
Package ‘volesti’
July 14, 2021

Type Package

License LGPL-3

Title Volume Approximation and Sampling of Convex Polytopes

Author Vissarion Fisikopoulos <vissarion.fisikopoulos@gmail.com> [aut, cph, cre],
Apostolos Chalkis <tolis.chal@gmail.com> [cph, aut],
contributors in file inst/AUTHORS

Copyright file inst/COPYRIGHTS

Description
Provides an R interface for 'volesti' C++ package. 'volesti' computes estimations of volume
of polytopes given by (i) a set of points, (ii) linear inequalities or (iii) Minkowski sum of segments
(a.k.a. zonotopes). There are three algorithms for volume estimation as well as algorithms
for sampling, rounding and rotating polytopes. Moreover, 'volesti' provides algorithms for
estimating copulas useful in computational finance.

Version 1.1.2-2

Date 2021-07-14

Maintainer Vissarion Fisikopoulos <vissarion.fisikopoulos@gmail.com>

Depends Rcpp (>= 0.12.17)

Imports methods, stats

LinkingTo Rcpp, RcppEigen, BH

Suggests testthat

Encoding UTF-8

RoxygenNote 7.1.1

BugReports https://github.com/GeomScale/volume_approximation/issues

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-07-14 16:30:02 UTC

1

https://github.com/GeomScale/volume_approximation/issues

2 compute_indicators

R topics documented:

compute_indicators . 2
copula . 3
direct_sampling . 5
exact_vol . 6
frustum_of_simplex . 7
gen_cross . 7
gen_cube . 8
gen_prod_simplex . 9
gen_rand_hpoly . 9
gen_rand_vpoly . 10
gen_rand_zonotope . 11
gen_simplex . 12
gen_skinny_cube . 12
Hpolytope-class . 13
inner_ball . 13
read_sdpa_format_file . 14
rotate_polytope . 15
round_polytope . 16
sample_points . 17
Spectrahedron-class . 18
volume . 19
Vpolytope-class . 20
VpolytopeIntersection-class . 21
write_sdpa_format_file . 21
Zonotope-class . 22
zonotope_approximation . 23

Index 25

compute_indicators Compute an indicator for each time period that describes the state of
a market.

Description

Given a matrix that contains row-wise the assets’ returns and a sliding window win_length, this
function computes an approximation of the joint distribution (copula, e.g. see https://en.wikipedia.
org/wiki/Copula_(probability_theory)) between portfolios’ return and volatility in each time
period defined by win_len. For each copula it computes an indicator: If the indicator is large it
corresponds to a crisis period and if it is small it corresponds to a normal period. In particular, the
periods over which the indicator is greater than 1 for more than 60 consecutive sliding windows are
warnings and for more than 100 are crisis. The sliding window is shifted by one day.

https://en.wikipedia.org/wiki/Copula_(probability_theory)
https://en.wikipedia.org/wiki/Copula_(probability_theory)

copula 3

Usage

compute_indicators(
returns,
parameters = list(win_length = 60, m = 100, n = 5e+05, nwarning = 60, ncrisis = 100)

)

Arguments

returns A d-dimensional vector that describes the direction of the first family of parallel
hyperplanes.

parameters A list to set a parameterization.

• win_length The length of the sliding window. The default value is 60.
• m The number of slices for the copula. The default value is 100.
• n The number of points to sample. The default value is 5 · 105.
• nwarning The number of consecutive indicators larger than 1 required to

declare a warning period. The default value is 60.
• ncrisis The number of consecutive indicators larger than 1 required to de-

clare a crisis period. The default value is 100.
• seed A fixed seed for the number generator.

Value

A list that contains the indicators and the corresponding vector that label each time period with
respect to the market state: a) normal, b) crisis, c) warning.

References

L. Cales, A. Chalkis, I.Z. Emiris, V. Fisikopoulos, “Practical volume computation of structured
convex bodies, and an application to modeling portfolio dependencies and financial crises,” Proc.
of Symposium on Computational Geometry, Budapest, Hungary, 2018.

Examples

simple example on random asset returns
asset_returns = replicate(10, rnorm(14))
market_states_and_indicators = compute_indicators(asset_returns,

parameters = list("win_length" = 10, "m" = 10, "n" = 10000, "nwarning" = 2, "ncrisis" = 3))

copula Construct a copula using uniform sampling from the unit simplex

4 copula

Description

Given two families of parallel hyperplanes or a family of parallel hyperplanes and a family of con-
centric ellispoids centered at the origin intersecting the canonical simplex, this function uniformly
samples from the canonical simplex and construct an approximation of the bivariate probabil-
ity distribution, called copula (see https://en.wikipedia.org/wiki/Copula_(probability_
theory)). At least two families of hyperplanes or one family of hyperplanes and one family of
ellipsoids have to be given as input.

Usage

copula(r1, r2 = NULL, sigma = NULL, m = NULL, n = NULL, seed = NULL)

Arguments

r1 The d-dimensional normal vector of the first family of parallel hyperplanes.
r2 Optional. The d-dimensional normal vector of the second family of parallel

hyperplanes.
sigma Optional. The d × d symmetric positive semidefine matrix that describes the

family of concentric ellipsoids centered at the origin.
m The number of the slices for the copula. The default value is 100.
n The number of points to sample. The default value is 5 · 105.
seed Optional. A fixed seed for the number generator.

Value

A m×m numerical matrix that corresponds to a copula.

References

L. Cales, A. Chalkis, I.Z. Emiris, V. Fisikopoulos, “Practical volume computation of structured
convex bodies, and an application to modeling portfolio dependencies and financial crises,” Proc.
of Symposium on Computational Geometry, Budapest, Hungary, 2018.

Examples

compute a copula for two random families of parallel hyperplanes
h1 = runif(n = 10, min = 1, max = 1000)
h1 = h1 / 1000
h2=runif(n = 10, min = 1, max = 1000)
h2 = h2 / 1000
cop = copula(r1 = h1, r2 = h2, m = 10, n = 100000)

compute a copula for a family of parallel hyperplanes and a family of conentric ellipsoids
h = runif(n = 10, min = 1, max = 1000)
h = h / 1000
E = replicate(10, rnorm(20))
E = cov(E)
cop = copula(r1 = h, sigma = E, m = 10, n = 100000)

https://en.wikipedia.org/wiki/Copula_(probability_theory)
https://en.wikipedia.org/wiki/Copula_(probability_theory)

direct_sampling 5

direct_sampling Sample perfect uniformly distributed points from well known convex
bodies: (a) the unit simplex, (b) the canonical simplex, (c) the bound-
ary of a hypersphere or (d) the interior of a hypersphere.

Description

The d-dimensional unit simplex is the set of points ~x ∈ Rd, s.t.:
∑

i xi ≤ 1, xi ≥ 0. The d-
dimensional canonical simplex is the set of points ~x ∈ Rd, s.t.:

∑
i xi = 1, xi ≥ 0.

Usage

direct_sampling(body, n)

Arguments

body A list to request exact uniform sampling from special well known convex bodies
through the following input parameters:

• type A string that declares the type of the body for the exact sampling: a)
'unit_simplex' for the unit simplex, b) 'canonical_simplex' for the
canonical simplex, c) 'hypersphere' for the boundary of a hypersphere
centered at the origin, d) 'ball' for the interior of a hypersphere centered
at the origin.

• dimension An integer that declares the dimension when exact sampling is
enabled for a simplex or a hypersphere.

• radius The radius of the d-dimensional hypersphere. The default value is
1.

• seed A fixed seed for the number generator.

n The number of points that the function is going to sample.

Value

A d× n matrix that contains, column-wise, the sampled points from the convex polytope P.

References

R.Y. Rubinstein and B. Melamed, “Modern simulation and modeling” Wiley Series in Probability
and Statistics, 1998.

A Smith, Noah and W Tromble, Roy, “Sampling Uniformly from the Unit Simplex,” Center for
Language and Speech Processing Johns Hopkins University, 2004.

Examples

100 uniform points from the 2-d unit ball
points = direct_sampling(n = 100, body = list("type" = "ball", "dimension" = 2))

6 exact_vol

exact_vol Compute the exact volume of (a) a zonotope (b) an arbitrary simplex
in V-representation or (c) if the volume is known and declared by the
input object.

Description

Given a zonotope (as an object of class Zonotope), this function computes the sum of the absolute
values of the determinants of all the d×d submatrices of the m×d matrix G that contains row-wise
the m d-dimensional segments that define the zonotope. For an arbitrary simplex that is given in V-
representation this function computes the absolute value of the determinant formed by the simplex’s
points assuming it is shifted to the origin.

Usage

exact_vol(P)

Arguments

P A polytope

Value

The exact volume of the input polytope, for zonotopes, simplices in V-representation and polytopes
with known exact volume

References

E. Gover and N. Krikorian, “Determinants and the Volumes of Parallelotopes and Zonotopes,” Lin-
ear Algebra and its Applications, 433(1), 28 - 40, 2010.

Examples

compute the exact volume of a 5-dimensional zonotope defined by the Minkowski sum of 10 segments
Z = gen_rand_zonotope(2, 5)
vol = exact_vol(Z)

compute the exact volume of a 2-d arbitrary simplex
V = matrix(c(2,3,-1,7,0,0),ncol = 2, nrow = 3, byrow = TRUE)
P = Vpolytope(V = V)
vol = exact_vol(P)

compute the exact volume the 10-dimensional cross polytope
P = gen_cross(10,'V')
vol = exact_vol(P)

frustum_of_simplex 7

frustum_of_simplex Compute the percentage of the volume of the simplex that is contained
in the intersection of a half-space and the simplex.

Description

A half-space H is given as a pair of a vector a ∈ Rd and a scalar z0 ∈ R s.t.: aTx ≤ z0. This
function calls the Ali’s version of the Varsi formula to compute a frustum of the simplex.

Usage

frustum_of_simplex(a, z0)

Arguments

a A d-dimensional vector that defines the direction of the hyperplane.

z0 The scalar that defines the half-space.

Value

The percentage of the volume of the simplex that is contained in the intersection of a given half-
space and the simplex.

References

Varsi, Giulio, “The multidimensional content of the frustum of the simplex,” Pacific J. Math. 46,
no. 1, 303–314, 1973.

Ali, Mir M., “Content of the frustum of a simplex,” Pacific J. Math. 48, no. 2, 313–322, 1973.

Examples

compute the frustum of H: -x1+x2<=0
a=c(-1,1)
z0=0
frustum = frustum_of_simplex(a, z0)

gen_cross Generator function for cross polytopes

Description

This function generates the d-dimensional cross polytope in H- or V-representation.

Usage

gen_cross(dimension, representation = "H")

8 gen_cube

Arguments

dimension The dimension of the cross polytope.

representation A string to declare the representation. It has to be 'H' for H-representation or
'V' for V-representation. Default valus is ’H’.

Value

A polytope class representing a cross polytope in H- or V-representation.

Examples

generate a 10-dimensional cross polytope in H-representation
P = gen_cross(5, 'H')

generate a 15-dimension cross polytope in V-representation
P = gen_cross(15, 'V')

gen_cube Generator function for hypercubes

Description

This function generates the d-dimensional unit hypercube [−1, 1]d in H- or V-representation.

Usage

gen_cube(dimension, representation = "H")

Arguments

dimension The dimension of the hypercube

representation A string to declare the representation. It has to be 'H' for H-representation or
'V' for V-representation. Default valus is ’H’.

Value

A polytope class representing the unit d-dimensional hypercube in H- or V-representation.

Examples

generate a 10-dimensional hypercube in H-representation
P = gen_cube(10, 'H')

generate a 15-dimension hypercube in V-representation
P = gen_cube(5, 'V')

gen_prod_simplex 9

gen_prod_simplex Generator function for product of simplices

Description

This function generates a 2d-dimensional polytope that is defined as the product of two d-dimensional
unit simplices in H-representation.

Usage

gen_prod_simplex(dimension)

Arguments

dimension The dimension of the simplices.

Value

A polytope class representing the product of the two d-dimensional unit simplices in H-representation.

Examples

generate a product of two 5-dimensional simplices.
P = gen_prod_simplex(5)

gen_rand_hpoly Generator function for random H-polytopes

Description

This function generates a d-dimensional polytope in H-representation with m facets. We pick m
random hyperplanes tangent on the d-dimensional unit hypersphere as facets.

Usage

gen_rand_hpoly(dimension, nfacets, generator = list(constants = "sphere"))

Arguments

dimension The dimension of the convex polytope.
nfacets The number of the facets.
generator A list that could contain two elements.

• constants To declare how to set the constants bi for each facets: (i) ’sphere’,
each hyperplane is tangent to the hypersphere of radius 10, (ii) ’uniform’
for each bi the generator picks a uniform number from (0, 1). The defalut
value is ’sphere’.

• seed Optional. A fixed seed for the number generator.

10 gen_rand_vpoly

Value

A polytope class representing a H-polytope.

Examples

generate a 10-dimensional polytope with 50 facets
P = gen_rand_hpoly(10, 50)

gen_rand_vpoly Generator function for random V-polytopes

Description

This function generates a d-dimensional polytope in V-representation with m vertices. We pick m
random points from the boundary of the d-dimensional unit hypersphere as vertices.

Usage

gen_rand_vpoly(dimension, nvertices, generator = list(body = "sphere"))

Arguments

dimension The dimension of the convex polytope.

nvertices The number of the vertices.

generator A list that could contain two elements.

• body the body that the generator samples uniformly the vertices from: (i)
’cube’ or (ii) ’sphere’, the default value is ’sphere’.

• seed Optional. A fixed seed for the number generator.

Value

A polytope class representing a V-polytope.

Examples

generate a 10-dimensional polytope defined as the convex hull of 25 random vertices
P = gen_rand_vpoly(10, 25)

gen_rand_zonotope 11

gen_rand_zonotope Generator function for zonotopes

Description

This function generates a random d-dimensional zonotope defined by the Minkowski sum of m
d-dimensional segments. The function considers m random directions in Rd. There are three
strategies to pick the length of each segment: a) it is uniformly sampled from [0, 100], b) it is
random from N (50, (50/3)2) truncated to [0, 100], c) it is random from Exp(1/30) truncated to
[0, 100].

Usage

gen_rand_zonotope(
dimension,
nsegments,
generator = list(distribution = "uniform")

)

Arguments

dimension The dimension of the zonotope.

nsegments The number of segments that generate the zonotope.

generator A list that could contain two elements.

• distribution the distribution to pick the length of each segment from [0, 100]:
(i) ’uniform’, (ii) ’gaussian’ or (iii) ’exponential’, the default value is ’uni-
form.

• seed Optional. A fixed seed for the number generator.

Value

A polytope class representing a zonotope.

Examples

generate a 10-dimensional zonotope defined by the Minkowski sum of 20 segments
P = gen_rand_zonotope(10, 20)

12 gen_skinny_cube

gen_simplex Generator function for simplices

Description

This function generates the d-dimensional unit simplex in H- or V-representation.

Usage

gen_simplex(dimension, representation = "H")

Arguments

dimension The dimension of the unit simplex.

representation A string to declare the representation. It has to be 'H' for H-representation or
'V' for V-representation. Default valus is ’H’.

Value

A polytope class representing the d-dimensional unit simplex in H- or V-representation.

Examples

generate a 10-dimensional simplex in H-representation
PolyList = gen_simplex(10, 'H')

generate a 20-dimensional simplex in V-representation
P = gen_simplex(20, 'V')

gen_skinny_cube Generator function for skinny hypercubes

Description

This function generates a d-dimensional skinny hypercube [−1, 1]d−1 × [−100, 100].

Usage

gen_skinny_cube(dimension)

Arguments

dimension The dimension of the skinny hypercube.

Value

A polytope class representing the d-dimensional skinny hypercube in H-representation.

Hpolytope-class 13

Examples

generate a 10-dimensional skinny hypercube.
P = gen_skinny_cube(10)

Hpolytope-class An R class to represent an H-polytope

Description

An H-polytope is a convex polytope defined by a set of linear inequalities or equivalently a d-
dimensional H-polytope with m facets is defined by a m× d matrix A and a m-dimensional vector
b, s.t.: Ax ≤ b.

Details

A An m× d numerical matrix.

b An m-dimensional vector b.

volume The volume of the polytope if it is known, NaN otherwise by default.

type A character with default value ’Hpolytope’, to declare the representation of the polytope.

Examples

A = matrix(c(-1,0,0,-1,1,1), ncol=2, nrow=3, byrow=TRUE)
b = c(0,0,1)
P = Hpolytope(A = A, b = b)

inner_ball Compute an inscribed ball of a convex polytope

Description

For a H-polytope described by a m×d matrix A and a m-dimensional vector b, s.t.: P = {x |Ax ≤
b}, this function computes the largest inscribed ball (Chebychev ball) by solving the corresponding
linear program. For both zonotopes and V-polytopes the function computes the minimum r s.t.:
rei ∈ P for all i = 1, . . . , d. Then the ball centered at the origin with radius r/

√
d is an inscribed

ball.

Usage

inner_ball(P)

Arguments

P A convex polytope. It is an object from class (a) Hpolytope or (b) Vpolytope or
(c) Zonotope or (d) VpolytopeIntersection.

14 read_sdpa_format_file

Value

A (d+ 1)-dimensional vector that describes the inscribed ball. The first d coordinates corresponds
to the center of the ball and the last one to the radius.

Examples

compute the Chebychev ball of the 2d unit simplex
P = gen_simplex(2,'H')
ball_vec = inner_ball(P)

compute an inscribed ball of the 3-dimensional unit cube in V-representation
P = gen_cube(3, 'V')
ball_vec = inner_ball(P)

read_sdpa_format_file Read a SDPA format file

Description

Read a SDPA format file and return a spectrahedron (an object of class Spectrahedron) which is
defined by the linear matrix inequality in the input file, and the objective function.

Usage

read_sdpa_format_file(path)

Arguments

path Name of the input file

Value

A list with two named items: an item "matrices" which is an object of class Spectrahedron and an
vector "objFunction"

Examples

path = system.file('extdata', package = 'volesti')
l = read_sdpa_format_file(paste0(path,'/sdpa_n2m3.txt'))
Spectrahedron = l$spectrahedron
objFunction = l$objFunction

rotate_polytope 15

rotate_polytope Apply a random rotation to a convex polytope (H-polytope, V-polytope,
zonotope or intersection of two V-polytopes)

Description

Given a convex H- or V- polytope or a zonotope or an intersection of two V-polytopes as input, this
function applies (a) a random rotation or (b) a given rotation by an input matrix T .

Usage

rotate_polytope(P, rotation = list())

Arguments

P A convex polytope. It is an object from class (a) Hpolytope, (b) Vpolytope, (c)
Zonotope, (d) intersection of two V-polytopes.

rotation A list that contains (a) the rotation matrix T and (b) the ’seed’ to set a spesific
seed for the number generator.

Details

Let P be the given polytope and Q the rotated one and T be the matrix of the linear transformation.

• If P is in H-representation and A is the matrix that contains the normal vectors of the facets
of Q then AT contains the normal vactors of the facets of P .

• If P is in V-representation and V is the matrix that contains column-wise the vertices of Q
then TTV contains the vertices of P .

• If P is a zonotope and G is the matrix that contains column-wise the generators of Q then
TTG contains the generators of P .

• If M is a matrix that contains column-wise points in Q then TTM contains points in P .

Value

A list that contains the rotated polytope and the matrix T of the linear transformation.

Examples

rotate a H-polytope (2d unit simplex)
P = gen_simplex(2, 'H')
poly_matrix_list = rotate_polytope(P)

rotate a V-polytope (3d cube)
P = gen_cube(3, 'V')
poly_matrix_list = rotate_polytope(P)

rotate a 5-dimensional zonotope defined by the Minkowski sum of 15 segments
Z = gen_rand_zonotope(3, 6)
poly_matrix_list = rotate_polytope(Z)

16 round_polytope

round_polytope Apply rounding to a convex polytope (H-polytope, V-polytope or a
zonotope)

Description

Given a convex H or V polytope or a zonotope as input this function brings the polytope in rounded
position based on minimum volume enclosing ellipsoid of a pointset.

Usage

round_polytope(P, settings = list())

Arguments

P A convex polytope. It is an object from class (a) Hpolytope or (b) Vpolytope or
(c) Zonotope.

settings Optional. A list to parameterize the method by the random walk.

• random_walk The random walk to sample uniformly distributed points: (a)
'CDHR' for Coordinate Directions Hit-and-Run, (b) 'RDHR' for Random
Directions Hit-and-Run or (c) 'BiW' for Billiard walk. The default random
walk is 'CDHR' for H-polytopes and 'BiW' for the rest of the representa-
tions.

• walk_length The walk length of the random walk. The default value is
10 + 10d for 'CDHR' or 'RDHR' and 2 for 'BiW'.

• seed Optional. A fixed seed for the number generator.

Value

A list with 4 elements: (a) a polytope of the same class as the input polytope class and (b) the
element "T" which is the matrix of the inverse linear transformation that is applied on the input
polytope, (c) the element "shift" which is the opposite vector of that which has shifted the input
polytope, (d) the element "round_value" which is the determinant of the square matrix of the linear
transformation that is applied on the input polytope.

References

I.Z.Emiris and V. Fisikopoulos, “Practical polytope volume approximation,” ACM Trans. Math.
Soft., 2018.,

Michael J. Todd and E. Alper Yildirim, “On Khachiyan’s Algorithm for the Computation of Mini-
mum Volume Enclosing Ellipsoids,” Discrete Applied Mathematics, 2007.

sample_points 17

Examples

rotate a H-polytope (2d unit simplex)
A = matrix(c(-1,0,0,-1,1,1), ncol=2, nrow=3, byrow=TRUE)
b = c(0,0,1)
P = Hpolytope(A = A, b = b)
listHpoly = round_polytope(P)

rotate a V-polytope (3d unit cube) using Random Directions HnR with step equal to 50
P = gen_cube(3, 'V')
ListVpoly = round_polytope(P)

round a 2-dimensional zonotope defined by 6 generators using ball walk
Z = gen_rand_zonotope(2,6)
ListZono = round_polytope(Z)

sample_points Sample uniformly or normally distributed points from a convex Poly-
tope (H-polytope, V-polytope, zonotope or intersection of two V-
polytopes).

Description

Sample n points with uniform or multidimensional spherical gaussian -with a mode at any point- as
the target distribution.

Usage

sample_points(P, n, random_walk = NULL, distribution = NULL)

Arguments

P A convex polytope. It is an object from class (a) Hpolytope or (b) Vpolytope or
(c) Zonotope or (d) VpolytopeIntersection.

n The number of points that the function is going to sample from the convex poly-
tope.

random_walk Optional. A list that declares the random walk and some related parameters as
follows:

• walk A string to declare the random walk: i) 'CDHR' for Coordinate Di-
rections Hit-and-Run, ii) 'RDHR' for Random Directions Hit-and-Run, iii)
'BaW' for Ball Walk, iv) 'BiW' for Billiard walk, v) 'BCDHR' boundary
sampling by keeping the extreme points of CDHR or vi) 'BRDHR' bound-
ary sampling by keeping the extreme points of RDHR. The default walk is
'BiW' for the uniform distribution or 'CDHR' for the Gaussian distribution.

• walk_length The number of the steps per generated point for the random
walk. The default value is 1.

• nburns The number of points to burn before start sampling.

18 Spectrahedron-class

• starting_point A d-dimensional numerical vector that declares a starting
point in the interior of the polytope for the random walk. The default choice
is the center of the ball as that one computed by the function inner_ball().

• BaW_rad The radius for the ball walk.
• L The maximum length of the billiard trajectory.
• seed A fixed seed for the number generator.

distribution Optional. A list that declares the target density and some related parameters as
follows:

• density A string: (a) 'uniform' for the uniform distribution or b) 'gaussian'
for the multidimensional spherical distribution. The default target distribu-
tion is uniform.

• variance The variance of the multidimensional spherical gaussian. The
default value is 1.

• mode A d-dimensional numerical vector that declares the mode of the Gaus-
sian distribution. The default choice is the center of the as that one com-
puted by the function inner_ball().

Value

A d× n matrix that contains, column-wise, the sampled points from the convex polytope P.

Examples

uniform distribution from the 3d unit cube in H-representation using ball walk
P = gen_cube(3, 'H')
points = sample_points(P, n = 100, random_walk = list("walk" = "BaW", "walk_length" = 5))

gaussian distribution from the 2d unit simplex in H-representation with variance = 2
A = matrix(c(-1,0,0,-1,1,1), ncol=2, nrow=3, byrow=TRUE)
b = c(0,0,1)
P = Hpolytope(A = A, b = b)
points = sample_points(P, n = 100, distribution = list("density" = "gaussian", "variance" = 2))

uniform points from the boundary of a 2-dimensional random H-polytope
P = gen_rand_hpoly(2,20)
points = sample_points(P, n = 100, random_walk = list("walk" = "BRDHR"))

Spectrahedron-class An R class to represent a Spectrahedron

Description

A spectrahedron is a convex body defined by a linear matrix inequality of the form A0 + x1A1 +
... + xnAn � 0. The matrices Ai are symmetric m ×m real matrices and � 0 denoted negative
semidefiniteness.

volume 19

Details

matrices A List that contains the matrices A0, A1, ..., An.

Examples

A0 = matrix(c(-1,0,0,0,-2,1,0,1,-2), nrow=3, ncol=3, byrow = TRUE)
A1 = matrix(c(-1,0,0,0,0,1,0,1,0), nrow=3, ncol=3, byrow = TRUE)
A2 = matrix(c(0,0,-1,0,0,0,-1,0,0), nrow=3, ncol=3, byrow = TRUE)
lmi = list(A0, A1, A2)
S = Spectrahedron(matrices = lmi);

volume The main function for volume approximation of a convex Polytope (H-
polytope, V-polytope, zonotope or intersection of two V-polytopes)

Description

For the volume approximation can be used three algorithms. Either CoolingBodies (CB) or Se-
quenceOfBalls (SOB) or CoolingGaussian (CG). An H-polytope with m facets is described by a
m × d matrix A and a m-dimensional vector b, s.t.: P = {x | Ax ≤ b}. A V-polytope is defined
as the convex hull of m d-dimensional points which correspond to the vertices of P. A zonotope is
desrcibed by the Minkowski sum of m d-dimensional segments.

Usage

volume(P, settings = NULL, rounding = FALSE)

Arguments

P A convex polytope. It is an object from class a) Hpolytope or b) Vpolytope or
c) Zonotope or d) VpolytopeIntersection.

settings Optional. A list that declares which algorithm, random walk and values of pa-
rameters to use, as follows:

• algorithm A string to set the algorithm to use: a) 'CB' for CB algorithm,
b) 'SoB' for SOB algorithm or b) 'CG' for CG algorithm. The defalut
algorithm is 'CB'.

• error A numeric value to set the upper bound for the approximation error.
The default value is 1 for SOB algorithm and 0.1 otherwise.

• random_walk A string that declares the random walk method: a) 'CDHR'
for Coordinate Directions Hit-and-Run, b) 'RDHR' for Random Directions
Hit-and-Run, c) 'BaW' for Ball Walk, or 'BiW' for Billiard walk. For CB
and SOB algorithms the default walk is 'CDHR' for H-polytopes and 'BiW'
for the other representations. For CG algorithm the default walk is 'CDHR'
for H-polytopes and 'RDHR' for the other representations.

• walk_length An integer to set the number of the steps for the random walk.
The default value is b10 + d/10c for 'SOB' and 1 otherwise.

20 Vpolytope-class

• win_len The length of the sliding window for CB or CG algorithm. The
default value is 400 + 3d2 for CB or 500 + 4d2 for CG.

• hpoly A boolean parameter to use H-polytopes in MMC of CB algorithm
when the input polytope is a zonotope. The default value is TRUE when the
order of the zonotope is < 5, otherwise it is FALSE.

• seed A fixed seed for the number generator.
rounding A boolean parameter for rounding. The default value is FALSE.

Value

The approximation of the volume of a convex polytope.

References

I.Z.Emiris and V. Fisikopoulos, “Practical polytope volume approximation,” ACM Trans. Math.
Soft., 2018.,

A. Chalkis and I.Z.Emiris and V. Fisikopoulos, “Practical Volume Estimation by a New Annealing
Schedule for Cooling Convex Bodies,” CoRR, abs/1905.05494, 2019.,

B. Cousins and S. Vempala, “A practical volume algorithm,” Springer-Verlag Berlin Heidelberg and
The Mathematical Programming Society, 2015.

Examples

calling SOB algorithm for a H-polytope (3d unit simplex)
HP = gen_cube(3,'H')
vol = volume(HP)

calling CG algorithm for a V-polytope (2d simplex)
VP = gen_simplex(2,'V')
vol = volume(VP, settings = list("algorithm" = "CG"))

calling CG algorithm for a 2-dimensional zonotope defined as the Minkowski sum of 4 segments
Z = gen_rand_zonotope(2, 4)
vol = volume(Z, settings = list("random_walk" = "RDHR", "walk_length" = 2))

Vpolytope-class An R class to represent a V-polytope

Description

A V-polytope is a convex polytope defined by the set of its vertices.

Details

V An m× d numerical matrix that contains the vertices row-wise.
volume The volume of the polytope if it is known, NaN otherwise by default.
type A character with default value ’Vpolytope’, to declare the representation of the polytope.

VpolytopeIntersection-class 21

Examples

V = matrix(c(2,3,-1,7,0,0),ncol = 2, nrow = 3, byrow = TRUE)
P = Vpolytope(V = V)

VpolytopeIntersection-class

An R class to represent the intersection of two V-polytopes

Description

An intersection of two V-polytopes is defined by the intersection of the two coresponding convex
hulls.

Details

V1 An m× d numerical matrix that contains the vertices of the first V-polytope (row-wise).

V2 An q × d numerical matrix that contains the vertices of the second V-polytope (row-wise).

volume The volume of the polytope if it is known, NaN otherwise by default.

type A character with default value ’VpolytopeIntersection’, to declare the representation of the
polytope.

Examples

P1 = gen_simplex(2,'V')
P2 = gen_cross(2,'V')
P = VpolytopeIntersection(V1 = P1@V, V2 = P2@V)

write_sdpa_format_file

Write a SDPA format file

Description

Outputs a spectrahedron (the matrices defining a linear matrix inequality) and a vector (the objective
function) to a SDPA format file.

Usage

write_sdpa_format_file(spectrahedron, objective_function, output_file)

22 Zonotope-class

Arguments

spectrahedron A spectrahedron in n dimensions; must be an object of class Spectrahedron

objective_function

A numerical vector of length n

output_file Name of the output file

Examples

Not run:
A0 = matrix(c(-1,0,0,0,-2,1,0,1,-2), nrow=3, ncol=3, byrow = TRUE)
A1 = matrix(c(-1,0,0,0,0,1,0,1,0), nrow=3, ncol=3, byrow = TRUE)
A2 = matrix(c(0,0,-1,0,0,0,-1,0,0), nrow=3, ncol=3, byrow = TRUE)
lmi = list(A0, A1, A2)
S = Spectrahedron(matrices = lmi)
objFunction = c(1,1)
write_sdpa_format_file(S, objFunction, "output.txt")

End(Not run)

Zonotope-class An R class to represent a Zonotope

Description

A zonotope is a convex polytope defined by the Minkowski sum of m d-dimensional segments.

Details

G An m× d numerical matrix that contains the segments (or generators) row-wise

volume The volume of the polytope if it is known, NaN otherwise by default.

type A character with default value ’Zonotope’, to declare the representation of the polytope.

Examples

G = matrix(c(2,3,-1,7,0,0),ncol = 2, nrow = 3, byrow = TRUE)
P = Zonotope(G = G)

zonotope_approximation 23

zonotope_approximation

A function to over-approximate a zonotope with PCA method and to
evaluate the approximation by computing a ratio of fitness.

Description

For the evaluation of the PCA method the exact volume of the approximation body is computed and
the volume of the input zonotope is computed by CoolingBodies algorithm. The ratio of fitness is
R = vol(P)/vol(Pred), where Pred is the approximate polytope.

Usage

zonotope_approximation(
Z,
fit_ratio = FALSE,
settings = list(error = 0.1, walk_length = 1, win_len = 250, hpoly = FALSE)

)

Arguments

Z A zonotope.

fit_ratio Optional. A boolean parameter to request the computation of the ratio of fitness.

settings Optional. A list that declares the values of the parameters of CB algorithm as
follows:

• error A numeric value to set the upper bound for the approximation error.
The default value is 0.1.

• walk_length An integer to set the number of the steps for the random walk.
The default value is 1.

• win_len The length of the sliding window for CB algorithm. The default
value is 250.

• hpoly A boolean parameter to use H-polytopes in MMC of CB algorithm.
The default value is TRUE when the order of the zonotope is < 5, otherwise
it is FALSE.

• seed Optional. A fixed seed for the number generator.

Value

A list that contains the approximation body in H-representation and the ratio of fitness

References

A.K. Kopetzki and B. Schurmann and M. Althoff, “Methods for Order Reduction of Zonotopes,”
IEEE Conference on Decision and Control, 2017.

24 zonotope_approximation

Examples

over-approximate a 2-dimensional zonotope with 10 generators and compute the ratio of fitness
Z = gen_rand_zonotope(2, 8)
retList = zonotope_approximation(Z = Z)

Index

compute_indicators, 2
copula, 3

direct_sampling, 5

exact_vol, 6

frustum_of_simplex, 7

gen_cross, 7
gen_cube, 8
gen_prod_simplex, 9
gen_rand_hpoly, 9
gen_rand_vpoly, 10
gen_rand_zonotope, 11
gen_simplex, 12
gen_skinny_cube, 12

Hpolytope (Hpolytope-class), 13
Hpolytope-class, 13

inner_ball, 13

read_sdpa_format_file, 14
rotate_polytope, 15
round_polytope, 16

sample_points, 17
Spectrahedron (Spectrahedron-class), 18
Spectrahedron-class, 18

volume, 19
Vpolytope (Vpolytope-class), 20
Vpolytope-class, 20
VpolytopeIntersection

(VpolytopeIntersection-class),
21

VpolytopeIntersection-class, 21

write_sdpa_format_file, 21

Zonotope (Zonotope-class), 22
Zonotope-class, 22
zonotope_approximation, 23

25

	compute_indicators
	copula
	direct_sampling
	exact_vol
	frustum_of_simplex
	gen_cross
	gen_cube
	gen_prod_simplex
	gen_rand_hpoly
	gen_rand_vpoly
	gen_rand_zonotope
	gen_simplex
	gen_skinny_cube
	Hpolytope-class
	inner_ball
	read_sdpa_format_file
	rotate_polytope
	round_polytope
	sample_points
	Spectrahedron-class
	volume
	Vpolytope-class
	VpolytopeIntersection-class
	write_sdpa_format_file
	Zonotope-class
	zonotope_approximation
	Index

