
Package ‘venn’
June 8, 2022

Version 1.11

Date 2022-06-09

Title Draw Venn Diagrams

Depends R (>= 3.5.0)

Imports admisc (>= 0.10)

Suggests QCA (>= 3.9), ggplot2, ggpolypath

Description
Draws and displays Venn diagrams up to 7 sets, and any Boolean union of set intersections.

License GPL (>= 3)

URL https://github.com/dusadrian/venn

BugReports https://github.com/dusadrian/venn/issues

NeedsCompilation no

Author Adrian Dusa [aut, cre, cph] (<https://orcid.org/0000-0002-3525-9253>)

Maintainer Adrian Dusa <dusa.adrian@unibuc.ro>

Repository CRAN

Date/Publication 2022-06-08 21:30:02 UTC

R topics documented:

About the venn package . 2
getCentroid . 2
getZones . 3
venn . 5

Index 11

1

https://github.com/dusadrian/venn
https://github.com/dusadrian/venn/issues
https://orcid.org/0000-0002-3525-9253

2 getCentroid

About the venn package

Draw Venn Diagrams

Description

Draws and displays Venn diagrams up to 7 sets, and any boolean union of set intersections.

Details

Package: venn
Type: Package
Version: 1.11
Date: 2022-06-09
License: GPL (>= 2)

Author(s)

Authors:
Adrian Dusa
Department of Sociology
University of Bucharest
<dusa.adrian@unibuc.ro>

Maintainer:
Adrian Dusa

getCentroid Calculate the centroid of a polygon.

Description

This function takes a list of dataframes or a matrices containing x and y values, which define zones
(polygons), and calculates their centroids.

Usage

getCentroid(data)

Arguments

data A matrix or a dataframe with two columns, for x and y coordinates

getZones 3

Details

Most of the coordinates for the intersection labels in this package were calculated using the formula
for a centroid of a non-self-intersecting closed polygon, approximated by 10 vertices.

Value

A list with x and y coordinates, for each zone in the input list.

References

Centroid. (n.d.). In Wikipedia. Retrieved January 06, 2016, from https://en.wikipedia.org/wiki/Centroid

Examples

venn("0110")

centroid for the intersection "0110" in a 4 set diagram
centroid <- getCentroid(getZones("0110"))[[1]]

text(centroid[1], centroid[2], labels = "0110", cex = 0.85)

centroids for the two zones in the "E not A" zones
venn(5)
area <- getZones("0---1") # list of length 2

polygon(area[[1]], col="lightblue")

polygon(area[[2]], col="lightblue")

text(do.call("rbind", getCentroid(area)),
labels = c("zone 1", "zone 2"), cex = 0.85)

getZones Calculate the union(s) of set intersections.

Description

This function uses a metacommand to calculate the shape of a specific zone or a list of zones.

Usage

getZones(area, snames, ellipse = FALSE)

4 getZones

Arguments

area A chgaracter expression written in sum of products form.

snames A string containing the sets’ names, separated by commas.

ellipse Logical, get the zones from the shape of an ellipse, where possible

Details

A SOP ("sum of products") is also known as a DNF ("disjunctive normal form"), or in other words
a "union of intersections", for example A*D + B*c.

The same expression can be written in curly brackets notation: A{1}*D{1} + B{1}*C{0}.

The expression B{1}*C{0} can also be written in a pseudo-language, as "-10-" (assuming there are
only four sets).

A "zone" is a union of set intersections. There are exactly 2^k intersections in a Venn diagram,
where k is the number of sets. To highlight an entire set, we need a union of all possible intersections
which form that set.

The argument ellipse retrieves the data from the shape of an ellipse, and it only works with 4 and
5 sets.

Value

A list of self-enclosed polygons, for each independent zone.

Examples

venn(3)

area <- getZones("A", snames = "A, B, C")
a list of length 1

polygon(area[[1]], col="lightblue")

The very same result is obtained with:
zone <- getZones("1--")

for 5 sets, the content of the 5th set but not in the first set is a
list of two zones

venn(5)

zones <- getZones("0---1")
this time a list of length 2

(re)coloring the first zone (union)
polygon(zones[[1]], col="lightblue")

venn 5

and the second zone (union)
polygon(zones[[2]], col="lightblue")

venn Draw and display a Venn diagram

Description

This function uses a variety of input data to draw and display a Venn diagram with up to 7 sets.

Usage

venn(x, snames = "", counts, ilabels = FALSE, ellipse = FALSE,
zcolor = "bw", opacity = 0.3, plotsize = 15, ilcs = 0.6, sncs = 0.85,
borders = TRUE, box = TRUE, par = TRUE, ggplot = FALSE, ...)

Arguments

x A single number (of sets), or a metacommand formula (see details), or a list
containing set values, or a dataset containing boolean values.

snames An optional parameter containing the names for each set.

ilabels Logical: print the labels for each intersection.

counts A numerical vector of counts for each set intersection.

ellipse Logical, force the shape to an ellipse, where possible

zcolor A vector of colors for the custom zones, or predefined colors if "style"

opacity Degree of opacity for the color(s) specified with zcolor (less opacity, more
transparency).

plotsize Plot size, in centimeters.

ilcs Character expansion (in base plots) or size (in ggplots) for the intersection labels

sncs Character expansion (in base plots) or size (in ggplots) for the set names

borders Logical: draw all intersection borders

box Logical: draw the outside square

par Logical: use the default, custom par settings

ggplot Logical: plot the Venn diagram using ggplot

... Additional parameters, mainly for the outer borders of the sets

6 venn

Details

The argument x can be either:
- a single number (of sets), between 1 and 7
- a metacommand (character) to draw custom intersection zones
- a list, containing values for the different sets: each component is a set, and only up to 7 compo-
nents are processed.
- a dataset of boolean values.

A "zone" is a union of set intersections. There are exactly 2^k intersections in a Venn diagram,
where k is the number of sets. To highlight an entire set, we need a union of all possible intersections
which form that set.

For example, in a 3 sets diagram, the (overall) first set is composed by four intersections:
100 for what is in the first set but outside sets 2 and outside set 3
101 for the intersection between sets 1 and 3, outside set 2
110 for the intersection between sets 1 and 2, outside set 3
111 for the intersection between all three sets.

A meta-language can be used to define these intersections, using the values of 1 for what is inside
the set, 0 for what is outside the set, and - when its either inside or outside of the set.

The command "1--" is translated as "display only the first, entire set" is equivalent with the union
of the four intersections "100 + 101 + 110 + 111".

The parameter snames should have the same length as the number of sets specified by the parameter
x.

When the parameter x is used as a metacommand, the number of sets is calculated as the number of
characters in each intersection of the metacommand. One such character command is "100 + 101 +
110 + 111" or "1--", and all intersections have exactly three characters.

It is also possible to use a regular, disjunctive normal form, like "A", which is equivalent with "Abc
+ AbC + ABc + ABC". When x is an expression written in DNF, if a valid R statement then quoting is
not even necessary.

The argument snames establishes names for the different sets, or in its absence it is taken from
LETTERS. When x is a list or a dataframe, snames is taken from their names. The length of the
snames indicates the total number of sets.

A numerical vector can be supplied with the argument counts, when the argument x is a single
number of sets. The counts should match the increasing order of the binary representation for the
set intersections. When the argument x is a list, the counts are taken from the number of common
values for each intersection, and when x is a data frame, (comprised of exclusively boolean values
0 and 1) the counts are taken from the number of similar rows. If a particular intersection does not
have any common values (or no rows), the count "0" is left blank and not displayed in the diagram.

The argument ellipse differentiates between two types of diagrams for 4 and 5 sets. The idea
is to allow for as much space as possible for each intersection (also as equal as possible) and that
is impossible if preserving the shape of an ellipse. The default is to create large space for the
intersections, but users who prefer an ellipse might want to set this argument to TRUE.

Colors to fill the desired zones (or entire sets) can be supplied via the argument zcolor (the default
is "bw" black and white, which means no colors at all). Users can either chose the predefined color
style, using zcolor = "style", or supply a vector of custom colors for each zone. If only one
custom color is supplied, it will be recycled for all zones.

venn 7

When using zcolor = "style", any other additional arguments for the borders are ignored.

A different set of predefined colors is used, when argument x is a QCA type object (a truth table,
either from a class tt or from a class qca). If custom colors are provided via zcolor, it should have
a length of 3 colors: the first for the absence of the outcome (0), the second for the presence of the
outcome (1), and the third for the contradictions (C). Remainders have no color, by default.

The argument ilcs works only if the intersection labels (ilabels) or intersection counts are acti-
vated, and it sets the size of the labels via a cex argument. In the absence of a specific value from
the user, it’s default is set to 0.6 for all Venn diagrams with up to five sets, and it automatically
decreases to 0.5 for six sets and 0.45 for seven sets.

Via ..., users can specify additional parameters, mainly for the outer borders of the sets, as speci-
fied by par(), and since version 1.9 it is also used to pass additional aesthetics parameters for the
ggplot2 graphics. All of them are feeded either to the base function lines() which is responsible
with the borders, or to the function geom_path() from package ggplot2.

For up to 3 sets, the shapes can be circular. For more than 3 sets, the shape cannot be circular: for
4 and 5 sets they can be ellipses, while for more than 5 sets the shapes cannot be continous (they
might be monotone, but not continous). The 7 sets diagram is called "Adelaide" (Ruskey, 2005).

The most challenging diagram is the one with 6 sets, where for many years it was thought a Venn
diagram didn’t even exist. All diagrams are symetric, except for the one with 6 sets, where some
of the sets have different shapes. The diagram in this package is an adaptation from Mamakani, K.,
Myrvold W. and F. Ruskey (2011).

The argument border can be used only for custom intersections and/or unions, it has no effect when
x is a list, or a data frame, or a truth table object.

The argument par is used to define a custom set of parameters when producing the plot, to ensure
a square shape of about 15 cm and eliminate the outer regions. If deactivated, users can define their
own size and shape of the plot using the system function par(). By default, the plot is always
produced using a size of 1000 points for both horizontal and vertical, unless the argument ggplot
is activated, when the argument par will have no effect.

References

Ruskey, F. and M. Weston. 2005. Venn diagrams. Electronic Journal of Combinatorics, Dynamic
Survey DS5.

Mamakani, K., Myrvold W. and F. Ruskey. 2011. Generating all Simple Convexly-drawable Po-
lar Symmetric 6-Venn Diagrams. International Workshop on Combinatorial Algorithms, Victoria.
LNCS, 7056, 275-286.

Examples

A simple Venn diagram with 3 sets
venn(3)

with a vector of counts: 1 for "000", 2 for "001" etc.
venn(3, counts = 1:8)

display the first whole set
venn("1--")

8 venn

same with
venn("A", snames = "A, B, C")

an equivalent command, from the union of all intersections
venn("100 + 110 + 101 + 111")

same with
venn("A~B~C + AB~C + A~BC + ABC")

adding the labels for the intersections
venn("1--", ilabels = TRUE)

using different parameters for the borders
venn(4, lty = 5, col = "navyblue")

using ellipses
venn(4, lty = 5, col = "navyblue", ellipse = TRUE)

a 5 sets Venn diagram
venn(5)

a 5 sets Venn diagram using ellipses
venn(5, ellipse = TRUE)

a 5 sets Venn diagram with intersection labels
venn(5, ilabels = TRUE)

and a predefined color style
venn(5, ilabels = TRUE, zcolor = "style")

a union of two sets
venn("1---- + ----1")

same with
venn("A + E", snames = "A, B, C, D, E")

with different colors
venn("1---- , ----1", zcolor = "red, blue")

same with
venn("A, E", snames = "A, B, C, D, E", zcolor = "red, blue")

same colors for the borders
venn("1---- , ----1", zcolor = "red, blue", col = "red, blue")

6 sets diagram
venn(6)

7 sets "Adelaide"
venn(7)

venn 9

artistic version
venn(c("1000000", "0100000", "0010000", "0001000",

"0000100", "0000010", "0000001", "1111111"))

without all borders
venn(c("1000000", "0100000", "0010000", "0001000",

"0000100", "0000010", "0000001", "1111111"),
borders = FALSE)

using sum of products notation
venn("A + B~C", snames = "A, B, C, D")

when x is a list
set.seed(12345)
x <- list(First = 1:20, Second = 10:30, Third = sample(25:50, 15))
venn(x)

when x is a dataframe
set.seed(12345)
x <- as.data.frame(matrix(sample(0:1, 150, replace = TRUE), ncol = 5))
venn(x)

producing a ggplot2 graphics
venn(x, ggplot = TRUE)

increasing the border size
venn(x, ggplot = TRUE, size = 1.5)

with dashed lines
venn(x, ggplot = TRUE, linetype = "dashed")

Not run:
produce Venn diagrams for QCA objects
library(QCA)

data(CVF)
obj <- truthTable(CVF, "PROTEST", incl.cut = 0.85)

venn(obj)

to set opacity based on inclusion scores
(less inclusion, more transparent)

venn(obj, opacity = objttincl)

custom labels for intersections

pCVF <- minimize(obj, include = "?")

10 venn

venn(pCVF$solution[[1]], zcol = "#ffdd77, #bb2020, #1188cc")
cases <- paste(c("HungariansRom", "CatholicsNIreland", "AlbaniansFYROM",

"RussiansEstonia"), collapse = "\n")
coords <- unlist(getCentroid(getZones(pCVF$solution[[1]][2])))
text(coords[1], coords[2], labels = cases, cex = 0.85)

End(Not run)

Index

∗ functions
getCentroid, 2
getZones, 3
venn, 5

∗ package
About the venn package, 2

About the venn package, 2

geom_path, 7
getCentroid, 2
getZones, 3

lines, 7

par, 7

venn, 5
venn_package (About the venn package), 2

11

	About the venn package
	getCentroid
	getZones
	venn
	Index

