Package 'vimp'

August 16, 2021

Type Package

Title Perform Inference on Algorithm-Agnostic Variable Importance

Version 2.2.5

Description Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020), Williamson et al. (arXiv, 2020+) arXiv:2004.03683, and Williamson and Feng (ICML, 2020).

Depends R (>= 3.1.0)
Imports SuperLearner, stats, dplyr, magrittr, ROCR, tibble, rlang, MASS, boot, data.table
Suggests knitr, rmarkdown, gam, xgboost, glmnet, ranger, polspline, quadprog, covr, testthat, ggplot2, cowplot, cvAUC, tidyselect

License MIT + file LICENSE
URL https://bdwilliamson.github.io/vimp/, https://github.com/bdwilliamson/vimp

BugReports https://github.com/bdwilliamson/vimp/issues
RoxygenNote 7.1.1
VignetteBuilder knitr
LazyData true
NeedsCompilation no
Author Brian D. Williamson [aut, cre]
(https://orcid.org/0000-0002-7024-548X),
Jean Feng [ctb],
Noah Simon [ths] (https://orcid.org/0000-0002-8985-2474), Marco Carone [ths] (https://orcid.org/0000-0003-2106-0953)
Maintainer Brian D. Williamson bwillia2@fredhutch.org
Repository CRAN
Date/Publication 2021-08-16 16:30:02 UTC

R topics documented:

average_vim 3
bootstrap_se 4
check_fitted_values 5
check_inputs 6
create_z 7
cv_vim 7
est_predictiveness 13
est_predictiveness_cv 14
extract_sampled_split_predictions 16
format.vim 17
get_cv_sl_folds 17
get_full_type 18
make_folds 18
make_kfold 19
measure_accuracy 19
measure_anova 20
measure_auc 22
measure_cross_entropy 23
measure_deviance 24
measure_mse 25
measure_r_squared 27
merge_vim 28
print.vim 29
run_sl 30
sample_subsets 31
scale_est 32
spvim_ics 32
spvim_se 33
sp_vim 34
vim 37
vimp 41
vimp_accuracy 42
vimp_anova 47
vimp_auc 50
vimp_ci 54
vimp_deviance 55
vimp_hypothesis_test 59
vimp_regression 60
vimp_rsquared 63
vimp_se 67
vrc01 68
Index 109

Description

Average the output from multiple calls to vimp_regression, for different independent groups, into a single estimate with a corresponding standard error and confidence interval.

Usage

average_vim(..., weights $=$ rep(1/length(list(...)), length(list(...))))

Arguments

... an arbitrary number of vim objects.
weights how to average the vims together, and must sum to 1 ; defaults to $1 /($ number of vims) for each vim, corresponding to the arithmetic mean

Value

an object of class vim containing the (weighted) average of the individual importance estimates, as well as the appropriate standard error and confidence interval. This results in a list containing:

- s - a list of the column(s) to calculate variable importance for
- SL.library - a list of the libraries of learners passed to SuperLearner
- full_fit - a list of the fitted values of the chosen method fit to the full data
- red_fit - a list of the fitted values of the chosen method fit to the reduced data
- est- a vector with the corrected estimates
- naive- a vector with the naive estimates
- update- a list with the influence curve-based updates
- mat - a matrix with the estimated variable importance, the standard error, and the $(1-\alpha) \times$ 100% confidence interval
- full_mod - a list of the objects returned by the estimation procedure for the full data regression (if applicable)
- red_mod - a list of the objects returned by the estimation procedure for the reduced data regression (if applicable)
- alpha - the level, for confidence interval calculation
- y-a list of the outcomes

Examples

```
    \# generate the data
    p <- 2
    n <- 100
    \(x\) <- data.frame(replicate(p, stats::runif(n, -5, 5)))
    \# apply the function to the x 's
    smooth <- \((x[, 1] / 5)^{\wedge} 2 *(x[, 1]+7) / 5+(x[, 2] / 3)^{\wedge} 2\)
    \# generate Y ~ Normal (smooth, 1)
    y <- smooth + stats::rnorm(n, 0, 1)
    \# set up a library for SuperLearner; note simple library for speed
    library("SuperLearner")
    learners <- c("SL.glm", "SL.mean")
    \# get estimates on independent splits of the data
    samp <- sample(1:n, n/2, replace = FALSE)
    \# using Super Learner (with a small number of folds, for illustration only)
    est_2 <- vimp_regression \((Y=y[s a m p], X=x[s a m p],, i n d x=2, V=2\),
        run_regression = TRUE, alpha = 0.05,
        SL.library = learners, cvControl = list(V = 2))
    est_1 <- vimp_regression \((Y=y[-s a m p], X=x[-s a m p],, i n d x=2, V=2\),
        run_regression = TRUE, alpha = 0.05,
        SL.library = learners, cvControl = list(V = 2))
    ests <- average_vim(est_1, est_2, weights = c(1/2, 1/2))
```

bootstrap_se Compute bootstrap-based standard error estimates for variable im-
portance

Description

Compute bootstrap-based standard error estimates for variable importance

Usage

bootstrap_se(Y = NULL, f1 = NULL, f2 = NULL, type = "r_squared", b = 1000)

Arguments

Y
f1
f2
the outcome.
the fitted values from a flexible estimation technique regressing Y on X .
the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx.
type the type of importance to compute; defaults to $r_{\text {_ }}$ squared, but other supported options are auc, accuracy, deviance, and anova.
b the number of bootstrap replicates (defaults to 1000)

Value

a bootstrap-based standard error estimate
check_fitted_values Check pre-computed fitted values for call to vim, cv_vim, or sp_vim

Description

Check pre-computed fitted values for call to vim, cv_vim, or sp_vim

Usage

```
check_fitted_values(
        Y = NULL,
        f1 = NULL,
        f2 = NULL,
        cross_fitted_f1 = NULL,
        cross_fitted_f2 = NULL,
        sample_splitting_folds = NULL,
        cross_fitting_folds = NULL,
        cross_fitted_se = TRUE,
        V = NULL,
        ss_V = NULL,
        cv = FALSE
)
```


Arguments

Y the outcome
f1 estimator of the population-optimal prediction function using all covariates
f2 estimator of the population-optimal prediction function using the reduced set of covariates
cross_fitted_f1
cross-fitted estimator of the population-optimal prediction function using all covariates
cross_fitted_f2
cross-fitted estimator of the population-optimal prediction function using the reduced set of covariates
sample_splitting_folds
the folds for sample-splitting (used for hypothesis testing)

```
cross_fitting_folds
```

 the folds for cross-fitting (used for point estimates of variable importance in
 cv_vim and sp_vim)
 cross_fitted_se
logical; should cross-fitting be used to estimate standard errors?
\checkmark the number of cross-fitting folds
ss_V the number of folds for CV (if sample_splitting is TRUE)
cv a logical flag indicating whether or not to use cross-fitting

Details

Ensure that inputs to vim, cv_vim, and sp_vim follow the correct formats.

Value

None. Called for the side effect of stopping the algorithm if any inputs are in an unexpected format.

```
check_inputs Check inputs to a call to vim, cv_vim,or sp_vim
```


Description

Check inputs to a call to vim, cv_vim, or sp_vim

Usage

check_inputs(Y, X, f1, f2, indx)

Arguments

Y the outcome
$X \quad$ the covariates
f1 estimator of the population-optimal prediction function using all covariates
f2 estimator of the population-optimal prediction function using the reduced set of covariates
indx the index or indices of the covariate(s) of interest

Details

Ensure that inputs to vim, cv_vim, and sp_vim follow the correct formats.

Value

None. Called for the side effect of stopping the algorithm if any inputs are in an unexpected format.

```
create_z Create complete-case outcome, weights, and Z
```


Description

Create complete-case outcome, weights, and Z

Usage

create_z(Y, C, Z, X, ipc_weights)

Arguments

Y the outcome
C indicator of missing or observed
Z the covariates observed in phase 1 and 2 data
$X \quad$ all covariates
ipc_weights the weights

Value
a list, with the complete-case outcome, weights, and Z matrix

cv_vim | Nonparametric Intrinsic Variable Importance Estimates and Inference |
| :--- |
| using Cross-fitting | using Cross-fitting

Description

Compute estimates and confidence intervals using cross-fitting for nonparametric intrinsic variable importance based on the population-level contrast between the oracle predictiveness using the feature(s) of interest versus not.

Usage

```
cv_vim(
    \(Y=\) NULL,
    X = NULL,
    cross_fitted_f1 = NULL,
    cross_fitted_f2 = NULL,
    f1 = NULL,
    f2 = NULL,
    indx = 1,
    V = length(unique(cross_fitting_folds)),
```

```
    sample_splitting = TRUE,
    sample_splitting_folds = NULL,
    cross_fitting_folds = NULL,
    stratified = FALSE,
    type = "r_squared",
    run_regression = TRUE,
    SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
    alpha = 0.05,
    delta = 0,
    scale = "identity",
    na.rm = FALSE,
    C = rep(1, length(Y)),
    Z = NULL,
    ipc_weights = rep(1, length(Y)),
    ipc_est_type = "aipw",
    scale_est = TRUE,
    cross_fitted_se = TRUE,
    bootstrap = FALSE,
    b = 1000,
)
```


Arguments

```
    Y the outcome.
X the covariates.
cross_fitted_f1
```

the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V , where each object is a set of predictions on the validation data. If sample-splitting is requested, then these must be estimated specially; see Details.
cross_fitted_f2
the predicted values on validation data from a flexible estimation technique regressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X withholding the columns in indx; a list of length V , where each object is a set of predictions on the validation data. If sample-splitting is requested, then these must be estimated specially; see Details.
f1 the fitted values from a flexible estimation technique regressing Y on X. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
f2 the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1 .
V the number of folds for cross-fitting, defaults to 5. If sample_splitting $=$ TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
should we use sample-splitting to estimate the full and reduced predictiveness? Defaults to TRUE, since inferences made using sample_splitting = FALSE will be invalid for variable with truly zero importance.
sample_splitting_folds
the folds to use for sample-splitting; if entered, these should result in balance within the cross-fitting folds. Only used if run_regression = FALSE and sample_splitting $=$ TRUE. A vector of length $2 * V$.
cross_fitting_folds
the folds for cross-fitting. Only used if run_regression = FALSE.
stratified if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-fitting folds)
type the type of parameter (e.g., ANOVA-based is "anova").
run_regression if outcome Y and covariates X are passed to $c v _v i m$, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL. xgboost, and SL.mean.
alpha the level to compute the confidence interval at. Defaults to 0.05 , corresponding to a 95% confidence interval.
delta the value of the δ-null (i.e., testing if importance $<\delta$); defaults to 0 .
scale should CIs be computed on original ("identity", default) or logit ("logit") scale?
na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
C the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism.
ipc_weights weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights $=1 /[$ estimated probability weights] $]$.
ipc_est_type the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1 .
scale_est should the point estimate be scaled to be greater than 0 ? Defaults to TRUE.
cross_fitted_se
should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?
bootstrap should bootstrap-based standard error estimates be computed? Defaults to FALSE (and currently may only be used if sample_splitting = FALSE and cross_fitted_se = FALSE).
b the number of bootstrap replicates (only used if bootstrap = TRUE and sample_splitting = FALSE).
other arguments to the estimation tool, see "See also".

Details

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$
\psi_{0, s}:=V\left(f_{0}, P_{0}\right)-V\left(f_{0, s}, P_{0}\right)
$$

where f_{0} is the population predictiveness maximizing function, $f_{0, s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_{0} is the true data-generating distribution.
Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of crossfitting is to estimate f_{0} and $f_{0, s}$ on independent data from estimating P_{0}; this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate f_{0} and $f_{0, s}$ on independent data; this allows valid inference under the null hypothesis of zero importance.
Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n, k}$ and $f_{n, k, s}$ of f_{0} and $f_{0, s}$, respectively on the training data and estimator $P_{n, k}$ of P_{0} using the test data; and finally, computing

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K}\left\{V\left(f_{n, k}, P_{n, k}\right)-V\left(f_{n, k, s}, P_{n, k}\right)\right\} .
$$

With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into $2 K$ folds. These folds are further divided into 2 groups of folds. Then, for each fold k in the first group, estimator $f_{n, k}$ of f_{0} is constructed using all data besides the kth fold in the group (i.e., $(2 K-1) /(2 K)$ of the data) and estimator $P_{n, k}$ of P_{0} is constructed using the held-out data (i.e., $1 / 2 K$ of the data); then, computing

$$
v_{n, k}=V\left(f_{n, k}, P_{n, k}\right)
$$

Similarly, for each fold k in the second group, estimator $f_{n, k, s}$ of $f_{0, s}$ is constructed using all data besides the kth fold in the group (i.e., $(2 K-1) /(2 K)$ of the data) and estimator $P_{n, k}$ of P_{0} is constructed using the held-out data (i.e., $1 / 2 K$ of the data); then, computing

$$
v_{n, k, s}=V\left(f_{n, k, s}, P_{n, k}\right)
$$

Finally,

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K}\left\{v_{n, k}-v_{n, k, s}\right\} .
$$

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:
\mathbf{s} the column(s) to calculate variable importance for
SL.library the library of learners passed to SuperLearner
full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)
red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
est the estimated variable importance
naive the naive estimator of variable importance
eif the estimated efficient influence function
eif_full the estimated efficient influence function for the full regression
eif_reduced the estimated efficient influence function for the reduced regression
se the standard error for the estimated variable importance
ci the $(1-\alpha) \times 100 \%$ confidence interval for the variable importance estimate
test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test
p_value a p-value based on the same test as test
full_mod the object returned by the estimation procedure for the full data regression (if applicable)
red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
alpha the level, for confidence interval calculation
sample_splitting_folds the folds used for hypothesis testing
cross_fitting_folds the folds used for cross-fitting
y the outcome
ipc_weights the weights
mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value

An object of class vim. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
n <- 100
p <- 2
# generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[, 2]/3)^2
# generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
```

```
learners <- c("SL.glm")
# ------------------------------------------
# using Super Learner (with a small number of folds, for illustration only)
# ----------------------------------------
set.seed(4747)
est <- cv_vim(Y = y, X = x, indx = 2, V = 2,
type = "r_squared", run_regression = TRUE,
SL.library = learners, cvControl = list(V = 2), alpha = 0.05)
# ------------------------------------------
# doing things by hand, and plugging them in
# (with a small number of folds, for illustration only)
# ----------------------------------------
# set up the folds
indx <- 2
V <- 2
Y <- matrix(y)
set.seed(4747)
# Note that the CV.SuperLearner should be run with an outer layer
# of 2*V folds (for V-fold cross-fitted importance)
full_cv_fit <- suppressWarnings(SuperLearner::CV.SuperLearner(
Y = Y, X = x, SL.library = learners, cvControl = list(V = 2 * V),
innerCvControl = list(list(V = V))
))
# use the same cross-fitting folds for reduced
reduced_cv_fit <- suppressWarnings(SuperLearner::CV.SuperLearner(
    Y = Y, X = x[, -indx, drop = FALSE], SL.library = learners,
    cvControl = SuperLearner::SuperLearner.CV.control(
            V = 2 * V, validRows = full_cv_fit$folds
    ),
    innerCvControl = list(list(V = V))
))
# extract the predictions on split portions of the data,
# for hypothesis testing
cross_fitting_folds <- get_cv_sl_folds(full_cv_fit$folds)
set.seed(1234)
sample_splitting_folds <- make_folds(unique(cross_fitting_folds), V = 2)
full_cv_preds <- extract_sampled_split_predictions(
    full_cv_fit, sample_splitting_folds = sample_splitting_folds, full = TRUE
)
reduced_cv_preds <- extract_sampled_split_predictions(
    reduced_cv_fit, sample_splitting_folds = sample_splitting_folds, full = FALSE
)
set.seed(5678)
est <- cv_vim(Y = y, cross_fitted_f1 = full_cv_preds,
cross_fitted_f2 = reduced_cv_preds, indx = 2, delta = 0, V = V, type = "r_squared",
cross_fitting_folds = cross_fitting_folds,
sample_splitting_folds = sample_splitting_folds,
run_regression = FALSE, alpha = 0.05, na.rm = TRUE)
```


Description

Compute nonparametric estimates of the chosen measure of predictiveness.

```
Usage
    est_predictiveness(
        fitted_values,
        y,
        full_y = NULL,
        type = "r_squared",
        C = rep(1, length(y)),
        Z = NULL,
        ipc_weights = rep(1, length(C)),
        ipc_fit_type = "external",
        ipc_eif_preds = rep(1, length(C)),
        ipc_est_type = "aipw",
        scale = "identity",
        na.rm = FALSE,
    )
```


Arguments

fitted_values fitted values from a regression function using the observed data.
$y \quad$ the observed outcome.
full_y the observed outcome (from the entire dataset, for cross-fitted estimates).
type which parameter are you estimating (defaults to r _squared, for R -squaredbased variable importance)?
C the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z either NULL (if no coarsening) or a matrix-like object containing the fully observed data.
ipc_weights weights for inverse probability of coarsening (e.g., inverse weights from a twophase sample) weighted estimation. Assumed to be already inverted (i.e., ipc_weights $=1 /[$ estimated probability weights] $)$.
ipc_fit_type if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the correction to the efficient influence function.
ipc_eif_preds if ipc_fit_type = "external", the fitted values from a regression of the fulldata EIF on the fully observed covariates/outcome; otherwise, not used.
ipc_est_type IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).
scale if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and backtransform).
na.rm logical; should NA's be removed in computation? (defaults to FALSE)
... other arguments to SuperLearner, if ipc_fit_type = "SL".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

A list, with: the estimated predictiveness; the estimated efficient influence function; and the predictions of the EIF based on inverse probability of censoring.

Description

Compute nonparametric estimates of the chosen measure of predictiveness.

Usage

```
est_predictiveness_cv(
    fitted_values,
    y,
    full_y = NULL,
    folds,
    type = "r_squared",
    C = rep(1, length(y)),
    Z = NULL,
    folds_Z = folds,
    ipc_weights = rep(1, length(C)),
    ipc_fit_type = "external",
    ipc_eif_preds = rep(1, length(C)),
    ipc_est_type = "aipw",
    scale = "identity",
    na.rm = FALSE,
)
```


Arguments

fitted_values	fitted values from a regression function using the observed data; a list of length V , where each object is a set of predictions on the validation data.
y	the observed outcome.
full_y	the observed outcome (from the entire dataset, for cross-fitted estimates).
folds	the cross-validation folds for the observed data.
type	which parameter are you estimating (defaults to r_{-}squared, for R -squaredbased variable importance)?
C	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.
folds_Z	either the cross-validation folds for the observed data (no coarsening) or a vector of folds for the fully observed data Z .
ipc_weights	weights for inverse probability of coarsening (e.g., inverse weights from a twophase sample) weighted estimation. Assumed to be already inverted (i.e., ipc_weights $=1 /$ [estimated probability weights]).
ipc_fit_type	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the correction to the efficient influence function.
ipc_eif_preds	if ipc_fit_type = "external", the fitted values from a regression of the fulldata EIF on the fully observed covariates/outcome; otherwise, not used.
ipc_est_type	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and backtransform).
na.rm	logical; should NA's be removed in computation? (defaults to FALSE)
	other arguments to SuperLearner, if ipc_fit_type = "SL".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest. If sample-splitting is also requested (recommended, since in this case inferences will be valid even if the variable has zero true importance), then the prediction functions are trained as if $2 K$-fold cross-validation were run, but are evaluated on only K sets (independent between the full and reduced nuisance regression).

Value

The estimated measure of predictiveness.

Description

Use the cross-validated Super Learner and a set of specified sample-splitting folds to extract crossfitted predictions on separate splits of the data. This is primarily for use in cases where you have already fit a CV.SuperLearner and want to use the fitted values to compute variable importance without having to re-fit. The number of folds used in the CV.SuperLearner must be even.

Usage

```
extract_sampled_split_predictions(
    cvsl_obj = NULL,
    sample_splitting = TRUE,
    sample_splitting_folds = NULL,
    full = TRUE
    )
```


Arguments

```
cvsl_obj An object of class "CV.SuperLearner"
sample_splitting
                            logical; should we use sample-splitting or not? Defaults to TRUE.
sample_splitting_folds
    A vector of folds to use for sample splitting
    full logical; is this the fit to all covariates (TRUE) or not (FALSE)?
```


Value

The predictions on validation data in each split-sample fold; a list of length two, each element of which is a list with the predictions on the split-sample cross-validation data.

See Also

CV. SuperLearner for usage of the CV. SuperLearner function.

```
format.vim Format a vim object
```


Description

Nicely formats the output from a vim object for printing.

```
Usage
    ## S3 method for class 'vim'
    format(x, ...)
```


Arguments

x
... other options, see the generic format function.
get_cv_sl_folds Get a numeric vector with cross-validation fold IDs from CV.SuperLearner

Description

Get a numeric vector with cross-validation fold IDs from CV.SuperLearner

Usage

get_cv_sl_folds(cv_sl_folds)

Arguments

cv_sl_folds The folds from a call to CV. SuperLearner; a list.

Value

A numeric vector with the fold IDs.

```
    get_full_type Obtain the type of VIM to estimate using partial matching
```


Description

Obtain the type of VIM to estimate using partial matching

Usage

get_full_type(type)

Arguments

type the partial string indicating the type of VIM

Value

the full string indicating the type of VIM

```
    make_folds Create Folds for Cross-Fitting
```


Description

Create Folds for Cross-Fitting

Usage

make_folds(y, V = 2, stratified = FALSE, $C=$ NULL, probs = rep(1/V, V))

Arguments

y	the outcome
V	the number of folds
stratified	should the folds be stratified based on the outcome?
C	a vector indicating whether or not the observation is fully observed; 1 denotes yes, 0 denotes no vector of proportions for each fold number
probs	vector

Value

a vector of folds

Description

Turn folds from 2K-fold cross-fitting into individual K-fold folds

Usage

```
make_kfold(
        cross_fitting_folds,
        sample_splitting_folds = rep(1, length(unique(cross_fitting_folds))),
        C = rep(1, length(cross_fitting_folds))
    )
```


Arguments

cross_fitting_folds
the vector of cross-fitting folds
sample_splitting_folds
the sample splitting folds
C vector of whether or not we measured the observation in phase 2

Value

the two sets of testing folds for K-fold cross-fitting

```
measure_accuracy Estimate the classification accuracy
```


Description

Compute nonparametric estimate of classification accuracy.

Usage

measure_accuracy(
fitted_values,
y,
full_y = NULL,
$C=r e p(1$, length(y)),
Z = NULL,
ipc_weights = rep(1, length(y)),
ipc_fit_type = "external",
ipc_eif_preds $=$ rep(1, length(y)),

```
    ipc_est_type = "aipw",
    scale = "identity",
    na.rm = FALSE,
)
```


Arguments

\(\left.$$
\begin{array}{ll}\text { fitted_values } & \begin{array}{l}\text { fitted values from a regression function using the observed data (may be within } \\
\text { a specified fold, for cross-fitted estimates). } \\
\text { the observed outcome (may be within a specified fold, for cross-fitted estimates). }\end{array} \\
\text { y } & \begin{array}{l}\text { the observed outcome (not used, defaults to NULL). }\end{array} \\
\text { full_y } & \begin{array}{l}\text { the indicator of coarsening (1 denotes observed, } 0 \text { denotes unobserved). } \\
\text { either NULL (if no coarsening) or a matrix-like object containing the fully ob- } \\
\text { served data. }\end{array} \\
\text { Z } & \begin{array}{l}\text { weights for inverse probability of coarsening (IPC) (e.g., inverse weights from a } \\
\text { two-phase sample) weighted estimation. Assumed to be already inverted. (i.e., } \\
\text { ipc_weights = 1 / [estimated probability weights]). }\end{array}
$$

ipc_weights\end{array}\right\}\)| if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine |
| :--- |
| the IPC correction to the efficient influence function. |

Value

A named list of: (1) the estimated classification accuracy of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

Description

Estimate ANOVA decomposition-based variable importance.

Usage

```
measure_anova(
        full,
    reduced,
    y ,
    full_y = NULL,
    \(C=r e p(1\), length(y)),
    Z = NULL,
    ipc_weights \(=\) rep(1, length(y)),
    ipc_fit_type = "external",
    ipc_eif_preds = rep(1, length(y)),
    ipc_est_type = "aipw",
    scale = "identity",
    na.rm = FALSE,
)
```


Arguments

full	fitted values from a regression function of the observed outcome on the full set of covariates.
reduced	fitted values from a regression on the reduced set of observed covariates. the observed outcome.
full_y	the observed outcome (not used, defaults to NULL).
C	either NULL (if no coarsening) or a matrix-like object containing the fully ob- served data.
Z	weights for inverse probability of coarsening (e.g., inverse weights from a two- phase sample) weighted estimation. Assumed to be already inverted (i.e., ipc_weights = 1/ [estimated probability weights]).
ipc_weights	

Value

A named list of: (1) the estimated ANOVA (based on a one-step correction) of the fitted regression functions; (2) the estimated influence function; (3) the naive ANOVA estimate; and (4) the IPC EIF predictions.

```
measure_auc Estimate area under the receiver operating characteristic curve (AUC)
```


Description

Compute nonparametric estimate of AUC.

Usage

measure_auc(
fitted_values,
y,
full_y = NULL,
$C=\operatorname{rep}(1$, length(y)),
Z = NULL,
ipc_weights = rep(1, length(y)),
ipc_fit_type = "external",
ipc_eif_preds = rep(1, length(y)),
ipc_est_type = "aipw",
scale = "identity",
na.rm = FALSE,
)

Arguments

fitted_values	fitted values from a regression function using the observed data (may be within a specified fold, for cross-fitted estimates). the observed outcome (may be within a specified fold, for cross-fitted estimates).
y	the observed outcome (from the entire dataset, for cross-fitted estimates).
full_y	the indicator of coarsening (1 denotes observed, 0 denotes unobserved). either NULL (if no coarsening) or a matrix-like object containing the fully ob- served data.
Z	weights for inverse probability of coarsening (e.g., inverse weights from a two- phase sample) weighted estimation. Assumed to be already inverted (i.e., ipc_weights $=1 /$ [estimated probability weights]).
ipc_fit_type	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the correction to the efficient influence function.
ipc_eif_preds	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.

ipc_est_type IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).
scale if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and backtransform).
na.rm logical; should NAs be removed in computation? (defaults to FALSE)
.. other arguments to SuperLearner, if ipc_fit_type = "SL".

Value

A named list of: (1) the estimated AUC of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

```
measure_cross_entropy Estimate the cross-entropy
```


Description

Compute nonparametric estimate of cross-entropy.

Usage

measure_cross_entropy (fitted_values, y,
full_y = NULL,
$C=r e p(1$, length(y)),
Z = NULL,
ipc_weights = rep(1, length(y)),
ipc_fit_type = "external",
ipc_eif_preds = rep(1, length(y)),
ipc_est_type = "aipw",
scale = "identity",
na. rm = FALSE,
)

Arguments

fitted_values fitted values from a regression function using the observed data.
$y \quad$ the observed outcome.
full_y the observed outcome (not used, defaults to NULL).
C the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z either NULL (if no coarsening) or a matrix-like object containing the fully observed data.

ipc_weights	weights for inverse probability of coarsening (e.g., inverse weights from a two- phase sample) weighted estimation. Assumed to be already inverted (i.e., ipc_weights = / [estimated probability weights]).
ipc_fit_type	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the correction to the efficient influence function.
ipc_eif_preds	if ipc_fit_type = "external", the fitted values from a regression of the full- data EIF on the fully observed covariates/outcome; otherwise, not used.
ipc_est_type	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and back- transform).
na.rm	logical; should NAs be removed in computation? (defaults to FALSE) other arguments to SuperLearner, if ipc_fit_type = "SL".
. .	

Value

A named list of: (1) the estimated cross-entropy of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

```
measure_deviance Estimate the deviance
```


Description

Compute nonparametric estimate of deviance.

Usage

```
measure_deviance(
    fitted_values,
    y,
    full_y = NULL,
    C = rep(1, length(y)),
    Z = NULL,
    ipc_weights = rep(1, length(y)),
    ipc_fit_type = "external",
    ipc_eif_preds = rep(1, length(y)),
    ipc_est_type = "aipw",
    scale = "identity",
    na.rm = FALSE,
    )
```


Arguments

fitted_values	fitted values from a regression function using the observed data. the observed outcome.
full_y	the observed outcome (defaults to NULL; allows the full-data outcome to be used for empirical estimates that do not rely on covariates). the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
C	either NULL (if no coarsening) or a matrix-like object containing the fully ob- served data.
Z	weights for inverse probability of coarsening (e.g., inverse weights from a two- phase sample) weighted estimation. Assumed to be already inverted (i.e., ipc_weights =1 / [estimated probability weights]).
ipc_weights	

Value

A named list of: (1) the estimated deviance of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.
measure_mse Estimate mean squared error

Description

Compute nonparametric estimate of mean squared error.

Usage

measure_mse(
fitted_values,
y,
full_y = NULL,
$C=\operatorname{rep}(1$, length(y)),
Z = NULL,

```
    ipc_weights = rep(1, length(y)),
    ipc_fit_type = "external",
    ipc_eif_preds = rep(1, length(y)),
    ipc_est_type = "aipw",
    scale = "identity",
    na.rm = FALSE,
    ..
)
```


Arguments

fitted_values	fitted values from a regression function using the observed data (may be within a specified fold, for cross-fitted estimates).
y	the observed outcome (may be within a specified fold, for cross-fitted estimates).
full_y	the observed outcome (not used; defaults to NULL).
C	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z	either NULL (if no coarsening) or a matrix-like object containing the fully observed data.
ipc_weights	weights for inverse probability of coarsening (e.g., inverse weights from a twophase sample) weighted estimation. Assumed to be already inverted (i.e., ipc_weights $=1 /$ [estimated probability weights]).
ipc_fit_type	if "external", then use ipc_eif_preds; if "SL", fit a SuperLearner to determine the correction to the efficient influence function.
ipc_eif_preds	if ipc_fit_type = "external", the fitted values from a regression of the fulldata EIF on the fully observed covariates/outcome; otherwise, not used.
ipc_est_type	IPC correction, either "ipw" (for classical inverse probability weighting) or "aipw" (for augmented inverse probability weighting; the default).
scale	if doing an IPC correction, then the scale that the correction should be computed on (e.g., "identity"; or "logit" to logit-transform, apply the correction, and backtransform).
na.rm	logical; should NAs be removed in computation? (defaults to FALSE)
	other arguments to SuperLearner, if ipc_fit_type = "SL".

Value

A named list of: (1) the estimated mean squared error of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

```
measure_r_squared Estimate R-squared
```


Description

Estimate R-squared

Usage

```
measure_r_squared(
    fitted_values,
    y,
    full_y = NULL,
    C = rep(1, length(y)),
    Z = NULL,
    ipc_weights = rep(1, length(y)),
    ipc_fit_type = "external",
    ipc_eif_preds = rep(1, length(y)),
    ipc_est_type = "aipw",
    scale = "identity",
    na.rm = FALSE,
    ...
)
```


Arguments

$\left.\begin{array}{ll}\text { fitted_values } & \begin{array}{l}\text { fitted values from a regression function using the observed data. } \\ \text { y } \\ \text { the observed outcome. }\end{array} \\ \text { full_y } \\ \text { the observed outcome (defaults to NULL; allows the full-data outcome to be used } \\ \text { for empirical estimates that do not rely on covariates). }\end{array}\right\}$

```
na.rm
    logical; should NAs be removed in computation? (defaults to FALSE)
... other arguments to SuperLearner, if ipc_fit_type = "SL".
```


Value

A named list of: (1) the estimated R-squared of the fitted regression function; (2) the estimated influence function; and (3) the IPC EIF predictions.

```
merge_vim Merge multiple vim objects into one
```


Description

Take the output from multiple different calls to vimp_regression and merge into a single vim object; mostly used for plotting results.

Usage

merge_vim(...)

Arguments

... an arbitrary number of vim objects, separated by commas.

Value

an object of class vim containing all of the output from the individual vim objects. This results in a list containing:

- s - a list of the column(s) to calculate variable importance for
- SL.library - a list of the libraries of learners passed to SuperLearner
- full_fit - a list of the fitted values of the chosen method fit to the full data
- red_fit - a list of the fitted values of the chosen method fit to the reduced data
- est- a vector with the corrected estimates
- naive- a vector with the naive estimates
- eif- a list with the influence curve-based updates
- se- a vector with the standard errors
- ci- a matrix with the CIs
- mat - a tibble with the estimated variable importance, the standard errors, and the $(1-\alpha) \times$ 100% confidence intervals
- full_mod - a list of the objects returned by the estimation procedure for the full data regression (if applicable)
- red_mod - a list of the objects returned by the estimation procedure for the reduced data regression (if applicable)
- alpha - a list of the levels, for confidence interval calculation

Examples

```
    # generate the data
    # generate X
    p <- 2
    n <- 100
    x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
    # apply the function to the x's
    smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2
    # generate Y ~ Normal (smooth, 1)
    y <- smooth + stats::rnorm(n, 0, 1)
    # set up a library for SuperLearner; note simple library for speed
    library("SuperLearner")
    learners <- c("SL.glm", "SL.mean")
    # using Super Learner (with a small number of folds, for illustration only)
    est_2 <- vimp_regression(Y = y, X = x, indx = 2, V = 2,
    run_regression = TRUE, alpha = 0.05,
    SL.library = learners, cvControl = list(V = 2))
est_1 <- vimp_regression(Y = y, X = x, indx = 1, V = 2,
    run_regression = TRUE, alpha = 0.05,
    SL.library = learners, cvControl = list(V = 2))
ests <- merge_vim(est_1, est_2)
```

 print.vim Print a vim object

Description

Prints out the table of estimates, confidence intervals, and standard errors for a vim object.

Usage

```
\#\# S3 method for class 'vim'
print(x, ...)
```


Arguments

x
. .
\qquad the vim object of interest. other options, see the generic print function.

```
run_sl
```

Run a Super Learner for the provided subset of features

Description

Run a Super Learner for the provided subset of features

Usage

```
run_sl(
        Y = NULL,
        \(X=\) NULL ,
        \(\mathrm{V}=5\),
        SL.library = "SL.glm",
        univariate_SL.library = NULL,
        \(\mathrm{s}=1\),
        cv_folds = NULL,
        sample_splitting = TRUE,
        ss_folds = NULL,
        split = 1,
        verbose = FALSE,
        progress_bar = NULL,
        indx = 1,
        weights \(=\operatorname{rep}(1, \operatorname{nrow}(X))\),
        cross_fitted_se = TRUE,
        full \(=\) NULL,
        ...
    )
```


Arguments

$Y \quad$ the outcome
$X \quad$ the covariates
V the number of folds
SL.library the library of candidate learners
univariate_SL.library
the library of candidate learners for single-covariate regressions
s
the subset of interest
cv_folds the CV folds
sample_splitting
logical; should we use sample-splitting for predictiveness estimation?
ss_folds the sample-splitting folds; only used if sample_splitting = TRUE
split the split to use for sample-splitting; only used if sample_splitting = TRUE
verbose should we print progress? defaults to FALSE

```
progress_bar the progress bar to print to (only if verbose = TRUE)
indx the index to pass to progress bar (only if verbose = TRUE)
weights weights to pass to estimation procedure
cross_fitted_se
    if TRUE, uses a cross-fitted estimator of the standard error; otherwise, uses the
    entire dataset
full should this be considered a "full" or "reduced" regression? If NULL (the default),
    this is determined automatically; a full regression corresponds to s being equal
    to the full covariate vector. For SPVIMs, can be entered manually.
... other arguments to Super Learner
```


Value

a list of length V , with the results of predicting on the hold-out data for each v in 1 through V

```
sample_subsets Create necessary objects for SPVIMs
```


Description

Creates the Z and W matrices and a list of sampled subsets, S, for SPVIM estimation.

Usage

sample_subsets(p, gamma, n)

Arguments

p the number of covariates
gamma the fraction of the sample size to sample (e.g., gamma $=1$ means sample n subsets)
n
the sample size

Value

a list, with elements Z (the matrix encoding presence/absence of each feature in the uniquely sampled subsets), S (the list of unique sampled subsets), W (the matrix of weights), and z_{-}counts (the number of times each subset was sampled)

Examples

p <- 10
gamma <- 1
n <- 100
set.seed(100)
subset_lst <- sample_subsets(p, gamma, n)
scale_est Return an estimator on a different scale

Description

Return an estimator on a different scale

Usage

scale_est(obs_est = NULL, grad = NULL, scale = "identity")

Arguments

obs_est	the observed VIM estimate
grad	the estimated efficient influence function
scale	the scale to compute on

Details

It may be of interest to return an estimate (or confidence interval) on a different scale than originally measured. For example, computing a confidence interval (CI) for a VIM value that lies in $(0,1)$ on the logit scale ensures that the CI also lies in $(0,1)$.

Value

the scaled estimate
spvim_ics Influence function estimates for SPVIMs

Description

Compute the influence functions for the contribution from sampling observations and subsets.

Usage

spvim_ics(Z, z_counts, W, v, psi, G, c_n, ics, measure)

Arguments

Z the matrix of presence/absence of each feature (columns) in each sampled subset (rows)
z_counts the number of times each unique subset was sampled
W
v the estimated predictiveness measures
psi the estimated SPVIM values
G the constraint matrix
c_n the constraint values
ics a list of influence function values for each predictiveness measure
measure the type of measure (e.g., "r_squared" or "auc")

Details

The processes for sampling observations and sampling subsets are independent. Thus, we can compute the influence function separately for each sampling process. For further details, see the paper by Williamson and Feng (2020).

Value

a named list of length 2 ; contrib_v is the contribution from estimating V, while contrib_s is the contribution from sampling subsets.

```
spvim_se
```


Description

Compute standard error estimates based on the estimated influence function for a SPVIM value of interest.

Usage

spvim_se(ics, idx = 1, gamma = 1, na_rm = FALSE)

Arguments

ics the influence function estimates based on the contributions from sampling observations and sampling subsets: a list of length two resulting from a call to spvim_ics.
$i d x \quad$ the index of interest
gamma the proportion of the sample size used when sampling subsets
na_rm remove NAs?

Details

Since the processes for sampling observations and subsets are independent, the variance for a given SPVIM estimator is simply the sum of the variances based on sampling observations and on sampling subsets.

Value

The standard error estimate for the desired SPVIM value

See Also

spvim_ics for how the influence functions are estimated.

```
sp_vim
Shapley Population Variable Importance Measure (SPVIM) Estimates and Inference
```


Description

Compute estimates and confidence intervals for the SPVIMs, using cross-fitting.

Usage

sp_vim(
$Y=$ NULL,
X = NULL,
$\mathrm{V}=5$,
type = "r_squared",
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
univariate_SL.library = NULL,
gamma = 1,
alpha $=0.05$,
delta $=0$,
na.rm = FALSE,
stratified = FALSE,
verbose = FALSE,
sample_splitting = TRUE,
$C=\operatorname{rep}(1$, length $(Y))$,
Z = NULL,
ipc_weights $=\operatorname{rep}(1$, length $(Y))$,
ipc_est_type = "aipw",
scale = "identity",
scale_est = TRUE,
cross_fitted_se = TRUE,
)

Arguments

Y	the outcome.
X	the covariates.
V	the number of folds for cross-fitting, defaults to 5 . If sample_splitting $=$ TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
type	the type of parameter (e.g., ANOVA-based is "anova").
SL.library	a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL. xgboost, and SL.mean.
univariate_S	ibrary (optional) a character vector of learners to pass to SuperLearner for estimating univariate regression functions. Defaults to SL. polymars
gamma	the fraction of the sample size to use when sampling subsets (e.g., gamma $=1$ samples the same number of subsets as the sample size)
alpha	the level to compute the confidence interval at. Defaults to 0.05 , corresponding to a 95% confidence interval.
delta	the value of the δ-null (i.e., testing if importance $<\delta$); defaults to 0 .
na.rm	should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
stratified	if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-fitting folds)
verbose	should sp_vim and SuperLearner print out progress? (defaults to FALSE)
sample_splitting	
	should we use sample-splitting to estimate the full and reduced predictiveness? Defaults to TRUE, since inferences made using sample_splitting = FALSE will be invalid for variable with truly zero importance.
C	the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z	either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism.
ipc_weights	weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights $=1 /$ [estimated probability weights]).
ipc_est_type	the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1 .
scale	should CIs be computed on original ("identity", default) or logit ("logit") scale?
scale_est	should the point estimate be scaled to be greater than 0 ? Defaults to TRUE.
cross_fitted_se	
	should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?
	other arguments to the estimation tool, see "See also".

Details

We define the SPVIM as the weighted average of the population difference in predictiveness over all subsets of features not containing feature j.
This is equivalent to finding the solution to a population weighted least squares problem. This key fact allows us to estimate the SPVIM using weighted least squares, where we first sample subsets from the power set of all possible features using the Shapley sampling distribution; then use crossfitting to obtain estimators of the predictiveness of each sampled subset; and finally, solve the least squares problem given in Williamson and Feng (2020).
See the paper by Williamson and Feng (2020) for more details on the mathematics behind this function, and the validity of the confidence intervals.
In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

SL.library the library of learners passed to SuperLearner
\mathbf{v} the estimated predictiveness measure for each sampled subset
fit_lst the fitted values on the entire dataset from the chosen method for each sampled subset
preds_lst the cross-fitted predicted values from the chosen method for each sampled subset
est the estimated SPVIM value for each feature
ics the influence functions for each sampled subset
var_v_contribs the contibutions to the variance from estimating predictiveness
var_s_contribs the contributions to the variance from sampling subsets
ic_Ist a list of the SPVIM influence function contributions
se the standard errors for the estimated variable importance
ci the $(1-\alpha) \times 100 \%$ confidence intervals based on the variable importance estimates
p_value p-values for the null hypothesis test of zero importance for each variable
test_statistic the test statistic for each null hypothesis test of zero importance
test a hypothesis testing decision for each null hypothesis test (for each variable having zero importance)
gamma the fraction of the sample size used when sampling subsets
alpha the level, for confidence interval calculation
delta the delta value used for hypothesis testing
y the outcome
ipc_weights the weights
scale the scale on which CIs were computed
mat - a tibble with the estimates, SEs, CIs, hypothesis testing decisions, and p-values

Value

An object of class vim. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
n <- 100
p <- 2
# generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2
# generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm")
# -----------------------------------------
# using Super Learner (with a small number of CV folds,
# for illustration only)
# ------------------------------------------
set.seed(4747)
est <- sp_vim(Y = y, X = x, V = 2, type = "r_squared",
SL.library = learners, alpha = 0.05)
```


Description

Compute estimates of and confidence intervals for nonparametric intrinsic variable importance based on the population-level contrast between the oracle predictiveness using the feature(s) of interest versus not.

Usage

vim(
$Y=$ NULL,
X = NULL,
f1 = NULL,
f2 = NULL,
indx $=1$,
type = "r_squared",
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
alpha $=0.05$,
delta $=0$,
scale = "identity",

```
    na.rm = FALSE,
    sample_splitting = TRUE,
    sample_splitting_folds = NULL,
    stratified = FALSE,
    C = rep(1, length(Y)),
    Z = NULL,
    ipc_weights = rep(1, length(Y)),
    ipc_est_type = "aipw",
    scale_est = TRUE,
    bootstrap = FALSE,
    b = 1000,
)
```


Arguments

Y
X the covariates.
f1 the fitted values from a flexible estimation technique regressing Y on X .
f2 the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1 . tye of importance to compute, defauls to r_{-}squared, but other supported options are auc, accuracy, deviance, and anova.
run_regression if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL. xgboost, and SL.mean.
alpha the level to compute the confidence interval at. Defaults to 0.05 , corresponding to a 95% confidence interval.
delta the value of the δ-null (i.e., testing if importance $<\delta$); defaults to 0 .
scale should CIs be computed on original ("identity") or logit ("logit") scale?
na.rm should we remove NAs in the outcome and fitted values in computation? (defaults to FALSE)
sample_splitting
should we use sample-splitting to estimate the full and reduced predictiveness? Defaults to TRUE, since inferences made using sample_splitting = FALSE will be invalid for variable with truly zero importance.
sample_splitting_folds
the folds used for sample-splitting; these identify the observations that should be used to evaluate predictiveness based on the full and reduced sets of covariates, respectively. Only used if run_regression $=$ FALSE.
stratified if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)

C	the indicator of coarsening (1 denotes observed, 0 denotes unobserved). either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism.
ipc_weights	weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights =1 / [estimated probability weights]).
ipc_est_type	the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability
weighting). Only used if C is not all equal to 1.	

Details

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$
\psi_{0, s}:=V\left(f_{0}, P_{0}\right)-V\left(f_{0, s}, P_{0}\right)
$$

where f_{0} is the population predictiveness maximizing function, $f_{0, s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_{0} is the true data-generating distribution. VIM estimates are obtained by obtaining estimators f_{n} and $f_{n, s}$ of f_{0} and $f_{0, s}$, respectively; obtaining an estimator P_{n} of P_{0}; and finally, setting $\psi_{n, s}:=$ $V\left(f_{n}, P_{n}\right)-V\left(f_{n, s}, P_{n}\right)$.
In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:
\mathbf{s} the column(s) to calculate variable importance for
SL.library the library of learners passed to SuperLearner
type the type of risk-based variable importance measured
full_fit the fitted values of the chosen method fit to the full data
red_fit the fitted values of the chosen method fit to the reduced data
est the estimated variable importance
naive the naive estimator of variable importance (only used if type = "anova")
eif the estimated efficient influence function
eif_full the estimated efficient influence function for the full regression
eif_reduced the estimated efficient influence function for the reduced regression
se the standard error for the estimated variable importance
ci the $(1-\alpha) \times 100 \%$ confidence interval for the variable importance estimate
test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test
p_value a p-value based on the same test as test
full_mod the object returned by the estimation procedure for the full data regression (if applicable)
red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
alpha the level, for confidence interval calculation
sample_splitting_folds the folds used for sample-splitting (used for hypothesis testing)
y the outcome
ipc_weights the weights
mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value

An object of classes vim and the type of risk-based measure. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))
# apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))
# generate Y ~ Bernoulli (smooth)
y <- matrix(rbinom(n, size = 1, prob = smooth))
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm")
# using Y and X; use class-balanced folds
est_1 <- vim(y, x, indx = 2, type = "accuracy",
    alpha = 0.05, run_regression = TRUE,
    SL.library = learners, cvControl = list(V = 2),
    stratified = TRUE)
# using pre-computed fitted values
set.seed(4747)
V <- 2
y_1 <- y[est_1$sample_splitting_folds == 1]
```

```
y_2 <- y[est_1$sample_splitting_folds == 2]
x_1 <- subset(x, est_1$sample_splitting_folds == 1)
x_2 <- subset(x, est_1$sample_splitting_folds == 2)
full_fit <- SuperLearner::SuperLearner(Y = y_1, X = x_1,
    SL.library = learners,
    cvControl = list(V = V))
full_fitted <- SuperLearner::predict.SuperLearner(full_fit)$pred
# fit the data with only X1
full_fit_2 <- SuperLearner::SuperLearner(Y = y_2, X = x_2,
    SL.library = learners,
    cvControl = list(V = V))
full_fitted_2 <- SuperLearner::predict.SuperLearner(full_fit_2)$pred
reduced_fit <- SuperLearner::SuperLearner(Y = full_fitted_2,
    X = x_2[, -2, drop = FALSE],
    SL.library = learners,
    cvControl = list(V = V))
reduced_fitted <- SuperLearner::predict.SuperLearner(reduced_fit)$pred
est_2 <- vim(Y = y, f1 = full_fitted, f2 = reduced_fitted,
        indx = 2, run_regression = FALSE, alpha = 0.05,
        stratified = TRUE, type = "accuracy",
        sample_splitting_folds = est_1$sample_splitting_folds)
```

 vimp vimp: Perform Inference on Algorithm-Agnostic Intrinsic Variable Im-
 portance

Description

A unified framework for valid statistical inference on algorithm-agnostic measures of intrinsic variable importance. You provide the data, a method for estimating the conditional mean of the outcome given the covariates, choose a variable importance measure, and specify variable(s) of interest; 'vimp' takes care of the rest.

Author(s)

Maintainer: Brian Williamson https://bdwilliamson.github.io/ Contributor: Jean Feng http://www.jeanfeng.com

Methodology authors:

- Brian D. Williamson
- Jean Feng
- Peter B. Gilbert
- Noah R. Simon
- Marco Carone

See Also

Manuscripts:

- https://onlinelibrary.wiley.com/doi/epdf/10.1111/biom. 13392 (R-squared-based variable importance)
- https://onlinelibrary.wiley.com/doi/epdf/10.1111/biom. 13389 (Rejoinder to discussion on R-squared-based variable importance article)
- http://proceedings.mlr.press/v119/williamson20a.html (general Shapley-based variable importance)

Preprints:

- https://arxiv.org/abs/2004.03683 (general variable importance)

Other useful links:

- https://bdwilliamson.github.io/vimp/
- https://github.com/bdwilliamson/vimp
- Report bugs at https://github.com/bdwilliamson/vimp/issues

Imports

The packages that we import either make the internal code nice (dplyr, magrittr, tibble, rlang, MASS, data.table), are directly relevant to estimating the conditional mean (SuperLearner) or predictiveness measures (ROCR), or are necessary for hypothesis testing (stats) or confidence intervals (boot, only for bootstrap intervals).

We suggest several other packages: xgboost, ranger, gam, glmnet, polspline, and quadprog allow a flexible library of candidate learners in the Super Learner; ggplot2 and cowplot help with plotting variable importance estimates; testthat and covr help with unit tests; and knitr, rmarkdown, and tidyselect help with the vignettes and examples.
vimp_accuracy Nonparametric Intrinsic Variable Importance Estimates: Classification accuracy

Description

Compute estimates of and confidence intervals for nonparametric difference in classification accuracybased intrinsic variable importance. This is a wrapper function for $c v_{-} v i m$, with type = "accuracy".

Usage

```
vimp_accuracy(
    \(Y=\) NULL,
    X = NULL,
    cross_fitted_f1 = NULL,
    cross_fitted_f2 = NULL,
    f1 = NULL,
    f2 = NULL,
    indx = 1,
    \(\mathrm{V}=10\),
    run_regression = TRUE,
    SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
    alpha \(=0.05\),
    delta \(=0\),
    na.rm = FALSE,
    cross_fitting_folds = NULL,
    sample_splitting_folds = NULL,
    stratified = TRUE,
    \(C=\operatorname{rep}(1\), length \((Y))\),
    Z = NULL,
    ipc_weights \(=\operatorname{rep}(1\), length \((Y))\),
    scale = "identity",
    ipc_est_type = "aipw",
    scale_est = TRUE,
    cross_fitted_se = TRUE,
    )
```


Arguments

```
    Y the outcome.
    X the covariates.
    cross_fitted_f1
```

 the predicted values on validation data from a flexible estimation technique re-
 gressing Y on X in the training data; a list of length V , where each object is a set
 of predictions on the validation data. If sample-splitting is requested, then these
 must be estimated specially; see Details.
 cross_fitted_f2
 the predicted values on validation data from a flexible estimation technique regressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X withholding the columns in indx; a list of length V , where each object is a set of predictions on the validation data. If sample-splitting is requested, then these must be estimated specially; see Details.
f1 the fitted values from a flexible estimation technique regressing Y on X . If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.

Details

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$
\psi_{0, s}:=V\left(f_{0}, P_{0}\right)-V\left(f_{0, s}, P_{0}\right)
$$

where f_{0} is the population predictiveness maximizing function, $f_{0, s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_{0} is the true data-generating distribution.
Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of crossfitting is to estimate f_{0} and $f_{0, s}$ on independent data from estimating P_{0}; this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate f_{0} and $f_{0, s}$ on independent data; this allows valid inference under the null hypothesis of zero importance.
Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n, k}$ and $f_{n, k, s}$ of f_{0} and $f_{0, s}$, respectively on the training data and estimator $P_{n, k}$ of P_{0} using the test data; and finally, computing

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K}\left\{V\left(f_{n, k}, P_{n, k}\right)-V\left(f_{n, k, s}, P_{n, k}\right)\right\} .
$$

With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into $2 K$ folds. These folds are further divided into 2 groups of folds. Then, for each fold k in the first group, estimator $f_{n, k}$ of f_{0} is constructed using all data besides the kth fold in the group (i.e., $(2 K-1) /(2 K)$ of the data) and estimator $P_{n, k}$ of P_{0} is constructed using the held-out data (i.e., $1 / 2 K$ of the data); then, computing

$$
v_{n, k}=V\left(f_{n, k}, P_{n, k}\right)
$$

Similarly, for each fold k in the second group, estimator $f_{n, k, s}$ of $f_{0, s}$ is constructed using all data besides the kth fold in the group (i.e., $(2 K-1) /(2 K)$ of the data) and estimator $P_{n, k}$ of P_{0} is constructed using the held-out data (i.e., $1 / 2 K$ of the data); then, computing

$$
v_{n, k, s}=V\left(f_{n, k, s}, P_{n, k}\right)
$$

Finally,

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K}\left\{v_{n, k}-v_{n, k, s}\right\}
$$

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:
s the column(s) to calculate variable importance for
SL.library the library of learners passed to SuperLearner
full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)
red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
est the estimated variable importance
naive the naive estimator of variable importance
eif the estimated efficient influence function
eif_full the estimated efficient influence function for the full regression
eif_reduced the estimated efficient influence function for the reduced regression
se the standard error for the estimated variable importance
ci the $(1-\alpha) \times 100 \%$ confidence interval for the variable importance estimate
test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test
p_value a p-value based on the same test as test
full_mod the object returned by the estimation procedure for the full data regression (if applicable)
red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
alpha the level, for confidence interval calculation
sample_splitting_folds the folds used for hypothesis testing
cross_fitting_folds the folds used for cross-fitting
y the outcome
ipc_weights the weights
mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p -value

Value

An object of classes vim and vim_accuracy. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))
# apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))
# generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))
```

```
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")
# estimate (with a small number of folds, for illustration only)
est <- vimp_accuracy(y, x, indx = 2,
        alpha = 0.05, run_regression = TRUE,
        SL.library = learners, V = 2, cvControl = list(V = 2))
```


Description

Compute estimates of and confidence intervals for nonparametric ANOVA-based intrinsic variable importance. This is a wrapper function for cv_vim, with type = "anova". This type has limited functionality compared to other types; in particular, null hypothesis tests are not possible using type = "anova". If you want to do null hypothesis testing on an equivalent population parameter, use vimp_rsquared instead.

Usage

```
vimp_anova(
    Y = NULL,
    X = NULL,
    cross_fitted_f1 = NULL,
    cross_fitted_f2 = NULL,
    indx = 1,
    V = 10,
    run_regression = TRUE,
    SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
    alpha = 0.05,
    delta = 0,
    na.rm = FALSE,
    cross_fitting_folds = NULL,
    stratified = FALSE,
    C = rep(1, length(Y)),
    Z = NULL,
    ipc_weights = rep(1, length(Y)),
    scale = "identity",
    ipc_est_type = "aipw",
    scale_est = TRUE,
    cross_fitted_se = TRUE,
)
```


Arguments

Y	the outcome.
X	the covariates.
cross_fitted_f1	

cross_fitted_f1
the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V , where each object is a set of predictions on the validation data. If sample-splitting is requested, then these must be estimated specially; see Details.
cross_fitted_f2
the predicted values on validation data from a flexible estimation technique regressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data. If sample-splitting is requested, then these must be estimated specially; see Details.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha the level to compute the confidence interval at. Defaults to 0.05 , corresponding to a 95% confidence interval.
delta the value of the δ-null (i.e., testing if importance $<\delta$); defaults to 0 .
na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
cross_fitting_folds
the folds for cross-fitting. Only used if run_regression = FALSE.
stratified if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-fitting folds)
C the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z
either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism.
ipc_weights weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights $=1 /[$ estimated probability weights] $)$.
scale should CIs be computed on original ("identity", default) or logit ("logit") scale?
ipc_est_type the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1 .
scale_est should the point estimate be scaled to be greater than 0? Defaults to TRUE.
cross_fitted_se
should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?
... other arguments to the estimation tool, see "See also".

Details

We define the population ANOVA parameter for the group of features (or single feature) s by

$$
\psi_{0, s}:=E_{0}\left\{f_{0}(X)-f_{0, s}(X)\right\}^{2} / \operatorname{var}_{0}(Y)
$$

where f_{0} is the population conditional mean using all features, $f_{0, s}$ is the population conditional mean using the features with index not in s, and E_{0} and $v a r_{0}$ denote expectation and variance under the true data-generating distribution, respectively.
Cross-fitted ANOVA estimates are computed by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n, k}$ and $f_{n, k, s}$ of f_{0} and $f_{0, s}$, respectively on the training data and estimator $E_{n, k}$ of E_{0} using the test data; and finally, computing

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K} E_{n, k}\left\{f_{n, k}(X)-f_{n, k, s}(X)\right\}^{2} / \operatorname{var}_{n}(Y)
$$

where $v a r_{n}$ is the empirical variance. See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function.

Value

An object of classes vim and vim_anova. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2
# generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")
```

\# estimate (with a small number of folds, for illustration only)
est <- vimp_anova(y, x, indx $=2$, alpha $=0.05$, run_regression $=$ TRUE, SL. library = learners, $V=2$, cvControl = list $(V=2)$)

Description

Compute estimates of and confidence intervals for nonparametric difference in \$AUC\$-based intrinsic variable importance. This is a wrapper function for cv_vim, with type = "auc".

Usage

vimp_auc(
$Y=$ NULL ,
X = NULL, cross_fitted_f1 = NULL, cross_fitted_f2 = NULL, f1 = NULL, f2 = NULL, indx = 1, $V=10$, run_regression = TRUE, SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"), alpha $=0.05$, delta $=0$, na.rm = FALSE, cross_fitting_folds = NULL,
sample_splitting_folds = NULL,
stratified = TRUE,
$C=\operatorname{rep}(1$, length $(Y))$,
Z = NULL,
ipc_weights $=$ rep(1, length (Y)),
scale = "identity",
ipc_est_type = "aipw",
scale_est = TRUE,
cross_fitted_se = TRUE,
)

Arguments

Y the outcome.

```
X the covariates.
cross_fitted_f1
    the predicted values on validation data from a flexible estimation technique re-
    gressing Y on X in the training data; a list of length V, where each object is a set
    of predictions on the validation data. If sample-splitting is requested, then these
    must be estimated specially; see Details.
cross_fitted_f2
    the predicted values on validation data from a flexible estimation technique re-
    gressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X with-
    holding the columns in indx; a list of length V, where each object is a set of
    predictions on the validation data. If sample-splitting is requested, then these
    must be estimated specially; see Details.
f1 the fitted values from a flexible estimation technique regressing Y on X. If
    sample-splitting is requested, then these must be estimated specially; see De-
    tails. If cross_fitted_se = TRUE, then this argument is not used.
f2 the fitted values from a flexible estimation technique regressing either (a)f1 or
    (b) Y on X withholding the columns in indx. If sample-splitting is requested,
    then these must be estimated specially; see Details. If cross_fitted_se=
    TRUE, then this argument is not used.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V the number of folds for cross-fitting, defaults to 5. If sample_splitting=
    TRUE, then a special type of V-fold cross-fitting is done. See Details for a more
    detailed explanation.
run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is
    TRUE, then Super Learner will be used; otherwise, variable importance will be
    computed using the inputted fitted values.
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and
    X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding
    to a 95% confidence interval.
delta the value of the }\delta\mathrm{ -null (i.e., testing if importance < }\delta\mathrm{ ); defaults to 0.
na.rm should we remove NA's in the outcome and fitted values in computation? (de-
    faults to FALSE)
cross_fitting_folds
    the folds for cross-fitting. Only used if run_regression = FALSE.
sample_splitting_folds
    the folds to use for sample-splitting; if entered, these should result in balance
    within the cross-fitting folds. Only used if run_regression = FALSE and sample_splitting
    = TRUE. A vector of length 2*V .
stratified if run_regression=TRUE, then should the generated folds be stratified based on
    the outcome (helps to ensure class balance across cross-fitting folds)
C the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
Z either (i) NULL (the default, in which case the argument C above must be all
    ones), or (ii) a character vector specifying the variable(s) among Y and X that
    are thought to play a role in the coarsening mechanism.
```

```
ipc_weights weights for the computed influence curve (i.e., inverse probability weights for
    coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights
    = 1/[estimated probability weights]).
scale should CIs be computed on original ("identity", default) or logit ("logit") scale?
ipc_est_type the type of procedure used for coarsened-at-random settings; options are "ipw"
    (for inverse probability weighting) or "aipw" (for augmented inverse probability
    weighting). Only used if C is not all equal to 1.
scale_est should the point estimate be scaled to be greater than 0? Defaults to TRUE.
cross_fitted_se
    should we use cross-fitting to estimate the standard errors (TRUE, the default) or
    not (FALSE)?
... other arguments to the estimation tool, see "See also".
```


Details

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$
\psi_{0, s}:=V\left(f_{0}, P_{0}\right)-V\left(f_{0, s}, P_{0}\right)
$$

where f_{0} is the population predictiveness maximizing function, $f_{0, s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_{0} is the true data-generating distribution.
Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of crossfitting is to estimate f_{0} and $f_{0, s}$ on independent data from estimating P_{0}; this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate f_{0} and $f_{0, s}$ on independent data; this allows valid inference under the null hypothesis of zero importance.
Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n, k}$ and $f_{n, k, s}$ of f_{0} and $f_{0, s}$, respectively on the training data and estimator $P_{n, k}$ of P_{0} using the test data; and finally, computing

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K}\left\{V\left(f_{n, k}, P_{n, k}\right)-V\left(f_{n, k, s}, P_{n, k}\right)\right\}
$$

With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into $2 K$ folds. These folds are further divided into 2 groups of folds. Then, for each fold k in the first group, estimator $f_{n, k}$ of f_{0} is constructed using all data besides the kth fold in the group (i.e., $(2 K-1) /(2 K)$ of the data) and estimator $P_{n, k}$ of P_{0} is constructed using the held-out data (i.e., $1 / 2 K$ of the data); then, computing

$$
v_{n, k}=V\left(f_{n, k}, P_{n, k}\right)
$$

Similarly, for each fold k in the second group, estimator $f_{n, k, s}$ of $f_{0, s}$ is constructed using all data besides the kth fold in the group (i.e., $(2 K-1) /(2 K)$ of the data) and estimator $P_{n, k}$ of P_{0} is constructed using the held-out data (i.e., $1 / 2 K$ of the data); then, computing

$$
v_{n, k, s}=V\left(f_{n, k, s}, P_{n, k}\right)
$$

Finally,

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K}\left\{v_{n, k}-v_{n, k, s}\right\} .
$$

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.
In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:
\mathbf{s} the column(s) to calculate variable importance for
SL.library the library of learners passed to SuperLearner
full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)
red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
est the estimated variable importance
naive the naive estimator of variable importance
eif the estimated efficient influence function
eif_full the estimated efficient influence function for the full regression
eif_reduced the estimated efficient influence function for the reduced regression
se the standard error for the estimated variable importance
ci the $(1-\alpha) \times 100 \%$ confidence interval for the variable importance estimate
test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test
p_value a p-value based on the same test as test
full_mod the object returned by the estimation procedure for the full data regression (if applicable)
red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
alpha the level, for confidence interval calculation
sample_splitting_folds the folds used for hypothesis testing
cross_fitting_folds the folds used for cross-fitting
y the outcome
ipc_weights the weights
mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value

An object of classes vim and vim_auc. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package, and performance for specific usage of the ROCR package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))
# apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))
# generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")
# estimate (with a small number of folds, for illustration only)
est <- vimp_auc(y, x, indx = 2,
    alpha = 0.05, run_regression = TRUE,
    SL.library = learners, V = 2, cvControl = list(V = 2))
```

 vimp_ci Confidence intervals for variable importance

Description

Compute confidence intervals for the true variable importance parameter.

Usage

vimp_ci(est, se, scale = "identity", level = 0.95)

Arguments

est	estimate of variable importance, e.g., from a call to vimp_point_est.
se	estimate of the standard error of est, e.g., from a call to vimp_se.
scale	scale to compute interval estimate on (defaults to "identity": compute Wald-type CI).
level	confidence interval type (defaults to 0.95).

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The Wald-based confidence interval for the true importance of the given group of left-out covariates.

```
vimp_deviance Nonparametric Intrinsic Variable Importance Estimates: Deviance
```


Description

Compute estimates of and confidence intervals for nonparametric deviance-based intrinsic variable importance. This is a wrapper function for cv_vim, with type = "deviance".

Usage

```
vimp_deviance(
        Y = NULL,
    X = NULL,
    cross_fitted_f1 = NULL,
    cross_fitted_f2 = NULL,
    f1 = NULL,
    f2 = NULL,
    indx \(=1\),
    \(\mathrm{V}=10\),
    run_regression = TRUE,
    SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
    alpha \(=0.05\),
    delta = 0,
    na.rm = FALSE,
    cross_fitting_folds = NULL,
    sample_splitting_folds = NULL,
    stratified = TRUE,
    \(C=\operatorname{rep}(1\), length \((Y))\),
    Z = NULL,
    ipc_weights \(=\operatorname{rep}(1\), length \((Y))\),
    scale = "identity",
    ipc_est_type = "aipw",
    scale_est = TRUE,
    cross_fitted_se = TRUE,
)
```


Arguments

Y
the outcome.
X
the covariates.

```
cross_fitted_f1
the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V , where each object is a set of predictions on the validation data. If sample-splitting is requested, then these must be estimated specially; see Details.
cross_fitted_f2
the predicted values on validation data from a flexible estimation technique regressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X withholding the columns in indx; a list of length \(V\), where each object is a set of predictions on the validation data. If sample-splitting is requested, then these must be estimated specially; see Details.
f1 the fitted values from a flexible estimation technique regressing Y on X. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
f2 the fitted values from a flexible estimation technique regressing either (a)f1 or (b) Y on X withholding the columns in indx. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V the number of folds for cross-fitting, defaults to 5. If sample_splitting = TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
run_regression if outcome \(Y\) and covariates \(X\) are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL. xgboost, and SL.mean.
alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a \(95 \%\) confidence interval.
delta the value of the \(\delta\)-null (i.e., testing if importance \(<\delta\) ); defaults to 0 .
na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
cross_fitting_folds
the folds for cross-fitting. Only used if run_regression = FALSE.
sample_splitting_folds
the folds to use for sample-splitting; if entered, these should result in balance within the cross-fitting folds. Only used if run_regression = FALSE and sample_splitting \(=\) TRUE. A vector of length \(2 * V\).
stratified if run_regression \(=\) TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-fitting folds)
C the indicator of coarsening ( 1 denotes observed, 0 denotes unobserved).
Z either (i) NULL (the default, in which case the argument C above must be all ones), or (ii) a character vector specifying the variable(s) among Y and X that are thought to play a role in the coarsening mechanism.
```

ipc_weights weights for the computed influence curve (i.e., inverse probability weights for coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights $=1 /[$ estimated probability weights] $]$.
scale should CIs be computed on original ("identity", default) or logit ("logit") scale?
ipc_est_type the type of procedure used for coarsened-at-random settings; options are "ipw" (for inverse probability weighting) or "aipw" (for augmented inverse probability weighting). Only used if C is not all equal to 1 .
scale_est should the point estimate be scaled to be greater than 0? Defaults to TRUE.
cross_fitted_se
should we use cross-fitting to estimate the standard errors (TRUE, the default) or not (FALSE)?
... other arguments to the estimation tool, see "See also".

Details

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$
\psi_{0, s}:=V\left(f_{0}, P_{0}\right)-V\left(f_{0, s}, P_{0}\right)
$$

where f_{0} is the population predictiveness maximizing function, $f_{0, s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_{0} is the true data-generating distribution.
Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of crossfitting is to estimate f_{0} and $f_{0, s}$ on independent data from estimating P_{0}; this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate f_{0} and $f_{0, s}$ on independent data; this allows valid inference under the null hypothesis of zero importance.
Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n, k}$ and $f_{n, k, s}$ of f_{0} and $f_{0, s}$, respectively on the training data and estimator $P_{n, k}$ of P_{0} using the test data; and finally, computing

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K}\left\{V\left(f_{n, k}, P_{n, k}\right)-V\left(f_{n, k, s}, P_{n, k}\right)\right\}
$$

With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into $2 K$ folds. These folds are further divided into 2 groups of folds. Then, for each fold k in the first group, estimator $f_{n, k}$ of f_{0} is constructed using all data besides the kth fold in the group (i.e., $(2 K-1) /(2 K)$ of the data) and estimator $P_{n, k}$ of P_{0} is constructed using the held-out data (i.e., $1 / 2 K$ of the data); then, computing

$$
v_{n, k}=V\left(f_{n, k}, P_{n, k}\right)
$$

Similarly, for each fold k in the second group, estimator $f_{n, k, s}$ of $f_{0, s}$ is constructed using all data besides the kth fold in the group (i.e., $(2 K-1) /(2 K)$ of the data) and estimator $P_{n, k}$ of P_{0} is constructed using the held-out data (i.e., $1 / 2 K$ of the data); then, computing

$$
v_{n, k, s}=V\left(f_{n, k, s}, P_{n, k}\right)
$$

Finally,

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K}\left\{v_{n, k}-v_{n, k, s}\right\}
$$

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.
In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:
s the column(s) to calculate variable importance for
SL.library the library of learners passed to SuperLearner
full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)
red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
est the estimated variable importance
naive the naive estimator of variable importance
eif the estimated efficient influence function
eif_full the estimated efficient influence function for the full regression
eif_reduced the estimated efficient influence function for the reduced regression
se the standard error for the estimated variable importance
ci the $(1-\alpha) \times 100 \%$ confidence interval for the variable importance estimate
test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test
p_value a p-value based on the same test as test
full_mod the object returned by the estimation procedure for the full data regression (if applicable)
red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
alpha the level, for confidence interval calculation
sample_splitting_folds the folds used for hypothesis testing
cross_fitting_folds the folds used for cross-fitting
y the outcome
ipc_weights the weights
mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p -value

Value

An object of classes vim and vim_deviance. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))
# apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))
# generate Y ~ Normal (smooth, 1)
y <- matrix(stats::rbinom(n, size = 1, prob = smooth))
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")
# estimate (with a small number of folds, for illustration only)
est <- vimp_deviance(y, x, indx = 2,
    alpha = 0.05, run_regression = TRUE,
    SL.library = learners, V = 2, cvControl = list(V = 2))
```

vimp_hypothesis_test Perform a hypothesis test against the null hypothesis of δ importance

Description

Perform a hypothesis test against the null hypothesis of zero importance by: (i) for a user-specified level α, compute a $(1-\alpha) \times 100 \%$ confidence interval around the predictiveness for both the full and reduced regression functions (these must be estimated on independent splits of the data); (ii) if the intervals do not overlap, reject the null hypothesis.

Usage

vimp_hypothesis_test(predictiveness_full, predictiveness_reduced, se,
delta = 0,
alpha $=0.05$
)

Arguments

predictiveness_full
the estimated predictiveness of the regression including the covariate(s) of interest.
predictiveness_reduced
the estimated predictiveness of the regression excluding the covariate(s) of interest.
se the estimated standard error of the variable importance estimator
delta the value of the δ-null (i.e., testing if importance $<\delta$); defaults to 0 .
alpha the desired type I error rate (defaults to 0.05).

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

a list, with: the hypothesis testing decision (TRUE if the null hypothesis is rejected, FALSE otherwise); the p-value from the hypothesis test; and the test statistic from the hypothesis test.

Description

Compute estimates of and confidence intervals for nonparametric ANOVA-based intrinsic variable importance. This is a wrapper function for cv_vim, with type = "anova". This function is deprecated in vimp version 2.0.0.

Usage

```
vimp_regression(
    Y = NULL,
    X = NULL,
    cross_fitted_f1 = NULL,
    cross_fitted_f2 = NULL,
    indx = 1,
    V = 10,
    run_regression = TRUE,
    SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
    alpha = 0.05,
    delta = 0,
    na.rm = FALSE,
    cross_fitting_folds = NULL,
    stratified = FALSE,
    C = rep(1, length(Y)),
    Z = NULL,
    ipc_weights = rep(1, length(Y)),
    scale = "identity",
    ipc_est_type = "aipw",
```

```
    scale_est = TRUE,
    cross_fitted_se = TRUE,
)
```


Arguments

Y
X

cross_fitted_f1 the outcome. | the covariates. |
| :--- |
| the predicted values on validation data from a flexible estimation technique re- |
| gressing Y on X in the training data; a list of length V, where each object is a set |
| of predictions on the validation data. If sample-splitting is requested, then these |
| must be estimated specially; see Details. |

```
scale should CIs be computed on original ("identity", default) or logit ("logit") scale?
ipc_est_type the type of procedure used for coarsened-at-random settings; options are "ipw"
        (for inverse probability weighting) or "aipw" (for augmented inverse probability
        weighting). Only used if C is not all equal to 1.
scale_est should the point estimate be scaled to be greater than 0? Defaults to TRUE.
cross_fitted_se
            should we use cross-fitting to estimate the standard errors (TRUE, the default) or
            not (FALSE)?
... other arguments to the estimation tool, see "See also".
```


Details

We define the population ANOVA parameter for the group of features (or single feature) s by

$$
\psi_{0, s}:=E_{0}\left\{f_{0}(X)-f_{0, s}(X)\right\}^{2} / \operatorname{var}_{0}(Y)
$$

where f_{0} is the population conditional mean using all features, $f_{0, s}$ is the population conditional mean using the features with index not in s, and E_{0} and $v a r_{0}$ denote expectation and variance under the true data-generating distribution, respectively.
Cross-fitted ANOVA estimates are computed by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n, k}$ and $f_{n, k, s}$ of f_{0} and $f_{0, s}$, respectively on the training data and estimator $E_{n, k}$ of E_{0} using the test data; and finally, computing

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K} E_{n, k}\left\{f_{n, k}(X)-f_{n, k, s}(X)\right\}^{2} / \operatorname{var}_{n}(Y)
$$

where var_{n} is the empirical variance. See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function.

Value

An object of classes vim and vim_regression. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2
# generate Y ~ Normal (smooth, 1)
```

```
y <- smooth + stats::rnorm(n, 0, 1)
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")
# estimate (with a small number of folds, for illustration only)
est <- vimp_regression(y, x, indx = 2,
    alpha = 0.05, run_regression = TRUE,
    SL.library = learners, V = 2, cvControl = list(V = 2))
```

vimp_rsquared Nonparametric Intrinsic Variable Importance Estimates: R-squared

Description

Compute estimates of and confidence intervals for nonparametric $\$ \mathrm{R}^{\wedge} 2 \$$-based intrinsic variable importance. This is a wrapper function for cv_vim, with type = "r_squared".

Usage

```
vimp_rsquared(
    Y = NULL,
    X = NULL,
    cross_fitted_f1 = NULL,
    cross_fitted_f2 = NULL,
    f1 = NULL,
    f2 = NULL,
    indx = 1,
    V = 10,
    run_regression = TRUE,
    SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
    alpha = 0.05,
    delta = 0,
    na.rm = FALSE,
    cross_fitting_folds = NULL,
    sample_splitting_folds = NULL,
    stratified = FALSE,
    C = rep(1, length(Y)),
    Z = NULL,
    ipc_weights = rep(1, length(Y)),
    scale = "identity",
    ipc_est_type = "aipw",
    scale_est = TRUE,
    cross_fitted_se = TRUE,
)
```


Arguments

```
Y
the outcome.
X
the covariates.
cross_fitted_f1
```

the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V , where each object is a set of predictions on the validation data. If sample-splitting is requested, then these must be estimated specially; see Details.

```
cross_fitted_f2
```

the predicted values on validation data from a flexible estimation technique regressing either (a) the fitted values in cross_fitted_f1, or (b) Y, on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data. If sample-splitting is requested, then these must be estimated specially; see Details.
f1 the fitted values from a flexible estimation technique regressing Y on X. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
f2 the fitted values from a flexible estimation technique regressing either (a) f1 or (b) Y on X withholding the columns in indx. If sample-splitting is requested, then these must be estimated specially; see Details. If cross_fitted_se = TRUE, then this argument is not used.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1 .
V the number of folds for cross-fitting, defaults to 5. If sample_splitting $=$ TRUE, then a special type of V-fold cross-fitting is done. See Details for a more detailed explanation.
run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL. xgboost, and SL.mean.
alpha the level to compute the confidence interval at. Defaults to 0.05 , corresponding to a 95% confidence interval.
delta the value of the δ-null (i.e., testing if importance $<\delta$); defaults to 0 .
na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
cross_fitting_folds
the folds for cross-fitting. Only used if run_regression = FALSE.
sample_splitting_folds
the folds to use for sample-splitting; if entered, these should result in balance within the cross-fitting folds. Only used if run_regression = FALSE and sample_splitting $=$ TRUE. A vector of length $2 * V$.
stratified if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-fitting folds)
C the indicator of coarsening (1 denotes observed, 0 denotes unobserved).
$\begin{array}{ll}\text { Z } & \begin{array}{l}\text { either (i) NULL (the default, in which case the argument C above must be all } \\ \text { ones), or (ii) a character vector specifying the variable(s) among Y and X that } \\ \text { are thought to play a role in the coarsening mechanism. }\end{array} \\ \text { ipc_weights } & \begin{array}{l}\text { weights for the computed influence curve (i.e., inverse probability weights for } \\ \text { coarsened-at-random settings). Assumed to be already inverted (i.e., ipc_weights } \\ =1 / \text { [estimated probability weights]). }\end{array} \\ \text { scale } & \begin{array}{l}\text { should CIs be computed on original ("identity", default) or logit ("logit") scale? } \\ \text { the type of procedure used for coarsened-at-random settings; options are "ipw" } \\ \text { (for inverse probability weighting) or "aipw" (for augmented inverse probability } \\ \text { weighting). Only used if C is not all equal to 1. }\end{array} \\ \text { scale_est } & \begin{array}{l}\text { should the point estimate be scaled to be greater than 0? Defaults to TRUE. }\end{array} \\ \text { cross_fitted_se }\end{array} \quad \begin{aligned} & \text { should we use cross-fitting to estimate the standard errors (TRUE, the default) or } \\ & \text { not (FALSE)? }\end{aligned}$

Details

We define the population variable importance measure (VIM) for the group of features (or single feature) s with respect to the predictiveness measure V by

$$
\psi_{0, s}:=V\left(f_{0}, P_{0}\right)-V\left(f_{0, s}, P_{0}\right)
$$

where f_{0} is the population predictiveness maximizing function, $f_{0, s}$ is the population predictiveness maximizing function that is only allowed to access the features with index not in s, and P_{0} is the true data-generating distribution.
Cross-fitted VIM estimates are computed differently if sample-splitting is requested versus if it is not. We recommend using sample-splitting in most cases, since only in this case will inferences be valid if the variable(s) of interest have truly zero population importance. The purpose of crossfitting is to estimate f_{0} and $f_{0, s}$ on independent data from estimating P_{0}; this can result in improved performance, especially when using flexible learning algorithms. The purpose of sample-splitting is to estimate f_{0} and $f_{0, s}$ on independent data; this allows valid inference under the null hypothesis of zero importance.
Without sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into K folds; then using each fold in turn as a hold-out set, constructing estimators $f_{n, k}$ and $f_{n, k, s}$ of f_{0} and $f_{0, s}$, respectively on the training data and estimator $P_{n, k}$ of P_{0} using the test data; and finally, computing

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K}\left\{V\left(f_{n, k}, P_{n, k}\right)-V\left(f_{n, k, s}, P_{n, k}\right)\right\}
$$

With sample-splitting, cross-fitted VIM estimates are obtained by first splitting the data into $2 K$ folds. These folds are further divided into 2 groups of folds. Then, for each fold k in the first group, estimator $f_{n, k}$ of f_{0} is constructed using all data besides the kth fold in the group (i.e., $(2 K-1) /(2 K)$ of the data) and estimator $P_{n, k}$ of P_{0} is constructed using the held-out data (i.e., $1 / 2 K$ of the data); then, computing

$$
v_{n, k}=V\left(f_{n, k}, P_{n, k}\right)
$$

Similarly, for each fold k in the second group, estimator $f_{n, k, s}$ of $f_{0, s}$ is constructed using all data besides the kth fold in the group (i.e., $(2 K-1) /(2 K)$ of the data) and estimator $P_{n, k}$ of P_{0} is constructed using the held-out data (i.e., $1 / 2 K$ of the data); then, computing

$$
v_{n, k, s}=V\left(f_{n, k, s}, P_{n, k}\right)
$$

Finally,

$$
\psi_{n, s}:=K^{(-1)} \sum_{k=1}^{K}\left\{v_{n, k}-v_{n, k, s}\right\} .
$$

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind the cv_vim function, and the validity of the confidence intervals.

In the interest of transparency, we return most of the calculations within the vim object. This results in a list including:
s the column(s) to calculate variable importance for
SL.library the library of learners passed to SuperLearner
full_fit the fitted values of the chosen method fit to the full data (a list, for train and test data)
red_fit the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
est the estimated variable importance
naive the naive estimator of variable importance
eif the estimated efficient influence function
eif_full the estimated efficient influence function for the full regression
eif_reduced the estimated efficient influence function for the reduced regression
se the standard error for the estimated variable importance
ci the $(1-\alpha) \times 100 \%$ confidence interval for the variable importance estimate
test a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test
p_value a p-value based on the same test as test
full_mod the object returned by the estimation procedure for the full data regression (if applicable)
red_mod the object returned by the estimation procedure for the reduced data regression (if applicable)
alpha the level, for confidence interval calculation
sample_splitting_folds the folds used for hypothesis testing
cross_fitting_folds the folds used for cross-fitting
y the outcome
ipc_weights the weights
mat a tibble with the estimate, SE, CI, hypothesis testing decision, and p -value

Value

An object of classes vim and vim_rsquared. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

```
# generate the data
# generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
# apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2
# generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)
# set up a library for SuperLearner; note simple library for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")
# estimate (with a small number of folds, for illustration only)
est <- vimp_rsquared(y, x, indx = 2,
    alpha = 0.05, run_regression = TRUE,
    SL.library = learners, V = 2, cvControl = list(V = 2))
```

vimp_se Estimate variable importance standard errors

Description

Compute standard error estimates for estimates of variable importance.

Usage

```
vimp_se(
    eif_full,
    eif_reduced,
    cross_fit = TRUE,
    sample_split = TRUE,
    na.rm = FALSE
)
```


Arguments

eif_full the estimated efficient influence function (EIF) based on the full set of covariates.

```
eif_reduced the estimated EIF based on the reduced set of covariates.
cross_fit logical; was cross-fitting used to compute the EIFs? (defaults to TRUE)
sample_split logical; was sample-splitting used? (defaults to TRUE)
na.rm logical; should NA's be removed in computation? (defaults to FALSE).
```


Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The standard error for the estimated variable importance for the given group of left-out covariates.

```
vrc01 Neutralization sensitivity of HIV viruses to antibody VRC01
```


Description

A dataset containing neutralization sensitivity - measured using inhibitory concentration, the quantity of antibody necessary to neutralize a fraction of viruses in a given sample - and viral features including: amino acid sequence features (measured using HXB2 coordinates), geographic region of origin, subtype, and viral geometry. Accessed from the Los Alamos National Laboratory's (LANL's) Compile, Analyze, and tally Neutralizing Antibody Panels (CATNAP) database.

Usage

data("vrc01")

Format

A data frame with 611 rows and 837variables:
seqname Viral sequence identifiers
subtype.is. 01 _AE Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are $01 _A E, 02 _A G, 07 _B C, A 1, A 1 C, ~ A 1 D, ~ B, ~ C, ~ D, ~ O, ~ O t h e r . ~$
subtype.is.02_AG Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are $01 _A E, 02 _A G, 07 _B C, A 1, A 1 C, A 1 D, B, C, D, O, O t h e r$.
subtype.is.07_BC Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are $01 _A E, 02 _A G, 07 _B C, A 1, A 1 C, A 1 D, B, C, D, O, O t h e r$.
subtype.is.A1 Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are 01_AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
subtype.is.A1C Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are $01 _$AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
subtype.is.A1D Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are $01 _$AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
subtype.is.B Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are $01 _$AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
subtype.is.C Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are $01 _$AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
subtype.is.D Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are $01 _$AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
subtype.is. O Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are $01 _$AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
subtype.is.Other Dummy variables encoding the viral subtype as $0 / 1$. Possible subtypes are $01 _$AE, 02_AG, 07_BC, A1, A1C, A1D, B, C, D, O, Other.
geographic.region.of.origin.is.Asia Dummy variables encoding the geographic region of origin as 0/1. Regions are Asia, Europe/Americas, North Africa, and Southern Africa.
geographic.region.of.origin.is.Europe.Americas Dummy variables encoding the geographic region of origin as $0 / 1$. Regions are Asia, Europe/Americas, North Africa, and Southern Africa.
geographic.region.of.origin.is.N.Africa Dummy variables encoding the geographic region of origin as 0/1. Regions are Asia, Europe/Americas, North Africa, and Southern Africa.
geographic.region.of.origin.is.S.Africa Dummy variables encoding the geographic region of origin as 0/1. Regions are Asia, Europe/Americas, North Africa, and Southern Africa.
ic50.censored A binary indicator of whether or not the IC-50 (the concentration at which 50 Rightcensoring is a proxy for a resistant virus.
ic80.censored A binary indicator of whether or not the IC-80 (the concentration at which 80 Rightcensoring is a proxy for a resistant virus.
ic50.geometric.mean.imputed Continuous IC-50. If neutralization sensitivity for the virus was assessed in multiple studies, the geometric mean was taken.
ic80.geometric.mean.imputed Continuous IC-90. If neutralization sensitivity for the virus was assessed in multiple studies, the geometric mean was taken.
hxb2.46.E.1mer Amino acid sequence features denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site. For example, hxb2.46.E.1mer records the presence of an E at HXB2-referenced site 46.
hxb2.46.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.46.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.46.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.46.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.61.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.61.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.61.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.61.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.97.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.97.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.97.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.97.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.124.F.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.124.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.125.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.125.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.127.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.127.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.X.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.C.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.C.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.F.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB 2 -referenced site.
hxb2.144.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.156.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.156.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.156.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.156.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.156.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.156.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.179.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.179.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.179.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.179.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.179.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.179.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.179.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.179.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.179.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.181.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.181.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.181.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.181.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.F.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.190.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.197.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.197.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.197.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.198.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.198.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.198.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.198.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.241.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.241.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.241.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.241.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.276.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.276.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.276.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.276.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.278.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.278.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.278.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.278.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.278.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.279.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.279.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.279.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.279.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.279.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.280.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.280.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.280.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.280.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.281.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.281.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.281.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.281.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.281.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.281.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.281. V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.282.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.282.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.282.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.282.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.282.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.282.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.283.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.283.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.283.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.283.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.289.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.289.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.289.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.289.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.289.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.289.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB 2 -referenced site.
hxb2.289.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.289.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.290.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.290.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.290.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.290.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.290.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.290.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.290.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.290.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.290.X.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.321.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.328.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.328.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.328.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.328.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.328.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.328.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.328.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.328.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.355.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.355.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.355.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.355.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.355.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.355.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.355.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.355.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.X.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.365.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.365.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.365.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.365.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.365.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.365.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.365.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.365.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.369.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.369.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.369.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.369.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.369.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.369.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.371.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.371.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.371.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.371.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.374.F.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.374.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.374.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.386.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.386.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.386.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.386.X.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.386.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.389.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.392.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.392.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.392.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.392.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.392.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.392.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.392.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.392.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.392.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.F.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.W.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.C.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.F.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB 2 -referenced site.
hxb2.397.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.W.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.X.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.F.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.W.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.F.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.C.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB 2 -referenced site.
hxb2.410.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.415.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.415.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.415.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.415.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.415.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.415.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.415.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.415.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.415.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.415.X.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.425.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.425.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.426.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.426.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.426.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.426.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.426.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.428.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.428.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB 2 -referenced site.
hxb2.428.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.429.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.429.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.429.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.429.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.429.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.429.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.429.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.430.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.430.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.430.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.430.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.430.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.431.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.431.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.432.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.432.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.432.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.432.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.448.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.448.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.448.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.448.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.448.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.448.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.448.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.448.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.455.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.455.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.455.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.455.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.455.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.455.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.456.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.456.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.456.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.456.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.456.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.456.W.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.456.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.457.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.458.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.458.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.458.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.458.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.459.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.459.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.459.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.459.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.459.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.459.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB 2 -referenced site.
hxb2.462.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.X.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.gap.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.P.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.466.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.466.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.466.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.466.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.466.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.466.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.466.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.467.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.467.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.467.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.469.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.471.A.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.471.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.471.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.471.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.471.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.471.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.471.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.471.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.474.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.474.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.474.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.475.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.475.M.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.476.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.476.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.477.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.477.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.544.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.544.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.569.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.569.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.569.X.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.589.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.589.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.655.E.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.655.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.655.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.655.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.655.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.655.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.655.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.655.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.668.D.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.668.G.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.668.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.668.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.668.T.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.675.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.675.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.677.H.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.677.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.677.N.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.677.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.677.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.677.S.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.680.W.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.681.Y.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.683.K.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.683.Q.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.683.R.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.688.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.688.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.702.F.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.702.I.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.702.L.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.702.V.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.29.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.49.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.59.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.88.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.130.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.132.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.133.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.134.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.135.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.136.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.137.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.138.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.139.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.140.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.141.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.142.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.143.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.144.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.145.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.146.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.147.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.148.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.149.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.150.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.156.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.160.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.171.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.185.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.186.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.187.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.188.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.197.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.229.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.230.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.232.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.234.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.241.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.268.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.276.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.278.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.289.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.293.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.295.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.301.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.302.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.324.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.332.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.334.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.337.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.339.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.343.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.344.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.350.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.354.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.355.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.356.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.358.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.360.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.362.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.363.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.386.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.392.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.393.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.394.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.395.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.396.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.397.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.398.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.399.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.400.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.401.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.402.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.403.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.404.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.405.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.406.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.407.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.408.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.409.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.410.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.411.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.412.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.413.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.442.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.444.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.446.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.448.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.460.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.461.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.462.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.463.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.465.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.611.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.616.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.618.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.619.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.624.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.625.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.637.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.674.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.743.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.750.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.787.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.816.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
hxb2.824.sequon_actual.1mer Amino acid sequence feature denoting the presence (1) or absence (0) of a residue at the given HXB2-referenced site.
sequons.total.env The total number of sequons in various areas of the HIV viral envelope protein. sequons.total.gp120 The total number of sequons in various areas of the HIV viral envelope protein.
sequons.total.v5 The total number of sequons in various areas of the HIV viral envelope protein.
sequons.total.loop.d The total number of sequons in various areas of the HIV viral envelope protein.
sequons.total.loop.e The total number of sequons in various areas of the HIV viral envelope protein.
sequons.total.vrc01 The total number of sequons in various areas of the HIV viral envelope protein.
sequons.total.cd4 The total number of sequons in various areas of the HIV viral envelope protein.
sequons.total.sj.fence The total number of sequons in various areas of the HIV viral envelope protein.
sequons.total.sj.trimer The total number of sequons in various areas of the HIV viral envelope protein.
cysteines.total.env The number of cysteines in various areas of the HIV viral envelope protein.
cysteines.total.gp120 The number of cysteines in various areas of the HIV viral envelope protein. cysteines.total.v5 The number of cysteines in various areas of the HIV viral envelope protein.
cysteines.total.vrc01 The number of cysteines in various areas of the HIV viral envelope protein.
length.env The length of various areas of the HIV viral envelope protein.
length.gp120 The length of various areas of the HIV viral envelope protein.
length.v5 The length of various areas of the HIV viral envelope protein.
length.v5.outliers The length of various areas of the HIV viral envelope protein.
length.loop.e The length of various areas of the HIV viral envelope protein.
length.loop.e.outliers The length of various areas of the HIV viral envelope protein.
taylor.small.total.v5 The steric bulk of residues at critical locations.
taylor.small.total.loop.d The steric bulk of residues at critical locations.
taylor.small.total.cd4 The steric bulk of residues at critical locations.

Source

https://github.com/benkeser/vrc01/blob/master/data/fulldata.csv

Index

```
* datasets
    vrc01,68
average_vim, 3
bootstrap_se, 4
check_fitted_values,5
check_inputs,6
create_z,7
CV.SuperLearner, 16
cv_vim, }
est_predictiveness,13
est_predictiveness_cv,14
extract_sampled_split_predictions,16
format.vim, 17
get_cv_sl_folds, 17
get_full_type,18
make_folds, 18
make_kfold, 19
measure_accuracy,19
measure_anova, 20
measure_auc, 22
measure_cross_entropy, 23
measure_deviance, 24
measure_mse, 25
measure_r_squared, 27
merge_vim, 28
performance, 53
print.vim, 29
run_sl, 30
sample_subsets, 31
scale_est, 32
sp_vim, 34
```

spvim_ics, 32, 34
spvim_se, 33
SuperLearner, $11,36,40,46,49,53,58,62$, 67
vim, 37
vimp, 41
vimp_accuracy, 42
vimp_anova, 47
vimp_auc, 50
vimp_ci, 54
vimp_deviance, 55
vimp_hypothesis_test, 59
vimp_regression, 60
vimp_rsquared, 63
vimp_se, 67
vrc01, 68

