Package 'wINEQ'

February 11, 2022

Title Inequality Measures for Weighted Data
Version 1.0.1
Description Computes inequality measures of a given variable taking into account weights. Bootstrap method provides distribution of inequality measures and several additional statistics.
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2
Imports dplyr, sampling, stats
NeedsCompilation no
Author Katarzyna Machowska [aut], Jarosław Napora [aut], Sebastian Wójcik [aut, cre] (https://orcid.org/0000-0003-2425-9626)
Maintainer Sebastian Wójcik <s. wojcik@stat.gov.pl=""></s.>
Repository CRAN
Date/Publication 2022-02-11 19:00:02 UTC
Date/1 tibilication 2022-02-11 19.00.02 01C
R topics documented:
AF
Atkinson
CoefVar
Entropy
Gini
Hoover
ineq.weighted
ineq.weighted.boot
Jenkins
Kolm
Leti
Palma 10

2 Atkinson

```
      Theil_L
      12

      Theil_T
      13
```

Index 15

AF

Allison and Foster

Description

Computes Allison and Foster inequality measure of a given variable taking into account weights.

Usage

```
AF(X, W = rep(1, length(X)))
```

Arguments

X is a data vector

W is a vector of weights

Value

The value of Allison and Foster coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
AF(X,W)
```

Atkinson

Atkinson

Description

Computes Atkinson inequality measure of a given variable taking into account weights.

Usage

```
Atkinson(X, W = rep(1, length(X)), e = 1)
```

CoefVar 3

Arguments

X is a data vector

W is a vector of weights

e is a parameter for calculating the value of the Atkinson coefficient

Value

The value of Atkinson coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
Atkinson(X,W)
```

CoefVar CoefVar

Description

Computes CoefVar inequality measure of a given variable taking into account weights.

Usage

```
CoefVar(X, W = rep(1, length(X)), square = FALSE, na.rm = TRUE)
```

Arguments

X is a data vector

W is a vector of weights

square logical, argument of the function CoefVar, for details see below

na.rm logical, should missing values (NAs) be removed prior to computations? If set

to FALSE the computations yield NA

Value

The value of CoefVar coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9

4 Entropy

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
CoefVar(X,W)
```

Entropy

Entropy

Description

Computes Entropy inequality measure of a given variable taking into account weights.

Usage

```
Entropy(X, W = rep(1, length(X)), parameter = 0.5, na.rm = TRUE)
```

Arguments

X is a data vector

W is a vector of weights

parameter is a entropy parameter

na.rm logical, should missing values (NAs) be removed prior to computations? If set

to FALSE the computations yield NA

Value

The value of Entropy coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
Entropy(X,W)
```

Gini 5

Gini Gini

Description

Computes Gini inequality measure of a given variable taking into account weights.

Usage

```
Gini(X, W = rep(1, length(X)))
```

Arguments

X is a data vector

W is a vector of weights

Value

The value of Gini coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
Gini(X,W)
```

Hoover Hoover

Description

Computes Hoover inequality measure of a given variable taking into account weights.

Usage

```
Hoover(X, W = rep(1, length(X)))
```

Arguments

X is a data vector

W is a vector of weights

6 ineq.weighted

Value

The value of Hoover coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
Hoover(X,W)
```

ineq.weighted

ineq.weighted

Description

Calculates weighted mean and sum of X, and a set of inequality measures.

Usage

```
ineq.weighted(
   X,
   W = rep(1, length(X)),
   Atkinson.e = 1,
   Jenkins.alfa = 0.8,
   Entropy.e = 0.5,
   Kolm.p = 1
)
```

Arguments

X is a data vector
W is a vector of weights

Atkinson.e is a parameter for calculating the value of the Atkinson coefficient

Jenkins.alfa is the Jenkins coefficient parameter

Entropy.e is a entropy parameter Kolm.p is a Kolm parameter

Value

The data frame with weighted mean and sum of X, and all inequality measures.

ineq.weighted.boot 7

Examples

```
X=c(1,2,3,4,5,6,7,8,9)

W=c(2,5,6,7,3,4,5,2,5)

ineq.weighted(X,W)
```

ineq.weighted.boot

ineq.weighted.boot

Description

For weighted mean and weighted total of X as well as for each inequality measure, returns outputs from ineq.weighted and bootstrap outcomes: expected value, bias (in %), standard deviation, coefficient of variation, lower and upper bound of confidence interval.

Usage

```
ineq.weighted.boot(
   X,
   W = rep(1, length(X)),
   B = 10,
   Atkinson.e = 1,
   Jenkins.alfa = 0.8,
   Entropy.e = 0.5,
   Kolm.p = 1,
   keepSamples = FALSE,
   keepMeasures = FALSE,
   conf.alpha = 0.05,
   calib.boot = FALSE,
   Xs = rep(1, length(X)),
   total = sum(W),
   calib.method = "truncated")
```

Arguments

Χ is a data vector W is a vector of weights В numer of bootstrap samples. is a parameter for calculating the value of the Atkinson coefficient Atkinson.e Jenkins.alfa is the Jenkins coefficient parameter Entropy.e is a entropy parameter Kolm.p is a Kolm parameter keepSamples if TRUE, it returns bootstrap samples of data (Xb) and weights (Wb) 8 Jenkins

keepMeasures if TRUE, it returns values of all inequality measures for each bootstrap sample

conf.alpha significance level for confidence interval

calib.boot if FALSE, then naive bootstrap is performed, calibrated bootstrap elsewhere

Xs matrix of calibration variables total vector of population totals

calib.method weights' calibration method for function calib (sampling)

Value

By default this functions returns a data frame from ineq.weighted for weighted mean and weighted total of X as well as for each inequality measure extended with bootstrap results: expected value, bias (in %), standard deviation, coefficient of variation, lower and upper bound of confidence interval. If keepSamples=TRUE or keepMeasures==TRUE then the output becomes a list. If keepSamples=TRUE, the functions returns Xb and Wb, which are the samples of vector data and the samples of weights, respectively. If keepMeasures==TRUE, the functions returns Mb, which is a set of inequality measures from bootstrapping.

Examples

```
X=c(1,2,3,4,5,6,7,8,9)

W=c(2,5,6,7,3,4,5,2,5)

ineq.weighted.boot(X,W)
```

Jenkins

Jenkins and Cowell_and_Flachaire

Description

Computes Jenkins and Cowell_and_Flachaire inequality measure of a given variable taking into account weights.

Usage

```
Jenkins(X, W = rep(1, length(X)), alfa = 0.8)
```

Arguments

X is a data vector

W is a vector of weights

alfa is the Jenkins coefficient parameter

Value

The value of Jenkins and Cowell_and_Flachaire coefficient.

Kolm 9

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9 F A Cowell: Measurement of Inequality, 2000, in A B Atkinson / F Bourguignon (Eds): Handbook of Income Distribution, Amsterdam

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
Jenkins(X,W)
```

Kolm

Kolm

Description

Computes Kolm inequality measure of a given variable taking into account weights.

Usage

```
Kolm(X, W = rep(1, length(X)), parameter = 1, na.rm = TRUE)
```

Arguments

X is a data vector
W is a vector of weights

parameter is a Kolm parameter

na.rm logical, should missing values (NAs) be removed prior to computations? If set

to FALSE the computations yield NA

Value

The value of Kolm coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
Kolm(X,W)
```

10 Palma

Leti Leti

Description

Computes Leti inequality measure of a given variable taking into account weights.

Usage

```
Leti(X, W = rep(1, length(<math>X)))
```

Arguments

X is a data vector

W is a vector of weights

Value

The value of Leti coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
Leti(X,W)
```

Palma Palma

Description

Palma proportion - the ratio of the total income of the 10% richest people to the 40% poorest people.

Usage

```
Palma(X, W = rep(1, length(X)))
```

Arguments

X is a data vector

W is a vector of weights

Prop20_20

Value

The value of Palma coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9 Putting the Gini Back in the Bottle? 'The Palma' as a Policy-Relevant Measure of Inequality

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
Palma(X,W)
```

Prop20_20

Prop20:20

Description

20:20 ratio - the ratio of thr total income of the 20% richest people to the 20% poorest people.

Usage

```
Prop20_20(X, W = rep(1, length(X)))
```

Arguments

X is a data vector
W is a vector of weights

Value

The value of 20:20 ratio coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9 Panel Data Econometrics: Theoretical Contributions And Empirical Applications edited by Badi Hani Baltag Notes on Statistical Sources and Methods - The Equality Trust.

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
Prop20_20(X,W)
```

12 Theil_L

D:	cci	C ~	h.,	+-
RI	('(')	70.	m	11 /

RicciSchutz

Description

Computes RicciSchutz inequality measure of a given variable taking into account weights.

Usage

```
RicciSchutz(X, W = rep(1, length(X)), na.rm = TRUE)
```

Arguments

X is a data vector

W is a vector of weights

na.rm logical, should missing values (NAs) be removed prior to computations? If set

to FALSE the computations yield NA

Value

The value of RicciSchutz coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
RicciSchutz(X,W)
```

Theil_L

Theil L

Description

Computes Theil_L inequality measure of a given variable taking into account weights.

Usage

```
Theil_L(X, W = rep(1, length(X)))
```

Theil_T

Arguments

X is a data vector

W is a vector of weights

Value

The value of Theil_L coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9 A. Serebrenik, M. van den Brand. Theil index for aggregation of software metrics values. 26th IEEE International Conference on Software Maintenance. IEEE Computer Society.

Examples

```
X=c(1,2,3,4,5,6,7,8,9)
W=c(2,5,6,7,3,4,5,2,5)
Theil_L(X,W)
```

Theil_T

Theil T

Description

Computes Theil_T inequality measure of a given variable taking into account weights.

Usage

```
Theil_T(X, W = rep(1, length(X)))
```

Arguments

X is a data vector

W is a vector of weights

Value

The value of Theil_T coefficient.

References

Philip B. Coulter: (1989) Measuring Inequality ISBN 0-8133-7726-9 A. Serebrenik, M. van den Brand. Theil index for aggregation of software metrics values. 26th IEEE International Conference on Software Maintenance. IEEE Computer Society.

Theil_T

Examples

X=c(1,2,3,4,5,6,7,8,9) W=c(2,5,6,7,3,4,5,2,5) Theil_T(X,W)

Index

```
AF, 2
{\small \textbf{Atkinson}, \textcolor{red}{2}}
CoefVar, 3
Entropy, 4
{\tt Gini}, {\color{red} 5}
Hoover, 5
ineq.weighted, 6
Jenkins, 8
\mathsf{Kolm}, \textcolor{red}{9}
Leti, 10
Palma, 10
Prop20_20, 11
{\tt RicciSchutz}, {\color{red} 12}
Theil_L, 12
Theil_T, 13
```