding to the concatenation of the level labels, separated by ":".

## Author(s)

Michael Friendly, with the help of Duncan Murdoch and Achim Zeileis

## References

Friendly, M. (1995). Conceptual and Visual Models for Categorical Data, The American Statistician, 49, 153-160.
Friendly, M. Visualizing Categorical Data, Cary NC: SAS Institute, 2000. Web materials: http: //www.datavis.ca/books/vcd/.
Theus, M. \& Lauer, S. R. W. (1999) Visualizing Loglinear Models. Journal of Computational and Graphical Statistics, 8, 396-412.

## See Also

strucplot, mosaic, mosaicplot
$\log l i n, \log l \mathrm{~m}$ for details on fitting loglinear models

## Examples

```
2 x 2 x 2
if(requireNamespace("rgl")) {
mosaic3d(Bartlett, box=TRUE)
compare with expected frequencies under model of mutual independence
mosaic3d(Bartlett, type="expected", box=TRUE)
2 x 2 x 3
mosaic3d(Heart, box=TRUE)
}
Not run:
2 x 2 x 2 x 3
illustrates a 4D table
mosaic3d(Detergent)
compare 2D and 3D mosaics
demo("mosaic-hec")
End(Not run)
```


## Description

A data set giving the number of publications by doctoral candidates in biochemistry in relation to various predictors, originally from Long (1997).
There is a large number of zero counts. Is there evidence for a separate group of non-publishers?

## Usage

```
data(PhdPubs)
```


## Format

A data frame with 915 observations on the following 6 variables.
articles number of articles published in the final three years of PhD studies
female dummy variable for gender, coded 1 for female
married dummy variable for marital status, coded 1 for married
kid5 number of young children, age 5 and under
phdprestige prestige of the PhD department. The higher the number the more prestigious the program.
mentor number of publications by the mentor in the preceeding three years

## Details

In this version of the data set, phdprestige had been rounded to the nearest integer. A Stata version with the continuous values was subsequently found at https://www. stata-press. com/data/lf2/couart2.dta

## Source

Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Variables, Sage.
Long, J. S. \& Freese, J. (2006). Regression Models for Categorical Dependent Variables Using Stata, 2nd Ed., Stata Press.

## Examples

```
data(PhdPubs)
very uninformative
hist(PhdPubs$articles, breaks=0:19, col="pink", xlim=c(0,20),
 xlab="Number of Articles")
library(vcd)
rootogram(goodfit(PhdPubs$articles), xlab="Number of Articles")
compare with negative binomial
rootogram(goodfit(PhdPubs$articles, type="nbinomial"),
xlab="Number of Articles", main="Negative binomial")
```

```
print.Kappa Print Kappa
```


## Description

This is a replacement for the print. Kappa method in vcd , adding display of z values to the vcd version and optional confidence intervals.

## Usage

```
S3 method for class 'Kappa'
print(x, digits=max(getOption("digits") - 3, 3), CI=FALSE, level=0.95, ...)
```


## Arguments

| x | A Kappa object |
| :--- | :--- |
| digits | number of digits to print |
| CI | Include confidence intervals in the display? |
| level | confidence level |
| $\ldots$ | Other arguments |

## Value

Returns the Kappa object, invisibly.

## Author(s)

Michael Friendly

## See Also

confint. Kappa

## Examples

```
data("SexualFun")
Kappa(SexualFun)
print(Kappa(SexualFun), CI=TRUE)
stratified 3-way table
apply(MSPatients, 3, Kappa)
```

seq_loglm Sequential Loglinear Models for an N-way Table

## Description

This function takes an n-way contingency table and fits a series of sequential models to the 1-, 2-, ... n-way marginal tables, corresponding to a variety of types of loglinear models.

## Usage

```
seq_loglm(x,
 type = c("joint", "conditional", "mutual", "markov", "saturated"),
 marginals = 1:nf, vorder = 1:nf,
 k = NULL, prefix = "model", fitted = TRUE, ...)
```


## Arguments

X
a contingency table in array form, with optional category labels specified in the dimnames(x) attribute, or else a data.frame in frequency form, with the frequency variable named "Freq".
type type of sequential model to fit, a character string. One of "joint", "conditional", "mutual", "markov", or "saturated".
marginals which marginal sub-tables to fit? A vector of a (sub)set of the integers, 1:nf where $n f$ is the number of factors in the full n-way table.
vorder order of variables, a permutation of the integers $1: n f$, used to reorder the variables in the original table for the purpose of fitting sequential marginal models.
k conditioning variable(s) for type = "joint", "conditional" or Markov chain order for type = "markov"
prefix prefix used to give names to the sequential models
fitted argument passed to loglm to store the fitted values in the model objects
. . . other arguments, passed down

## Details

Sequential marginal models for an n-way tables begin with the model of equal-probability for the one-way margin (equivalent to a chisq.test) and add successive variables one at a time in the order specified by vorder.
All model types give the same result for the two-way margin, namely the test of independence for the first two factors.

Sequential models of joint independence (type=" joint") have a particularly simple interpretation, because they decompose the likelihood ratio test for the model of mutual independence in the full n-way table, and hence account for "total" association in terms of portions attributable to the conditional probabilities of each new variable, given all prior variables.

## Value

An object of class "loglmlist", each of which is a class "loglm" object

## Note

One-way marginal tables are a bit of a problem here, because they cannot be fit directly using $\log l \mathrm{~m}$. The present version uses $\log l \mathrm{in}$, and repairs the result to look like a loglm object (sort of).

## Author(s)

Michael Friendly

## References

These functions were inspired by the original SAS implementation of mosaic displays, described in the User's Guide, http://www.datavis.ca/mosaics/mosaics.pdf

## See Also

```
loglin-utilities for descriptions of sequential models, conditional, joint, mutual,
loglmlist,
```


## Examples

```
data(Titanic, package="datasets")
variables are in the order Class, Sex, Age, Survived
tt <- seq_loglm(Titanic)
```

seq_mosaic Sequential Mosaics and Strucplots for an N-way Table

## Description

This function takes an n-way contingency table and plots mosaics for series of sequential models to the $1-, 2-, \ldots$ n-way marginal tables, corresponding to a variety of types of loglinear models.

## Usage

```
seq_mosaic(x, panel = mosaic,
 type = c("joint", "conditional", "mutual", "markov", "saturated"),
 plots = 1:nf, vorder = 1:nf,
 k = NULL, ...)
```


## Arguments

x
a contingency table in array form, with optional category labels specified in the dimnames(x) attribute, or else a data.frame in frequency form, with the frequency variable named "Freq".
panel astrucplot panel function, typically mosaic or sieve. NOT yet implemented.
type type of sequential model to fit, a character string. One of "joint", "conditional", "mutual", "markov", or "saturated".
plots which marginal sub-tables to plot? A vector of a (sub)set of the integers, $1: \mathrm{nf}$ where $n f$ is the number of factors in the full $n$-way table.
vorder order of variables, a permutation of the integers $1: n f$, used to reorder the variables in the original table for the purpose of fitting sequential marginal models.
k
conditioning variable(s) for type = "joint", "conditional" or Markov chain order for type = "markov"
... other arguments passed to mosaic.

## Details

This function produces similar plots to the use of mosaic.loglmlist, called with the result of seq_loglm.

## Value

None. Used for its side-effect of producing plots

## Author(s)

Michael Friendly

## References

These functions were inspired by the original SAS implementation of mosaic displays, described in the User's Guide, http://www.datavis.ca/mosaics/mosaics.pdf

## See Also

loglin-utilities for descriptions of sequential models, conditional, joint, mutual,

```
loglmlist,mosaic.loglmlist,seq_loglm
```

mosaic.glm, mosaic, strucplot, for the many parameters that control the details of mosaic plots.

## Examples

```
data(Titanic, package="datasets")
seq_mosaic(Titanic) # models of joint independence, Survived last
seq_mosaic(Titanic, type="condit")
seq_mosaic(Titanic, type="mutual")
other panel functions and options: presently BUGGED
Not run:
seq_mosaic(Titanic, type="mutual", panel=sieve,
 gp=shading_Friendly, labeling=labeling_values)
End(Not run)
```


## Description

This data set, from Efron and Thisted (1976), gives the number of distinct words types (Freq) of words that appeared exactly once, twice, etc. up to 100 times (count) in the complete works of Shakespeare. In these works, Shakespeare used 31,534 distinct words (types), comprising 884,647 words in total.

Efron \& Thisted used this data to ask the question, "How many words did Shakespeare know?" Put another way, suppose another new corpus of works Shakespeare were discovered, also with 884,647 words. How many new word types would appear? The answer to the main question involves contemplating an infinite number of such new corpora.

## Usage

data(ShakeWords)

## Format

A data frame with 100 observations on the following 2 variables.
count the number of times a word type appeared in Shakespeare's written works
Freq the number of different words (types) appearing with this count.

## Details

In addition to the words that appear 1:100 times, there are 846 words that appear more than 100 times, not listed in this data set.

## Source

Bradley Efron and Ronald Thisted (1976). Estimating the Number of Unseen Species: How Many Words Did Shakespeare Know? Biometrika, Vol. 63, No. 3, pp. 435-447,

## Examples

```
data(ShakeWords)
maybe str(ShakeWords) ; plot(ShakeWords) ...
```

split3d

## Description

Subdivides a shape3d object or a list of shape3d objects into objects of the same shape along a given dimension according to the proportions or frequencies specified in vector(s).
split3d is the basic workhorse used in mosaic3d, but may be useful in other contexts.
range $3 d$ and center $3 d$ are utility functions, also useful in other contexts.

## Usage

```
split3d(obj, ...)
S3 method for class 'shape3d'
split3d(obj, p, dim, space = 0.1, ...)
S3 method for class 'list'
split3d(obj, p, dim, space = 0.1, ...)
range3d(obj)
center3d(obj)
```


## Arguments

obj A shape3d object, or a list composed of them
. . . Other arguments for split3d methods
p For a single shade3d object, a vector of proportions (or a vector of nonnegative numbers which will be normed to proportions) indicating the number of subdivisions and their scaling along dimension dim. For a list of shade3d objects, a matrix whose columns indicate the subdivisions of each object.
dim The dimension along which the object is to be subdivided. Either an integer: 1, 2 , or 3 , or a character: " $x$ ", " $y$ ", or " $z$ ".
space $\quad$ The total space used to separate the copies of the object along dimension dim. The unit inter-object space is therefore space/(length (p)-1).

## Details

The resulting list of shape 3 d objects is actually composed of copies of the input object(s), scaled according to the proportions in p and then translated to make their range along the splitting dimension equal to that of the input object(s).

## Value

split $3 d$ returns a list of shape3d objects.
range 3 d returns a $2 \times 3$ matrix, whose first row contains the minima on dimensions $x, y, z$, and whose second row contains the maxima.
center3d returns a numeric vector containing the means of the minima and maxima on dimensions $\mathrm{x}, \mathrm{y}, \mathrm{z}$.

## Author(s)

Duncan Murdoch, with refinements by Michael Friendly

## See Also

mosaic3d
shapelist $3 d$ for the plotting of lists of shape $3 d$ objects.

## Examples

```
if (require(rgl)) {
 open3d()
 cube <- cube3d(alpha=0.4)
 sl1 <- split3d(cube, c(.2, .3, .5), 1)
 col <- c("#FF000080", "#E5E5E580", "#0000FF80")
 shapelist3d(sl1, col=col)
 open3d()
 p <- matrix(c(.6, .4, .5, .5, .2, . 8), nrow=2)
 sl2 <- split3d(sl1, p, 2)
 shapelist3d(sl2, col=col)
 }
```


## Description

For glm objects, the print and summary methods give too much information if all one wants to see is a brief summary of model goodness of fit, and there is no easy way to display a compact comparison of model goodness of fit for a collection of models fit to the same data. All loglm models have equivalent glm forms, but the print and summary methods give quite different results.

Summarise provides a brief summary for one or more models fit to the same dataset for which logLik and nobs methods exist (e.g., glm and loglm models).

## Usage

```
Summarise(object, ...)
S3 method for class 'glmlist'
Summarise(object, ..., saturated = NULL, sortby = NULL)
S3 method for class 'loglmlist'
Summarise(object, ..., saturated = NULL, sortby = NULL)
Default S3 method:
Summarise(object, ..., saturated = NULL, sortby = NULL)
```


## Arguments

$$
\begin{array}{ll}
\text { object } & \begin{array}{l}
\text { a fitted model object for which there exists a logLik method to extract the corre- } \\
\text { sponding log-likelihood }
\end{array} \\
\ldots . & \begin{array}{l}
\text { optionally more fitted model objects }
\end{array} \\
\text { saturated } & \begin{array}{l}
\text { saturated model log likelihood reference value (use 0 if deviance is not available) } \\
\text { sortby }
\end{array} \\
\begin{array}{l}
\text { either a numeric or character string specifying the column in the result by which } \\
\text { the rows are sorted (in decreasing order) }
\end{array}
\end{array}
$$

## Details

The function relies on residual degrees of freedom for the LR chisq test being available in the model object. This is true for objects inheriting from $1 \mathrm{~m}, \mathrm{glm}, \operatorname{loglm}, \mathrm{polr}$ and negbin.

## Value

A data frame (also of class anova) with columns c ("AIC", "BIC", "LR Chisq", "Df", "Pr(>Chisq)"). Row names are taken from the names of the model object(s).

## Author(s)

Achim Zeileis

## See Also

```
logLik, glm, loglm,
logLik.loglm, modFit
```


## Examples

```
data(Mental)
indep <- glm(Freq ~ mental+ses,
 family = poisson, data = Mental)
Summarise(indep)
Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)
coleff <- glm(Freq ~ mental + ses + Rscore:ses,
 family = poisson, data = Mental)
```

```
roweff <- glm(Freq ~ mental + ses + mental:Cscore,
 family = poisson, data = Mental)
linlin <- glm(Freq ~ mental + ses + Rscore:Cscore,
 family = poisson, data = Mental)
compare models
Summarise(indep, coleff, roweff, linlin)
```

Titanicp Passengers on the Titanic

## Description

Data on passengers on the RMS Titanic, excluding the Crew and some individual identifier variables.

## Usage

data(Titanicp)

## Format

A data frame with 1309 observations on the following 6 variables.
pclass a factor with levels 1st 2 nd 3 rd
survived a factor with levels died survived
sex a factor with levels female male
age passenger age in years (or fractions of a year, for children), a numeric vector; age is missing for 263 of the passengers
sibsp number of siblings or spouses aboard, integer: $0: 8$
parch number of parents or children aboard, integer: $0: 6$

## Details

There are a number of related versions of the Titanic data, in various formats. This version was derived from ptitanic in the rpart.plot package, modifying it to remove the Class 'labelled' attributes for some variables (inherited from Frank Harrell's titanic3 version) which caused problems with some applications, notably ggplot2.

Other versions:
Titanic is the 4-way frequency table of all 2201 people aboard the Titanic, including passengers and crew.

## Source

The original R source for this dataset was compiled by Frank Harrell and Robert Dawson: https: //biostat.app.vumc.org/wiki/pub/Main/DataSets/titanic.html, described in more detail in https://biostat.app.vumc.org/wiki/pub/Main/DataSets/titanic3info. txt
For this version of the Titanic data, passenger details were deleted, survived was cast as a factor, and the name changed to Titanicp to minimize confusion with other versions.

## Examples

```
data(Titanicp)
maybe str(Titanicp) ; plot(Titanicp) ...
```

Toxaemia Toxaemia Symptoms in Pregnancy

## Description

Brown et al (1983) gave these data on two signs of toxaemia, an abnormal condition during pregnancy characterized by high blood pressure (hypertension) and high levels of protein in the urine. If untreated, both the mother and baby are at risk of complications or death.
The data frame Toxaemia represents 13384 expectant mothers in Bradford, England in their first pregnancy, who were also classified according to social class and the number of cigarettes smoked per day.

## Usage

data(Toxaemia)

## Format

A data frame in frequency form representing a $5 \times 3 \times 2 \times 2$ contingency table, with 60 observations on the following 5 variables.
class Social class of mother, a factor with levels 12345
smoke Cigarettes smoked per day during pregnancy, a factor with levels 0 1-19 20+
hyper Hypertension level, a factor with levels Low High
urea Protein urea level, a factor with levels Low High
Freq frequency in each cell, a numeric vector

## Source

Brown, P. J., Stone, J. and Ord-Smith, C. (1983), Toxaemic signs during pregnancy. JRSS, Series C, Applied Statistics, 32, 69-72

## References

Friendly, M. (2000), Visualizing Categorical Data, SAS Institute, Cary, NC, Example 7.15.
Friendly, M. and Meyer, D. (2016). Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Boca Raton, FL: Chapman \& Hall/CRC. http: / /ddar. datavis. ca. Example 10.10.

## Examples

```
data(Toxaemia)
tox.tab <- xtabs(Freq~class+smoke+hyper+urea,Toxaemia)
ftable(tox.tab, row.vars=1)
symptoms by smoking
mosaic(~smoke+hyper+urea, data=tox.tab, shade=TRUE)
symptoms by social class
mosaic(~class+hyper+urea, data=tox.tab, shade=TRUE)
predictors
mosaic(~smoke+class, data=tox.tab, shade=TRUE)
responses
mosaic(~hyper+urea, data=tox.tab, shade=TRUE)
log odds ratios for urea and hypertension, by class and smoke
Not run:
LOR <-loddsratio(aperm(tox.tab))
LOR
End(Not run)
```


## Description

This data set TV comprises a $5 \times 11 \times 3$ contingency table based on audience viewing data from Neilsen Media Research for the week starting November 6, 1995.

## Usage

data(TV)

## Format

A $5 \times 11 \times 3$ array of cell frequencies with the following structure:

```
int [1:5, 1:11, 1:3] 146 244 233 174 294 151 181 161 183 281 ...
- attr(*, "dimnames")=List of 3
 ..$ Day : chr [1:5] "Monday" "Tuesday" "Wednesday" "Thursday" ...
 ..$ Time : chr [1:11] "8:00" "8:15" "8:30" "8:45" ...
 ..$ Network: chr [1:3] "ABC" "CBS" "NBC"
```


## Details

The original data, tv. dat, contains two additional networks: "Fox" and "Other", with small frequencies. These levels were removed in the current version. There is also a fourth factor, transition State transition (turn the television Off, Switch channels, or Persist in viewing the current channel). The TV data here includes only the Persist observations.

## Source

The original data, tv . dat, came from the initial implementation of mosaic displays in R by Jay Emerson (1998). Similar data had been used by Hartigan and Kleiner (1984) as an illustration.

## References

Friendly, M. and Meyer, D. (2016). Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Boca Raton, FL: Chapman \& Hall/CRC. http: //ddar. datavis.ca.
Emerson, John W. Mosaic Displays in S-PLUS: A General Implementation and a Case Study. Statistical Graphics and Computing Newsletter, 1998, 9(1), 17-23, http://www.stat.yale. edu/~jay/R/mosaic/v91.pdf
Hartigan, J. A. \& Kleiner, B. A Mosaic of Television Ratings. The American Statistician, 1984, 38, 32-35.

## Examples

```
data(TV)
structable(TV)
doubledecker(TV)
reduce number of levels of Time
TV.df <- as.data.frame.table(TV)
levels(TV.df$Time) <- rep(c("8:00-8:59", "9:00-9:59", "10:00-10:44"), c(4, 4, 3))
TV2 <- xtabs(Freq ~ Day + Time + Network, TV.df)
re-label for mosaic display
levels(TV.df$Time) <- c("8", "9", "10")
fit mode of joint independence, showing association of Network with Day*Time
mosaic(~ Day + Network + Time, data = TV.df, expected = ~ Day:Time + Network, legend = FALSE
with doubledecker arrangement
mosaic(~ Day + Network + Time, data = TV.df, expected = ~ Day:Time + Network,
 split = c(TRUE, TRUE, FALSE), spacing = spacing_highlighting, legend = FALSE)
```

```
update.xtabs Update method for a xtabs object
```


## Description

Provides an update method for "xtabs" objects, typically by removing terms from the formula to collapse over them.

## Usage

```
S3 method for class 'xtabs'
update(object, formula., ..., evaluate = TRUE)
```


## Arguments

| object | An existing "xtabs" object |
| :--- | :--- |
| formula. | Changes to the formula ? see update. formula for details |
| $\ldots$ | Additional arguments to the call, or arguments with changed values. |
| evaluate | If TRUE, evaluate the new call else return the call |

## Value

If evaluate == TRUE, the new "xtabs" object, otherwise the updated call

## Author(s)

Michael Friendly

## See Also

update. formula for details on updates to model formulae margin.table does something similar, collapse.table collapses category levels

## Examples

```
vietnam.tab <- xtabs(Freq ~ sex + year + response, data=Vietnam)
update(vietnam.tab, formula = ~ . -year)
```

```
vcdExtra-deprecated
```

Deprecated Functions in vcdExtra Package

## Description

These functions are provided for compatibility with older versions of the vedExtra package only. They are replaced by LRstats.

## Usage

summarise(...)

## Arguments

$$
\ldots \quad \text { pass arguments down. }
$$

## Details

summarise.* have been replaced by LRstats functions.
Vietnam Student Opinion about the Vietnam War

## Description

A survey of student opinion on the Vietnam War was taken at the University of North Carolina at Chapel Hill in May 1967 and published in the student newspaper. Students were asked to fill in ballot papers stating which policy out of A,B,C or D they supported. Responses were crossclassified by gender/year.
The response categories were:
A Defeat North Vietnam by widespread bombing and land invasion
B Maintain the present policy
C De-escalate military activity, stop bombing and begin negotiations
D Withdraw military forces Immediately

## Usage

data(Vietnam)

## Format

A frequency data frame with 40 observations representing a $2 \times 5 \times 4$ contingency table on the following 4 variables.
sex a factor with levels Female Male
year year of study, an ordered factor with levels Freshmen, Sophomore, Junior, Senior, Grad student
response a factor with levels A B C D
Freq cell frequency, a numeric vector

## Details

For some analyses, it is useful to treat year as numeric, and possibly assign grad students a value year=7.

## Source

Aitken, M. etal, 1989, Statistical Modelling in GLIM

## References

Friendly, M. (2000), Visualizing Categorical Data, SAS Institute, Cary, NC, Example 7.9.

## Examples

```
data(Vietnam)
maybe str(Vietnam) ; plot(Vietnam) ...
```

Vote1980 Race and Politics in the 1980 Presidential Vote

## Description

Data from the 1982 General Social Survey on votes in the 1980 U.S. presidential election in relation to race and political conservatism.

## Usage

```
 data(Vote1980)
```


## Format

A frequency data frame representing a $2 \times 7 \times 2$ table, with 28 observations on the following 4 variables.
race a factor with levels NonWhite White
conservatism a factor with levels 1234567 , 1=most liberal, 7=most conservative
votefor a factor with levels Carter Reagan; Carter represents Jimmy Carter or other.
Freq a numeric vector

## Details

The data contains a number of sampling zeros in the frequencies of NonWhites voting for Ronald Reagan.

## Source

Clogg, C. \& Shockey, J. W. (1988). In Nesselroade, J. R. \& Cattell, R. B. (ed.) Multivariate Analysis of Discrete Data, Handbook of Multivariate Experimental Psychology, New York: Plenum Press.

## References

Agresti, A. (1990) Categorical Data Analysis, Table 4.12 New York: Wiley-Interscience.
Friendly, M. (2000) Visualizing Categorical Data, Example 7.5 Cary, NC: SAS Institute.

## Examples

```
data(Vote1980)
fourfold(xtabs(Freq ~ race + votefor + conservatism, data=Vote1980), mfrow=c(2,4))
```

Workersat Worker Satisfaction Data

## Description

Blue collar workers job satisfaction from large scale investigation in Denmark in 1968 (Andersen, 1991).

## Usage

data("WorkerSat")

## Format

A frequency data frame with 8 observations on the following 4 variables, representing the $2 \times 2 \times 2$ classification of 715 cases.

Manage Quality of management, an ordered factor with levels bad < good
Super Supervisor satisfaction, an ordered factor with levels low < high
Worker Worker job satisfaction, an ordered factor with levels low < high
Freq a numeric vector

## Source

Originally from https://online.stat.psu.edu/stat504/lesson/10/

## References

Andersen, E. B. (1991) Statistical Analysis of Categorical Data, 2nd Ed., Springer-Verlag.

## Examples

```
data(WorkerSat)
worker.tab <- xtabs(Freq ~ Worker + Super + Manage, data=WorkerSat)
fourfold(worker.tab)
mosaic(worker.tab, shade=TRUE)
```

Yamaguchi 87 Occupational Mobility in Three Countries

## Description

Yamaguchi (1987) presented this three-way frequency table, cross-classifying occupational categories of sons and fathers in the United States, United Kingdom and Japan. This data set has become a classic for models comparing two-way mobility tables across layers corresponding to countries, groups or time (e.g., Goodman and Hout, 1998; Xie, 1992).
The US data were derived from the 1973 OCG-II survey; those for the UK from the 1972 Oxford Social Mobility Survey; those for Japan came from the 1975 Social Stratification and Mobility survey. They pertain to men aged 20-64.

## Usage

data(Yamaguchi87)

## Format

A frequency data frame with 75 observations on the following 4 variables. The total sample size is 28887.

Son a factor with levels UpNM LoNM UpM LoM Farm
Father a factor with levels UpNM LoNM UpM LoM Farm
Country a factor with levels US UK Japan
Freq a numeric vector

## Details

Five status categories - upper and lower nonmanuals (UPNM, LONM), upper and lower manuals (UpM, LoM), and Farm) are used for both fathers' occupations and sons' occupations.
Upper nonmanuals are professionals, managers, and officials; lower nonmanuals are proprietors, sales workers, and clerical workers; upper manuals are skilled workers; lower manuals are semiskilled and unskilled nonfarm workers; and farm workers are farmers and farm laborers.
Some of the models from Xie (1992), Table 1, are fit in demo (yamaguchi-xie).

## Source

Yamaguchi, K. (1987). Models for comparing mobility tables: toward parsimony and substance, American Sociological Review, vol. 52 (Aug.), 482-494, Table 1

## References

Goodman, L. A. and Hout, M. (1998). Statistical Methods and Graphical Displays for Analyzing How the Association Between Two Qualitative Variables Differs Among Countries, Among Groups, Or Over Time: A Modified Regression-Type Approach. Sociological Methodology, 28 (1), 175-230.
Xie, Yu (1992). The log-multiplicative layer effect model for comparing mobility tables. American Sociological Review, 57 (June), 380-395.

## Examples

```
data(Yamaguchi87)
reproduce Table 1
structable(~ Father + Son + Country, Yamaguchi87)
create table form
Yama.tab <- xtabs(Freq ~ Son + Father + Country, data=Yamaguchi87)
define mosaic labeling_args for convenient reuse in 3-way displays
largs <- list(rot_labels=c(right=0), offset_varnames = c(right = 0.6),
 offset_labels = c(right = 0.2),
 set_varnames = c(Son="Son's status", Father="Father's status")
)
###################################
Fit some models & display mosaics
Mutual independence
yama.indep <- glm(Freq ~ Son + Father + Country, data=Yamaguchi87, family=poisson)
anova(yama.indep)
mosaic(yama.indep, ~Son+Father, main="[S][F] ignoring country")
mosaic(yama.indep, ~Country + Son + Father, condvars="Country",
 labeling_args=largs,
 main='[S][F][C] Mutual independence')
no association between S and F given country ('perfect mobility')
asserts same associations for all countries
yama.noRC <- glm(Freq ~ (Son + Father) * Country, data=Yamaguchi87, family=poisson)
anova (yama.noRC)
mosaic(yama.noRC, ~~Country + Son + Father, condvars="Country",
 labeling_args=largs,
 main="[SC][FC] No [SF] (perfect mobility)")
ignore diagonal cells
yama.quasi <- update(yama.noRC, ~ . + Diag(Son,Father):Country)
anova(yama.quasi)
mosaic(yama.quasi, ~Son+Father, main="Quasi [S][F]")
```

```
see also:
demo(yamaguchi-xie)
##
```

zero.test Score test for zero inflation in Poisson data

## Description

Carries out a simple score test (van den Broek, 1995) for excess zeros in an otherwise Poisson distribution of counts. It gives a $\chi_{1}^{2}$ statistic on one degree of freedom.

## Usage

```
zero.test(x)
```


## Arguments

X
A vector of non-negative counts, or a one-way frequency table of such counts.

## Details

The test first calculates the rate estimate from the mean, $\hat{\lambda}=\bar{x}$. The number of observed zeros, $n_{0}$ is then compared with the expected number, $n \hat{p_{0}}$, where $\hat{p}_{0}=\exp [-\hat{\lambda}]$. Then the test statistic is calculated by the formula:

$$
\frac{\left(n_{0}-n \hat{p}_{0}\right)^{2}}{n \hat{p}_{0}\left(1-\hat{p}_{0}\right)-n \bar{x} \hat{p}_{0}^{2}}
$$

This test statistic has a $\chi_{1}^{2}$ distribution.

## Value

Returns invisibly a list of three elements:
statistic Description of 'comp1'
$d f \quad$ Description of 'comp2'
pvalue Upper tail p-value

## Author(s)

Michael Friendly

## References

The original R code came from a Stackexchange question, https://stats. stackexchange. com/questions/118322/how-to-test-for-zero-inflation-in-a-dataset
Van den Broek, J. (1995). A Score Test for Zero Inflation in a Poisson Distribution. Biometrics, 51(2), 738-743. https://www.jstor.org/stable/2532959

Yang, Zhao, James W. Hardin, and Cheryl L. Addy (2010). Score Tests for Zero-Inflation in Overdispersed Count Data. Communications in Statistics - Theory and Methods 39 (11) 2008-2030. doi: 10.1080/036109209029482283

## Examples

```
synthetic tests
zero.test(rpois(100, 1))
zero.test(rpois(100, 5))
add some extra zeros
zero.test(c(rep(0, 20), rpois(100, 5)))
Articles by Phd candidates
data(PhdPubs, package="vcdExtra")
zero.test(PhdPubs$articles)
phd.tab <- table(PhdPubs$articles)
zero.test(phd.tab)
```

[^2]
[^0]:    ${ }^{1}$ https://orcid.org/0000-0002-3237-0941

[^1]:    ²https://doi.org/10.18637/jss.v017.i03

[^2]:    ${ }^{3}$ https://doi.org/10.1080/03610920902948228

