Analyzing Proteomics UPS1 Spike-in Experiments (Example Ramus 2016 Dataset)

Wolfgang Raffelsberger

2022-02-28

Introduction

This vignette complements the more basic vignette ‘Getting started with wrProteo’ of this package and shows in more detail how UPS1 spike-in experiments may be analyzed, using this package wrProteo, wrMisc and wrGraph. All these packages are available on CRAN.

Furthermore, the Bioconductor package limma will be used internally for it’s moderated statistical testing.

## This is R code, you can run this to redo all analysis presented here.
## If not already installed, you'll have to install wrMisc and wrProteo first.
install.packages("wrMisc")
install.packages("wrProteo")
## These packages are used for the graphics
install.packages("wrGraph")
install.packages("RColorBrewer")     

## Installation of limma from Bioconductor
if(!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager")
BiocManager::install("limma")

## You cat also see all vignettes for this package by typing :
browseVignettes("wrProteo")    #  ... and the select the html output

As you will see in the interactive window, this package has 2 vignettes, a more general introductory vignette and this UPS-1 dedicated vignette.

Now let’s load the packages needed :

## Let's assume this is a fresh R-session
library(knitr)
library(wrMisc)
library(wrGraph)
library(wrProteo)

# Version number for wrProteo :
packageVersion("wrProteo")
#> [1] '1.6.0'

Experimental Setup For Benchmark Tests

The main aim of the experimental setup using heterologous spike-in experiments is to provide a framework to test identification and quantitation procedures in proteomics.

By mixing known amounts of a collection of human proteins (UPS1) in various concentrations on top of a constant level yeast total protein extract, one expects to find only the spiked human UPS1 proteins varying between samples. In terms of ROC curves (see also ROC on Wikipedia) the spike-in proteins are expected to show up as true positives (TP). In contrast, all yeast proteins were added in the same quantity to same samples and should thus be observed as constant, ie as true negatives (TN) when looking for proteins changing abundance.

The Ramus Data-Set

The data used in this vignette were published with the article : Ramus et al 2016 “Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset” in J Proteomics 2016 Jan 30;132:51-62.

This dataset is available on PRIDE as PXD001819 (and on ProteomeXchange).

Briefly, this experiment aims to evaluate and compare various quantification appoaches of the heterologous spike-in UPS1 (available from Sigma-Aldrich) in yeast protein extracts as constant matrix. 9 different concentrations of the heterologous spike-in (UPS1) were run in triplicates. The proteins were initially digested by Trypsin and then analyzed by LC-MS/MS in DDA mode.

Experiment Meta-Data

The project Proteomics Sample Metadata Format aims to provide a framework of providing a uniform format for documenting experimental meta-data (sdrf-format). The meta-data for experiments already integrated can be directly read/accessed from wrProteo.

Either you download the meta-data as file ‘sdrf.tsv’ from Pride/PXD001819, or you may read it directly from github/bigbio.

## Read meta-data from  github.com/bigbio/proteomics-metadata-standard/
pxd001819meta <- readSdrf("PXD001819")

## The concentration of the UPS1 spike-in proteins in the samples
if(length(pxd001819meta) >0) {
  UPSconc <- sort(unique(as.numeric(sub(" amol;CN.+","",sub(".+;QY=","",pxd001819meta$characteristics.spiked.compound.)))))
} else UPSconc <- c(50, 125, 250, 500, 2500, 5000, 12500, 25000, 50000)

Key Elements and Additional Functions

## A few elements and functions we'll need lateron
methNa <- c("ProteomeDiscoverer","MaxQuant","Proline")
names(methNa) <- c("PD","MQ","PL")

## The accession numbers for the UPS1 proteins
UPS1 <- data.frame(ac=c("P00915", "P00918", "P01031", "P69905", "P68871", "P41159", "P02768", "P62988",
  "P04040", "P00167", "P01133", "P02144", "P15559", "P62937", "Q06830", "P63165",
  "P00709", "P06732", "P12081", "P61626", "Q15843", "P02753", "P16083", "P63279",
  "P01008", "P61769", "P55957", "O76070", "P08263", "P01344", "P01127", "P10599",
  "P99999", "P06396", "P09211", "P01112", "P01579", "P02787", "O00762", "P51965",
  "P08758", "P02741", "P05413", "P10145", "P02788", "P10636-8", "P00441", "P01375"),
  species=rep("Homo sapiens",48),
  name=NA)

#      UPS1ac <- c("P00915", "P00918", "P01031", "P69905", "P68871", "P41159", "P02768", "P62988",
#        "P04040", "P00167", "P01133", "P02144", "P15559", "P62937", "Q06830", "P63165",
#        "P00709", "P06732", "P12081", "P61626", "Q15843", "P02753", "P16083", "P63279",
#        "P01008", "P61769", "P55957", "O76070", "P08263", "P01344", "P01127", "P10599",
#        "P99999", "P06396", "P09211", "P01112", "P01579", "P02787", "O00762", "P51965",
#        "P08758", "P02741", "P05413", "P10145", "P02788", "P10636-8", "P00441", "P01375" ) 

## additional functions
replSpecType <- function(x, annCol="SpecType", replBy=cbind(old=c("mainSpe","species2"), new=c("Yeast","UPS1")), silent=TRUE) {
  ## rename $annot[,"SpecType"] to more specific names
  chCol <- annCol[1] %in% colnames(x$annot)
  if(chCol) { chCol <- which(colnames(x$annot)==annCol[1])
    chIt <- replBy[,1] %in% unique(x$annot[,chCol])    # check items to replace if present
    if(any(chIt)) for(i in which(chIt)) {useLi <- which(x$annot[,chCol] %in% replBy[i,1]); cat("useLi",head(useLi),"\n"); x$annot[useLi,chCol] <- replBy[i,2]}
  } else if(!silent) message(" replSpecType: 'annCol' not found in x$annot !")
  x }

plotConcHist <- function(mat, ref, refColumn=3:4, matCluNa="cluNo", lev=NULL, ylab=NULL, tit=NULL) {
  ## plot histogram like counts of UPS1 concentrations
  if(is.null(tit)) tit <- "Frequency of UPS1 Concentrations Appearing in Cluster"
  gr <- unique(mat[,matCluNa])
  ref <- ref[,refColumn]
  if(length(lev) <2) lev <- sort(unique(as.numeric(as.matrix(ref))))
  if(length(ylab) !=1) ylab <- "Frequency"
  tbl <- table(factor( as.numeric(ref[which(rownames(ref) %in% rownames(mat)),]), levels=lev))
  graphics::barplot(tbl, las=1, beside=TRUE, main=paste(tit,gr), col=grDevices::gray(0.8), ylab=ylab)
}

plotMultRegrPar <- function(dat, methInd, tit=NULL, useColumn=c("logp","slope","medAbund","startFr"), lineGuide=list(v=c(-12,-10),h=c(0.7,0.75),col="grey"), xlim=NULL,ylim=NULL,subTit=NULL) {
  ## scatter plot logp (x) vs slope (y) for all UPS proteins, symbol by useColumn[4], color by hist of useColumn[3] 
  ## dat (array) UPS1 data
  ## useColumn (character) 1st as 'logp', 2nd as 'slope', 3rd as median abundance, 4th as starting best regression from this point 
  fxNa <- "plotMultRegrPar"
   #fxNa <- wrMisc::.composeCallName(callFrom,newNa="plotMultRegrPar")
  if(length(dim(dat)) !=3) stop("invalid input, expecting as 'dat' array with 3 dimensions (proteins,Softw,regrPar)")
  if(any(length(methInd) >1, methInd > dim(dat)[2], !is.numeric(methInd))) stop("invalid 'methInd'")
  chCol <- useColumn %in% dimnames(dat)[[3]]
  if(any(!chCol)) stop("argument 'useColumn' does not fit to 3rd dim dimnames of 'dat'")
  useCol <- colorAccording2(dat[,methInd,useColumn[3]], gradTy="rainbow", revCol=TRUE, nEndOmit=14)
  graphics::plot(dat[,methInd,useColumn[1:2]], main=tit, type="n",xlim=xlim,ylim=ylim)   #col=1, bg.col=useCol, pch=20+lmPDsum[,"startFr"],
  graphics::points(dat[,methInd,useColumn[1:2]], col=1, bg=useCol, pch=20+dat[,methInd,useColumn[4]],)
  graphics::legend("topright",paste("best starting from ",1:5), text.col=1, pch=21:25, col=1, pt.bg="white", cex=0.9, xjust=0.5, yjust=0.5)
  if(length(subTit)==1) graphics::mtext(subTit,cex=0.9)
  if(is.list(lineGuide) & length(lineGuide) >0) {if(length(lineGuide$v) >0) graphics::abline(v=lineGuide$v,lty=2,col=lineGuide$col) 
    if(length(lineGuide$h) >0) graphics::abline(h=lineGuide$h,lty=2,col=lineGuide$col)}
  hi1 <- graphics::hist(dat[,methInd,useColumn[3]], plot=FALSE)
  wrGraph::legendHist(sort(dat[,methInd,useColumn[3]]), colRamp=useCol[order(dat[,methInd,useColumn[3]])][cumsum(hi1$counts)], 
    cex=0.5, location="bottomleft", legTit="median raw abundance")  #
}

Protein Identification and Initial Quantification

Multiple algorithms and software implementations have been developed for quantitation label-free proteomics experiments, in particular for extracted ion chromatograms (XIC). For background information you may look at Wikipedia labell-free Proteomics. Here, the use of the output for 3 such implementations for extracting peptide/protein quantifications is shown. These 3 software implementations were run individually using equivalent settings, ie identifcation based on the same fasta-database, starting at a single peptide with 1% FDR, MS mass tolerance for ion precursors at 0.7 ppm, oxidation of methionins and N-terminal acetylation as fixed as well as carbamidomethylation of cysteins as variable modifications.

Since in this context it is crucial to recognize all UPS1 proteins as such, the import-functions make use of the specPref argument, allowing to define custom tags. Most additional arguments to the various import-functions have been kept common for conventient use and for generating output structured the same way. Indeed, simply separating proteins by their species origin is not sufficient since common contaminants like human keratin might get considered by error as UPS1.

MaxQuant

MaxQuant is free software provided by the Max-Planck-Institute, see also Tyanova et al 2016. Later in this document data from MaxQuant will by frequently abbreviated as MQ.

Typically MaxQuant exports quantitation data on level of consensus-proteins by default to a folder called txt with a file called “proteinGroups.txt” . So in a standard case (when the file name has not been changed manually) it is sufficient to provide the path to this file. Of course, you can explicitely point to a specific file, as shown below. With the data presented here MaxQuant version 1.6.10 was run. Files compressed as .gz can be read, too (like in the example below).

path1 <- system.file("extdata", package="wrProteo")
fiNaMQ <- "proteinGroups.txt.gz"
specPrefMQ <- list(conta="CON_|LYSC_CHICK", mainSpecies="OS=Saccharomyces cerevisiae", spike=UPS1$ac)

dataMQ <- readMaxQuantFile(path1, file=fiNaMQ, specPref=specPrefMQ, refLi="mainSpe")
#>  -> readMaxQuantFile : Suspicious filename, this function was designed for reading tabulated text files produced by MaxQuant
#>  -> readMaxQuantFile : Note: Found 11 proteins marked as 'REV_' (reverse peptide identification) - Removing
#>  -> readMaxQuantFile : Display 2845(9.5%) initial '0' values as 'NA'
#>  -> readMaxQuantFile : Could not find peptide counts columns (argument 'pepCountCol') matching to 'Unique peptides MS\.MS\.count '
#>  -> readMaxQuantFile : Note: 6 proteins with unknown species
#>     by species : Homo sapiens: 49,  Mus musculus: 1,  Saccharomyces cerevisiae: 1047,  Sus scrofa: 1,
#>  -> readMaxQuantFile : Found 75 composite accession-numbers, truncating (eg P00761;CON__P00761)
#>  -> readMaxQuantFile : Use column 'Accession' as identifyer (has fewest, ie 0 duplicated entries) as rownames
#>  -> readMaxQuantFile : Normalize using subset of 1047
#> -> readMaxQuantFile -> vioplotW -> asSepList : argument 'fxArg' is depreciated, please use argument 'exclElem' (still using since 'exclElem=NULL'
#> -> readMaxQuantFile -> vioplotW -> asSepList : argument 'fxArg' is depreciated, please use argument 'exclElem' (still using since 'exclElem=NULL'

The data were imported and median-normalized, the protein annotation was parsed to automatically extract IDs, protein-names and species information.

## the number of lines and colums
dim(dataMQ$quant)
#> [1] 1104   27
## a summary of the quantitation data
summary(dataMQ$quant[,1:8])                # the first 8 cols
#>   12500amol_1     12500amol_2     12500amol_3      125amol_1    
#>  Min.   :17.52   Min.   :15.64   Min.   :14.90   Min.   :15.19  
#>  1st Qu.:22.50   1st Qu.:22.49   1st Qu.:22.50   1st Qu.:22.39  
#>  Median :23.46   Median :23.46   Median :23.46   Median :23.43  
#>  Mean   :23.69   Mean   :23.65   Mean   :23.67   Mean   :23.60  
#>  3rd Qu.:24.82   3rd Qu.:24.76   3rd Qu.:24.78   3rd Qu.:24.82  
#>  Max.   :30.31   Max.   :30.29   Max.   :30.35   Max.   :30.25  
#>  NA's   :98      NA's   :100     NA's   :104     NA's   :114    
#>    125amol_2       125amol_3      25000amol_1     25000amol_2   
#>  Min.   :14.86   Min.   :14.91   Min.   :15.78   Min.   :18.42  
#>  1st Qu.:22.36   1st Qu.:22.40   1st Qu.:22.52   1st Qu.:22.54  
#>  Median :23.42   Median :23.44   Median :23.53   Median :23.53  
#>  Mean   :23.59   Mean   :23.62   Mean   :23.74   Mean   :23.73  
#>  3rd Qu.:24.81   3rd Qu.:24.79   3rd Qu.:24.95   3rd Qu.:24.89  
#>  Max.   :30.25   Max.   :30.30   Max.   :30.31   Max.   :30.13  
#>  NA's   :106     NA's   :114     NA's   :109     NA's   :115

Now we can summarize the presence of UPS1 proteins after treatment by MaxQuant : In sum 48 UPS1 proteins were found, 0 are missing.

ProteomeDiscoverer

ProteomeDiscoverer is commercial software from ThermoFisher (www.thermofisher.com). Later in this document data from ProteomeDiscoverer will by frequently abbreviated as PD.

With the data used here, the identification was performed using the XCalibur module of ProteomeDiscoverer version 2.4 . Quantitation data at the level of consensus-proteins can be exported to tabulated text files, which can be treated by the function shown below. The resultant data were export in tablulated format and the file automatically named ‘_Proteins.txt’ (the option R-headers was checked, however this option is not mandatory). Files compressed as .gz can be read, too (like in the example below).

path1 <- system.file("extdata", package="wrProteo")
fiNaPd <- "pxd001819_PD24_Proteins.txt.gz"

## Note: data exported from ProteomeDiscoverer frequently do not have proper column-names, providing names here
sampNa <- paste(rep(UPSconc, each=3),"amol_",rep(1:3,length(UPSconc)),sep="") 
specPrefPD <- list(conta="Bos tauris|Gallus", mainSpecies="OS=Saccharomyces cerevisiae", spike=UPS1$ac)

dataPD <- readProtDiscovFile(file=fiNaPd, path=path1, sampleNames=sampNa, refLi="mainSpe", specPref=specPrefPD)
#>  -> readProtDiscovFile :  setting 'annotCol' to export of 'R-friendly' colnames
#>  -> readProtDiscovFile : Note: 10 (out of 1297) lines with unrecognized species
#>  -> readProtDiscovFile : Count by 'specPref' : Gallus gallus: 1 ;  Homo sapiens: 47 ;  Saccharomyces cerevisiae: 1239 ;
#>  -> readProtDiscovFile : Removing 1 lines due to duplicated Accessions (typically due to contaminants)
#>  -> readProtDiscovFile : Normalize using (custom) subset of 1239 lines
#> -> readProtDiscovFile -> vioplotW -> asSepList : argument 'fxArg' is depreciated, please use argument 'exclElem' (still using since 'exclElem=NULL'
#> -> readProtDiscovFile -> vioplotW -> asSepList : argument 'fxArg' is depreciated, please use argument 'exclElem' (still using since 'exclElem=NULL'

The data were imported and median-normalized, the protein annotation was parsed to atomatically extract IDs, protein-names and species information.

Note, that the original column-heads in the file exported from ProteomeDiscoverer has simply increasing numbers as names. Thus, much care should be taken on the order when preparing the vector sampleNames with the names to use instead.

## the number of lines and colums
dim(dataPD$quant)
#> [1] 1296   27
## a summary of the quantitation data
summary(dataPD$quant[,1:8])        # the first 8 cols
#>     50amol_1        50amol_2        50amol_3        125amol_1    
#>  Min.   :13.68   Min.   :11.60   Min.   : 9.609   Min.   :10.92  
#>  1st Qu.:18.15   1st Qu.:18.19   1st Qu.:18.237   1st Qu.:18.23  
#>  Median :19.36   Median :19.37   Median :19.380   Median :19.37  
#>  Mean   :19.52   Mean   :19.53   Mean   :19.539   Mean   :19.52  
#>  3rd Qu.:20.83   3rd Qu.:20.88   3rd Qu.:20.895   3rd Qu.:20.84  
#>  Max.   :26.33   Max.   :26.38   Max.   :26.418   Max.   :26.41  
#>  NA's   :92      NA's   :93      NA's   :87       NA's   :88     
#>    125amol_2       125amol_3       250amol_1       250amol_2    
#>  Min.   :10.51   Min.   :11.15   Min.   :10.04   Min.   :10.21  
#>  1st Qu.:18.21   1st Qu.:18.20   1st Qu.:18.15   1st Qu.:18.17  
#>  Median :19.40   Median :19.40   Median :19.40   Median :19.37  
#>  Mean   :19.51   Mean   :19.53   Mean   :19.50   Mean   :19.47  
#>  3rd Qu.:20.82   3rd Qu.:20.83   3rd Qu.:20.78   3rd Qu.:20.78  
#>  Max.   :26.37   Max.   :26.47   Max.   :26.50   Max.   :26.45  
#>  NA's   :99      NA's   :86      NA's   :87      NA's   :77

# there are proteins where the 'OS='-tag won't be visible as Species (orig Fasta-header and Protein-name not accessible) :
which(is.na(dataPD$annot[,"Species"]) & dataPD$annot[,"SpecType"]=="species2")    # is NA as Species
#> P02768 
#>     25

Confirming the presence of UPS1 proteins by ProteomeDiscoverer:

Now we can summarize the presence of UPS1 proteins after treatment by ProteomeDiscoverer : In sum 48 UPS1 proteins were found, 0 are missing.

Proline

Proline is open-source software provided by the Profi-consortium (see also proline-core on github), published by Bouyssié et al 2020. Later in this document data from Proline will by frequently abbreviated as PL.

Protein identification in Proline gets performed by SearchGUI, see also Vaudel et al 2015. In this case X!Tandem (see also Duncan et al 2005) was used as search engine.

Quantitation data at the level of consensus-proteins can be exported from Proline as .xlsx or tabulated text files, both formats can be treated by the import-functions shown below. Here, Proline version 1.6.1 was used.

path1 <- system.file("extdata", package="wrProteo")
fiNaPl <- "pxd001819_PL.xlsx"

specPrefPL <- c(conta="_conta", mainSpecies="OS=Saccharomyces cerevisiae", spike="_ups")  
dataPL <- readProlineFile(file.path(path1,fiNaPl), specPref=specPrefPL, normalizeMeth="median", refLi="mainSpe", silent=TRUE)
#> -> readProlineFile -> vioplotW -> asSepList : argument 'fxArg' is depreciated, please use argument 'exclElem' (still using since 'exclElem=NULL'
#> -> readProlineFile -> vioplotW -> asSepList : argument 'fxArg' is depreciated, please use argument 'exclElem' (still using since 'exclElem=NULL'

In addition, we need to correct the quantification column-heads (like ‘Levure2ug+ UPS1-100amol-1’) and bring them to a simpler version :

head(colnames(dataPL$raw),8)
#> [1] "Levure2ug+ UPS1-100amol-1" "Levure2ug+ UPS1-100amol-2"
#> [3] "Levure2ug+ UPS1-100amol-3" "Levure2ug+ UPS1-250amol-1"
#> [5] "Levure2ug+ UPS1-250amol-2" "Levure2ug+ UPS1-250amol-3"
#> [7] "Levure2ug+ UPS1-500amol-1" "Levure2ug+ UPS1-500amol-2"
sub1 <- cbind(ini=paste0("-",c("100a","250a","500a","1f","5f","10f","25f","50f","100f"),"mol-"),
  paste0(fin=c("50a","125a","250a","500a","2500a","5000a","12500a","25000a","50000a"),"mol_"))
dataPL <- cleanListCoNames(dataPL, rem=c("abundance_","Levure2ug+ UPS1"), subst=sub1)
## let's check the result
head(colnames(dataPL$raw),8)
#> [1] "50amol_1"  "50amol_2"  "50amol_3"  "125amol_1" "125amol_2" "125amol_3"
#> [7] "250amol_1" "250amol_2"
## the number of lines and colums
dim(dataPL$quant)
#> [1] 1186   27
## a summary of the quantitation data
summary(dataPL$quant[,1:8])        # the first 8 cols
#>     50amol_1        50amol_2        50amol_3       125amol_1    
#>  Min.   :14.29   Min.   :14.53   Min.   :13.77   Min.   :14.41  
#>  1st Qu.:19.64   1st Qu.:19.66   1st Qu.:19.70   1st Qu.:19.75  
#>  Median :21.64   Median :21.55   Median :21.65   Median :21.65  
#>  Mean   :21.66   Mean   :21.66   Mean   :21.71   Mean   :21.75  
#>  3rd Qu.:23.64   3rd Qu.:23.61   3rd Qu.:23.63   3rd Qu.:23.70  
#>  Max.   :29.52   Max.   :29.42   Max.   :29.44   Max.   :29.50  
#>  NA's   :44      NA's   :40      NA's   :40      NA's   :46     
#>    125amol_2       125amol_3       250amol_1       250amol_2    
#>  Min.   :13.53   Min.   :14.76   Min.   :14.55   Min.   :14.74  
#>  1st Qu.:19.76   1st Qu.:19.76   1st Qu.:19.74   1st Qu.:19.72  
#>  Median :21.64   Median :21.65   Median :21.65   Median :21.61  
#>  Mean   :21.73   Mean   :21.73   Mean   :21.71   Mean   :21.69  
#>  3rd Qu.:23.69   3rd Qu.:23.65   3rd Qu.:23.62   3rd Qu.:23.63  
#>  Max.   :29.49   Max.   :29.43   Max.   :29.42   Max.   :29.40  
#>  NA's   :46      NA's   :48      NA's   :54      NA's   :51

Now we can summarize the presence of UPS1 proteins after treatment by Proline : In sum 48 UPS1 proteins were found, 0 are missing.

Uniform Re-Arranging of Data

For easy and proper comparisons we need to make sure all columns are in the same order.

# get all results (MaxQuant,ProteomeDiscoverer, ...) in same order
grp9 <- paste0(rep(UPSconc,each=3),"amol") 

## it is more convenient to re-order columns this way in each project
dataPD <- corColumnOrder(dataPD, sampNames=sampNa)          # already in good order
#>  -> corColumnOrder : Order already correct
dataMQ <- corColumnOrder(dataMQ, sampNames=sampNa) 
dataPL <- corColumnOrder(dataPL, sampNames=sampNa) 
#>  -> corColumnOrder : Order already correct

At import we made use of the argument specPref (specifying _‘mainSpecies’, ‘conta’ and ‘spike’) which allows to build categories based on searching keywords based on the initial annotation. In turn, we obtain the labels : ‘main Spe’ for yeast (ie matrix), ‘species2’ for the UPS1 (ie spike) ‘conta’ for contaminants. Let’s replace the first two generic terms by more specific ones (ie ‘Yeast’ and ‘UPS1’) :

## Need to rename $annot[,"SpecType"]  
dataPD <- replSpecType(dataPD, replBy=cbind(old=c("mainSpe","species2"), new=c("Yeast","UPS1")))
#> useLi 1 2 3 4 5 6 
#> useLi 24 25 36 37 45 70
dataMQ <- replSpecType(dataMQ, replBy=cbind(old=c("mainSpe","species2"), new=c("Yeast","UPS1")))
#> useLi 1 12 13 14 15 16 
#> useLi 4 11 21 27 39 47
dataPL <- replSpecType(dataPL, replBy=cbind(old=c("mainSpe","species2"), new=c("Yeast","UPS1")))
#> useLi 1 2 3 4 5 6 
#> useLi 20 22 48 53 54 71

## Need to address missing ProteinNames (UPS1) due to missing tags in Fasta
dataPD <- replMissingProtNames(dataPD) 
#>  -> replreplMissingProtNames :  ..trying to replace 1296 'EntryName'
dataMQ <- replMissingProtNames(dataMQ) 
#>  -> replreplMissingProtNames :  ..trying to replace 5 'EntryName'
dataPL <- replMissingProtNames(dataPL) 
## extract names of quantified UPS1-proteins
NamesUpsPD <- dataPD$annot[which(dataPD$annot[,"SpecType"]=="UPS1"),"Accession"]
NamesUpsMQ <- dataMQ$annot[which(dataMQ$annot[,"SpecType"]=="UPS1"),"Accession"]
NamesUpsPL <- dataPL$annot[which(dataPL$annot[,"SpecType"]=="UPS1"),"Accession"]
tabS <- mergeVectors(PD=table(dataPD$annot[,"SpecType"]), MQ=table(dataMQ$annot[,"SpecType"]), PL=table(dataPL$annot[,"SpecType"]))  
tabT <- mergeVectors(PD=table(dataPD$annot[,"Species"]), MQ=table(dataMQ$annot[,"Species"]), PL=table(dataPL$annot[,"Species"]))  
tabT[which(is.na(tabT))] <- 0
kable(cbind(tabS[,2:1], tabT), caption="Number of proteins identified, by custom tags, species and software")
Number of proteins identified, by custom tags, species and software
Yeast UPS1 Gallus gallus Homo sapiens Mus musculus Saccharomyces cerevisiae Sus scrofa
PD 1239 48 1 47 0 1239 0
MQ 1047 48 0 49 1 1047 1
PL 1137 48 0 48 0 1137 1

The initial fasta file also contained the yeast strain number, this has been stripped off when using default parameters.


Basic Data Treatment

Normalization

No additional normalization is needed, all data were already median normalized to the host proteins (ie Saccharomyces cerevisiae) after importing the initial quantification-output using ‘readMaxQuantFile()’, ‘readProlineFile()’ and ‘readProtDiscovFile()’.

Presence of NA-values

As mentioned in the general vignette of this package, ‘wrProteoVignette1’, it is important to investigate the nature of NA-values. In particular, checking the hypothesis that NA-values originate from very low abundance instances is very important for deciding how to treat NA-values furtheron.

## Let's inspect NA values from ProteomeDiscoverer as graphic
matrixNAinspect(dataPD$quant, gr=grp9, tit="ProteomeDiscoverer")  

## Let's inspect NA values from MaxQuant as graphic
matrixNAinspect(dataMQ$quant, gr=gl(length(UPSconc),3), tit="MaxQuant") 

## Let's inspect NA values from Proline as graphic
matrixNAinspect(dataPL$quant, gr=grp9, tit="Proline") 

A key element to understand the nature of NA-value is to investigate their NA-neighbours. If a given protein has for just one of the 3 replicates an NA, the other two valid quantifications can be considered as NA-neighbours. In the figures above all NA-neighbours are shown in the histogram and their mode is marked by an arrow. One can see, that NA-neighbours are predominantely (but not exclusively) part of the lower quantitation values. This supports the hypothesis that NAs occur most frequently with low abundance proteins.

NA-Imputation and Statistical Testing for Changes in Abundance

NA-values represent a challange for statistical testing. In addition, techniques like PCA don’t allow NAs, neither.

The number of NAs varies between samples : Indeed, very low concentrations of UPS1 are difficult to get detected and contribute largely to the NAs (as we will see later in more detail). Since the amout of yeast proteins (ie the matrix in this setup) stays constant across all samples, yeast proteins should always get detected the same way.

## Let's look at the number of NAs. Is there an accumulated number in lower UPS1 samples ?
tabSumNA <- rbind(PD=sumNAperGroup(dataPD$raw, grp9), MQ=sumNAperGroup(dataMQ$raw, grp9), PL=sumNAperGroup(dataPL$raw, grp9) )
kable(tabSumNA, caption="Number of NAs per group of samples", align="r")
Number of NAs per group of samples
50amol 125amol 250amol 500amol 2500amol 5000amol 12500amol 25000amol 50000amol
PD 272 273 257 234 205 207 195 209 220
MQ 318 334 323 337 282 297 302 330 322
PL 124 140 157 140 137 139 131 141 131

In the section above we investigated the circumstances of NA-instances and provided evidence that NA-values typically represent proteins with low abundance which frequently ended up as non-detectable (NA). Thus, we hypothesize that (in most cases) NA-values might also have been detected in quantities like their NA-neighbours. In consequence, we will model a normal distribution based on the NA-neighbours and use for substituting.

The function testRobustToNAimputation() from this package (wrProteo) allows to perform NA-imputation and subsequent statistical testing (after repeated imputation) between all groups of samples (see also the general vignette). One of the advantages of this implementation, is that multiple rounds of imputation are run, so that final results (including pair-wise testing) get stabilized to (rare) stochastic effects. For this reason one may also speak of stabilized NA-imputations.

The statistical tests used underneith make use of the shrinkage-procedure provided from the empirical Bayes procedure as implemented to the Bioconductor package limma, see also Ritchie et al 2015. In addition, various formats of multiple testing correction can be added to the results : Benjamini-Hochberg FDR (lateron referred to as BH or BH-FDR, see FDR on Wikipedia, see also Benjamini and Hochberg 1995), local false discovery rate (lfdr, using the package fdrtool, see Strimmer 2008), or modified testing by ROTS, etc … In this vignette we will make use of the BH-FDR.

We are ready to launch the NA-imputation and testing for data from ProteomeDiscoverer :

testPD <- testRobustToNAimputation(dataPD, gr=grp9, imputMethod="informed")     # ProteomeDiscoverer
#> -> testRobustToNAimputation -> matrixNAneighbourImpute -> stableMode : Method='density',  length of x =976, 'bandw' has been set to 44
#> -> testRobustToNAimputation -> matrixNAneighbourImpute :  n.woNA= 32920 , n.NA = 2072
#>     impute based on 'informed' using mode= 17.34 and sd= 0.5
#>     note mean for impuation is  below 0.05  quantile !!
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at presenceFilt:  1259 1252 1245 1248 1234 1235 1247 1259 1253 1251 1263 1235 1247 1238 1264 1255 1257 1253 1255 1254 1259 1246 1257 1252 1252 1248 1262 1255 1247 1257 1251 1249 1245 1261 1251 1248  out of 1296
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at abundanceFilt: 1213 1206 1203 1203 1202 1194 1229 1237 1232 1229 1250 1213 1225 1216 1241 1240 1238 1235 1235 1235 1238 1229 1238 1234 1233 1230 1236 1235 1231 1240 1236 1232 1229 1240 1236 1232
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at NA> mean:   1172, 1169, 1172, 1170, 1174, 1179, 1166, 1175, 1182, 1191, 1171, 1174, 1184, 1184, 1207, 1175, 1180, 1186, 1197, 1208, 1209, 1165, 1175, 1183, 1193, 1205, 1206, 1213, 1160, 1173, 1175, 1186, 1194, 1196, 1204 and 1199
testPD2 <- testRobustToNAimputation(dataPD, gr=grp9)     # ProteomeDiscoverer
#> -> testRobustToNAimputation -> matrixNAneighbourImpute -> stableMode : Method='density',  length of x =976, 'bandw' has been set to 44
#> -> testRobustToNAimputation -> matrixNAneighbourImpute :  n.woNA= 32920 , n.NA = 2072
#>     impute based on 'mode2' using mean= 17.34 and sd= 0.5
#> 
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at presenceFilt:  1259 1252 1245 1248 1234 1235 1247 1259 1253 1251 1263 1235 1247 1238 1264 1255 1257 1253 1255 1254 1259 1246 1257 1252 1252 1248 1262 1255 1247 1257 1251 1249 1245 1261 1251 1248  out of 1296
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at abundanceFilt: 1245 1241 1229 1235 1216 1215 1236 1245 1241 1238 1253 1223 1236 1226 1252 1245 1245 1242 1242 1240 1248 1235 1245 1242 1241 1235 1250 1243 1236 1248 1242 1237 1234 1252 1241 1239
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at NA> mean:   1174, 1172, 1176, 1172, 1177, 1183, 1168, 1178, 1182, 1194, 1171, 1176, 1185, 1186, 1209, 1176, 1182, 1187, 1200, 1210, 1210, 1166, 1177, 1184, 1196, 1208, 1207, 1214, 1161, 1177, 1177, 1189, 1197, 1198, 1207 and 1201
testPD3 <- testRobustToNAimputation(dataPD, gr=grp9, imputMethod="modeadopt")     # ProteomeDiscoverer
#> -> testRobustToNAimputation -> matrixNAneighbourImpute : Substituting dynamically based on mean per number of NAs
#> -> testRobustToNAimputation -> matrixNAneighbourImpute :  n.woNA= 32920 , n.NA = 2072
#>     impute based on 'modeadopt' using mean= 17.09, 16.3 and 15.51 (for 1, 2 and 3 NAs) and sd= 0.5
#>     note mean for impuation is  below 0.05  quantile !!
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at presenceFilt:  1259 1252 1245 1248 1234 1235 1247 1259 1253 1251 1263 1235 1247 1238 1264 1255 1257 1253 1255 1254 1259 1246 1257 1252 1252 1248 1262 1255 1247 1257 1251 1249 1245 1261 1251 1248  out of 1296
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at abundanceFilt: 1184 1183 1178 1179 1182 1178 1210 1212 1213 1208 1233 1190 1205 1191 1206 1221 1214 1212 1215 1206 1206 1209 1211 1213 1213 1202 1208 1204 1212 1211 1214 1213 1211 1217 1213 1210
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at NA> mean:   1169, 1164, 1164, 1160, 1169, 1171, 1164, 1167, 1174, 1185, 1166, 1167, 1178, 1176, 1197, 1167, 1169, 1178, 1188, 1201, 1198, 1158, 1166, 1174, 1186, 1195, 1199, 1201, 1158, 1159, 1166, 1177, 1186, 1189, 1195 and 1191

Then for MaxQuant …

testMQ <- testRobustToNAimputation(dataMQ, gr=grp9, imputMethod="informed")      # MaxQuant
#> -> testRobustToNAimputation -> matrixNAneighbourImpute -> stableMode : Method='density',  length of x =1142, 'bandw' has been set to 47
#> -> testRobustToNAimputation -> matrixNAneighbourImpute :  n.woNA= 26963 , n.NA = 2845
#>     impute based on 'informed' using mode= 21.46 and sd= 0.5
#>     note mean for impuation is  below 0.05  quantile !!
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at presenceFilt:  1051 1043 1022 1051 1017 1019 1027 1051 1046 1048 1067 1022 1032 1028 1061 1040 1050 1050 1056 1030 1061 1032 1047 1040 1045 1037 1060 1049 1027 1050 1047 1051 1027 1066 1034 1039  out of 1104
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at abundanceFilt: 1001 997 993 1001 993 990 997 1017 1011 1011 1046 1006 1012 1008 1034 1028 1037 1035 1038 1014 1036 1023 1034 1025 1031 1023 1035 1031 1020 1040 1039 1039 1017 1047 1025 1028
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at NA> mean:   963, 958, 965, 953, 956, 965, 939, 951, 955, 956, 941, 944, 947, 944, 975, 940, 948, 950, 952, 969, 974, 932, 937, 941, 946, 974, 969, 977, 926, 937, 938, 940, 958, 961, 972 and 964
testMQ2 <- testRobustToNAimputation(dataMQ, gr=grp9)      # MaxQuant
#> -> testRobustToNAimputation -> matrixNAneighbourImpute -> stableMode : Method='density',  length of x =1142, 'bandw' has been set to 47
#> -> testRobustToNAimputation -> matrixNAneighbourImpute :  n.woNA= 26963 , n.NA = 2845
#>     impute based on 'mode2' using mean= 21.46 and sd= 0.5
#> 
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at presenceFilt:  1051 1043 1022 1051 1017 1019 1027 1051 1046 1048 1067 1022 1032 1028 1061 1040 1050 1050 1056 1030 1061 1032 1047 1040 1045 1037 1060 1049 1027 1050 1047 1051 1027 1066 1034 1039  out of 1104
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at abundanceFilt: 1039 1034 1009 1037 1002 999 1018 1037 1034 1030 1064 1015 1024 1019 1051 1038 1046 1044 1049 1021 1055 1030 1042 1033 1039 1031 1054 1043 1024 1045 1044 1048 1024 1061 1031 1035
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at NA> mean:   967, 960, 966, 956, 956, 965, 943, 954, 959, 959, 943, 944, 947, 945, 978, 944, 950, 952, 954, 972, 976, 934, 938, 942, 946, 975, 969, 979, 927, 938, 938, 941, 961, 962, 974 and 964
testMQ3 <- testRobustToNAimputation(dataMQ, gr=grp9, imputMethod="modeadopt")      # MaxQuant
#> -> testRobustToNAimputation -> matrixNAneighbourImpute : Substituting based on mode of all 1142 NA-neighbours
#> -> testRobustToNAimputation -> matrixNAneighbourImpute :  n.woNA= 26963 , n.NA = 2845
#>     impute based on 'modeadopt' using mean= 21.46 and sd= 0.5
#> 
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at presenceFilt:  1051 1043 1022 1051 1017 1019 1027 1051 1046 1048 1067 1022 1032 1028 1061 1040 1050 1050 1056 1030 1061 1032 1047 1040 1045 1037 1060 1049 1027 1050 1047 1051 1027 1066 1034 1039  out of 1104
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at abundanceFilt: 1039 1033 1009 1036 1002 1002 1017 1038 1034 1029 1063 1016 1025 1019 1052 1037 1046 1044 1049 1021 1055 1029 1042 1033 1039 1031 1054 1043 1024 1045 1044 1048 1024 1061 1031 1035
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at NA> mean:   967, 960, 966, 956, 956, 966, 943, 954, 959, 958, 943, 944, 947, 945, 978, 944, 950, 952, 954, 972, 976, 934, 938, 942, 946, 975, 969, 979, 927, 938, 938, 941, 961, 962, 974 and 964

And finally for Proline :

testPL <- testRobustToNAimputation(dataPL, gr=grp9)      # Proline
#> -> testRobustToNAimputation -> matrixNAneighbourImpute -> stableMode : Method='density',  length of x =413, 'bandw' has been set to 28
#> -> testRobustToNAimputation -> matrixNAneighbourImpute :  n.woNA= 30782 , n.NA = 1240
#>     impute based on 'mode2' using mean= 17.74 and sd= 0.5
#>     note mean for impuation is  below 0.05  quantile !!
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at presenceFilt:  1156 1154 1148 1155 1142 1145 1149 1156 1154 1153 1167 1161 1163 1159 1167 1150 1158 1155 1156 1150 1169 1147 1155 1153 1154 1148 1167 1153 1149 1156 1154 1154 1148 1167 1151 1149  out of 1186
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at abundanceFilt: 1140 1138 1126 1142 1125 1128 1134 1140 1138 1137 1155 1145 1147 1142 1150 1138 1145 1141 1143 1136 1154 1135 1141 1138 1140 1133 1152 1140 1139 1144 1142 1142 1136 1154 1139 1137
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at NA> mean:   1113, 1107, 1109, 1116, 1116, 1112, 1108, 1111, 1105, 1113, 1113, 1110, 1104, 1109, 1120, 1113, 1116, 1110, 1118, 1122, 1123, 1109, 1112, 1106, 1115, 1121, 1120, 1126, 1112, 1113, 1108, 1115, 1120, 1122, 1125 and 1123
testPL2 <- testRobustToNAimputation(dataPL, gr=grp9)     # 
#> -> testRobustToNAimputation -> matrixNAneighbourImpute -> stableMode : Method='density',  length of x =413, 'bandw' has been set to 28
#> -> testRobustToNAimputation -> matrixNAneighbourImpute :  n.woNA= 30782 , n.NA = 1240
#>     impute based on 'mode2' using mean= 17.74 and sd= 0.5
#>     note mean for impuation is  below 0.05  quantile !!
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at presenceFilt:  1156 1154 1148 1155 1142 1145 1149 1156 1154 1153 1167 1161 1163 1159 1167 1150 1158 1155 1156 1150 1169 1147 1155 1153 1154 1148 1167 1153 1149 1156 1154 1154 1148 1167 1151 1149  out of 1186
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at abundanceFilt: 1140 1140 1126 1142 1125 1127 1133 1138 1136 1136 1155 1145 1146 1141 1150 1137 1144 1140 1142 1135 1153 1135 1141 1137 1139 1133 1151 1139 1139 1144 1142 1142 1136 1154 1138 1137
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at NA> mean:   1114, 1108, 1109, 1116, 1116, 1112, 1107, 1109, 1103, 1112, 1113, 1110, 1104, 1109, 1120, 1112, 1115, 1109, 1117, 1121, 1122, 1109, 1112, 1105, 1114, 1121, 1120, 1125, 1112, 1113, 1108, 1115, 1120, 1122, 1124 and 1123
testPL3 <- testRobustToNAimputation(dataPL, gr=grp9, imputMethod="modeadopt")     # 
#> -> testRobustToNAimputation -> matrixNAneighbourImpute : Substituting based on mode of all 413 NA-neighbours
#> -> testRobustToNAimputation -> matrixNAneighbourImpute :  n.woNA= 30782 , n.NA = 1240
#>     impute based on 'modeadopt' using mean= 17.74 and sd= 0.5
#>     note mean for impuation is  below 0.05  quantile !!
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at presenceFilt:  1156 1154 1148 1155 1142 1145 1149 1156 1154 1153 1167 1161 1163 1159 1167 1150 1158 1155 1156 1150 1169 1147 1155 1153 1154 1148 1167 1153 1149 1156 1154 1154 1148 1167 1151 1149  out of 1186
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at abundanceFilt: 1140 1139 1126 1143 1123 1126 1133 1140 1137 1136 1155 1145 1145 1140 1149 1137 1144 1140 1141 1135 1153 1135 1141 1137 1139 1133 1151 1139 1139 1144 1142 1141 1136 1154 1138 1137
#> -> testRobustToNAimputation -> combineMultFilterNAimput :    at NA> mean:   1113, 1107, 1109, 1116, 1115, 1111, 1107, 1111, 1104, 1112, 1113, 1110, 1103, 1109, 1119, 1112, 1115, 1109, 1117, 1121, 1122, 1109, 1112, 1105, 1114, 1121, 1120, 1125, 1112, 1113, 1108, 1115, 1120, 1122, 1124 and 1123

From these results we’ll use i) the NA-imputed version of our datasets for plotting principal components (PCA) and ii) the (stabilized) testing results for counting TP, FP, etc and to construct ROC curves.

Let’s add the NA-imputed data to our main object :

dataPD$datImp <- testPD$datImp       # recuperate imputeded data to main data-object
dataMQ$datImp <- testMQ$datImp
dataPL$datImp <- testPL$datImp

Analysis Using All Proteins Identified (Matrix + UPS1)

In this section all proteins identified and quantified are compared in a pair-wise fashion based on the t-tests already run in the previous section. As mentioned, the experimental setup is very special, since all proteins that are truly changing are known in advance (the UPS1 spike-in proteins). Tables get constructed by counting based on various thresholds for considering given protein abundances as differential or not.
A traditional 5 percent FDR cut-off is used for Volcano-plots, while ROC-curves allow inspecting the entire range of potential cut-off values.

Pairwise Testing Summary

A very universal and simple way to analyze data is by checking as several pairwise comparisons, in particular, if the experimental setup does not include complete multifactorial plans.

This UPS1 spike-in experiment has 27 samples organized (according to meta-information) as 9 groups. Thus, one obtains in total 36 pair-wise comparisons which will make comparisons very crowded. The publication by Ramus et al 2016 focussed on 3 pairwise comparisons only. In this vignette it is shown how all of them can get considered.

Now, we’ll construct a table showing all possible pairwise-comparisons. Using the function numPairDeColNames() we can easily extract the UPS1 concentrations as numeric content and show the (log-)ratio of the pairwise comparisons (column ‘log2rat’), the final concentrations (columns ‘conc1’ and ‘conc2’, in amol) and the number of differentially abundant proteins passing 5% FDR (using classical Benjamini-Hochberg FDR (columns ‘sig.xx.BH’) or lfdr (Strimmer 2008, columns ‘sig._xx_.lfdr’ ).

## The number of differentially abundant proteins passing 5% FDR (ProteomeDiscoverer and MaxQuant) 
signCount <- cbind( sig.PD.BH=colSums(testPD$BH < 0.05, na.rm=TRUE), sig.PD.lfdr=if("lfdr" %in% names(testPD)) colSums(testPD$lfdr < 0.05, na.rm=TRUE),
  sig.MQ.BH=colSums(testMQ$BH < 0.05, na.rm=TRUE), sig.MQ.lfdr=if("lfdr" %in% names(testMQ)) colSums(testMQ$lfdr < 0.05, na.rm=TRUE),
  sig.PL.BH=colSums(testPL$BH < 0.05, na.rm=TRUE), sig.PL.lfdr=if("lfdr" %in% names(testPL)) colSums(testPL$lfdr < 0.05, na.rm=TRUE)  )

table1 <- numPairDeColNames(testPD$BH, stripTxt="amol", sortByAbsRatio=TRUE)
table1 <- cbind(table1, signCount[table1[,1],])
kable(table1, caption="All pairwise comparisons and number of significant proteins", align="c")
All pairwise comparisons and number of significant proteins
index log2rat conc1 conc2 sig.PD.BH sig.PD.lfdr sig.MQ.BH sig.MQ.lfdr sig.PL.BH sig.PL.lfdr
50000amol-50amol 34 9.966 50 50000 572 492 377 304 572 487
25000amol-50amol 31 8.966 50 25000 587 495 370 320 548 481
125amol-50000amol 12 8.644 125 50000 356 289 237 165 415 380
12500amol-50amol 29 7.966 50 12500 506 459 290 231 482 389
125amol-25000amol 3 7.644 125 25000 327 278 182 157 311 228
250amol-50000amol 15 7.644 250 50000 379 318 308 261 325 261
12500amol-125amol 1 6.644 125 12500 220 168 84 60 236 191
25000amol-250amol 9 6.644 250 25000 234 180 209 161 200 148
50000amol-500amol 27 6.644 500 50000 360 310 251 174 363 287
5000amol-50amol 35 6.644 50 5000 599 534 375 335 523 468
12500amol-250amol 7 5.644 250 12500 131 88 55 47 130 109
25000amol-500amol 24 5.644 500 25000 243 172 141 118 197 142
2500amol-50amol 32 5.644 50 2500 556 476 306 235 491 474
125amol-5000amol 17 5.322 125 5000 281 197 121 88 205 149
12500amol-500amol 22 4.644 500 12500 156 119 56 31 129 84
125amol-2500amol 5 4.322 125 2500 197 166 76 50 184 147
2500amol-50000amol 14 4.322 2500 50000 284 238 169 152 254 190
250amol-5000amol 20 4.322 250 5000 197 126 162 121 141 102
25000amol-2500amol 6 3.322 2500 25000 44 32 14 10 69 49
2500amol-250amol 10 3.322 250 2500 114 88 31 29 92 56
50000amol-5000amol 21 3.322 5000 50000 331 272 158 112 324 282
5000amol-500amol 28 3.322 500 5000 170 134 101 62 130 100
500amol-50amol 36 3.322 50 500 426 385 216 191 380 340
12500amol-2500amol 4 2.322 2500 12500 19 13 5 4 48 30
25000amol-5000amol 18 2.322 5000 25000 52 34 22 18 73 56
2500amol-500amol 25 2.322 500 2500 113 83 44 34 97 62
250amol-50amol 33 2.322 50 250 354 268 183 136 315 253
12500amol-50000amol 11 2.000 12500 50000 229 155 118 117 165 110
125amol-500amol 23 2.000 125 500 21 17 6 2 30 18
12500amol-5000amol 16 1.322 5000 12500 25 13 5 2 34 21
125amol-50amol 30 1.322 50 125 277 261 120 94 216 175
12500amol-25000amol 2 1.000 12500 25000 11 9 0 0 29 15
125amol-250amol 8 1.000 125 250 15 12 0 0 2 1
25000amol-50000amol 13 1.000 25000 50000 136 85 61 50 92 63
2500amol-5000amol 19 1.000 2500 5000 13 11 2 1 13 10
250amol-500amol 26 1.000 250 500 6 2 2 0 3 2

You can see that in numerous cases much more than the 48 UPS1 proteins showed up significant, ie yeast proteins supposed to remain constant also showed up in part as ‘sigificantly changing’. However, some proteins with enthousiastic FDR values have very low log-FC amplitude and will be removed by filtering in the following steps.

par(mar=c(5.5, 4.7, 4, 1))   
imageW(table1[,c("sig.PD.BH","sig.MQ.BH","sig.PL.BH" )], col=RColorBrewer::brewer.pal(9,"YlOrRd"),
  transp=FALSE, tit="Number of BH.FDR passing proteins by the quantification approaches")
mtext("dark red for high number signif proteins", cex=0.7)

In the original Ramus et al 2016 et al paper only 3 pairwise comparisons were further analyzed :

## Selection in Ramus paper 
kable(table1[which(rownames(table1) %in% colnames(testPD$BH)[c(2,21,27)]),], caption="Selected pairwise comparisons (as in Ramus et al)", align="c")
Selected pairwise comparisons (as in Ramus et al)
index log2rat conc1 conc2 sig.PD.BH sig.PD.lfdr sig.MQ.BH sig.MQ.lfdr sig.PL.BH sig.PL.lfdr
50000amol-500amol 27 6.644 500 50000 360 310 251 174 363 287
50000amol-5000amol 21 3.322 5000 50000 331 272 158 112 324 282
12500amol-25000amol 2 1.000 12500 25000 11 9 0 0 29 15

Volcano Plots

Volcano-plots offer additional insight in how statistical test results relate to log-fold-change of pair-wise comparisons. In addition, we can mark the different protein-groups (or species) by different symbols, see also the general vignette ‘wrProteoVignette1’ (from this package) and the vignette to the package wrGraph. Counting the number of proteins passing a classical threshold for differential expression combined with a filter for minimum log-fold-change is a good way to start.

As mentioned, the dataset from Ramus et al 2016 contains 9 different levels of UPS1 concentrations, in consequence 36 pair-wise comparisons are possible. Again, plotting all possible Volcano plots would make way too crowded plots, instead we’ll try to summarize (see ROC curves), cluster into groups and finally plot only a few representative ones.

ROC for Multiple Pairs

Receiver Operator Curves (ROC) curves display sensitivity (True Positive Rate) versus 1-Specificity (False Positive Rate). They are typically used as illustrate and compare the discriminiative capacity of a yes/no decision system (here: differential abundance or not), see eg also the original publication Hand and Till 2001.

The data get constructed by sliding through a panel of threshold-values for the statistical tests instead of just using 0.05. Due to the experimental setup we know that all yeast proteins should stay constant and only UPS1 proteins are expected to change. For each of these threshold values one counts the number of true positives (TP), false positives (FP) etc, allowing then to calculate sensitivity and specificity.

In the case of bechmarking quantitation efforts, ROC curves are used to judge how well heterologous spikes UPS1 proteins can be recognized as differentially abundant while constant yeast matrix proteins should not get classified as differential. Finally, ROC curves let us also gain some additional insights in the question which cutoff may be optimal or if the commonly used 5-percent FDR threshld cutoff allows getting the best out of the testing system.

Below, these calculations of summarizeForROC() are run in batch.

layout(1)
rocPD <- lapply(table1[,1], function(x) summarizeForROC(testPD, useComp=x, annotCol="SpecType", spec=c("Yeast","UPS1"), tyThr="BH", plotROC=FALSE,silent=TRUE))
rocMQ <- lapply(table1[,1], function(x) summarizeForROC(testMQ, useComp=x, annotCol="SpecType", spec=c("Yeast","UPS1"), tyThr="BH", plotROC=FALSE,silent=TRUE))
rocPL <- lapply(table1[,1], function(x) summarizeForROC(testPL, useComp=x, annotCol="SpecType", spec=c("Yeast","UPS1"), tyThr="BH", plotROC=FALSE,silent=TRUE))

# we still need to add the names for the pair-wise groups:
names(rocPD) <- names(rocMQ) <- names(rocPL) <- rownames(table1)
#names(rocPD) <- rownames(table1)  #colnames(testPD$BH)[table1[,1]]
#names(rocMQ) <- colnames(testMQ$BH)[table1[,1]]
#names(rocPL) <- colnames(testPL$BH)[table1[,1]]

The next step consists in calculating the area under the curve (AUC) for the individual profiles of each pairwise comparison.

## calulate  AUC for each ROC 
AucAll <- cbind(ind=table1[match(names(rocPD), rownames(table1)),"index"], clu=NA, 
  PD=sapply(rocPD, AucROC), MQ=sapply(rocMQ, AucROC), PL=sapply(rocPL, AucROC) )

To provide a quick overview, the clustered AUC values are displayed as PCA :

biplot(prcomp(AucAll[,names(methNa)]), cex=0.7, main="PCA of AUC from ROC Curves")   

On this PCA one can see a rather disperse/distinct group of low concentration-pairs (separated by PC1, mostly containg at least one 50 or 500fmol), low/med conc pairs (containing 2500, ev 5000) and the rest (med+high to any, high degree of text-superposition). Furthermore, we can see that AUC values from MaxQuant correlate somehow less to Proline and ProteomeDiscoverer (red arrows).

Now we are ready to inspect the 5 clusters in detail :

Grouping of ROC Curves to Display Representative Ones

As mentioned, there are too many pair-wise combinations available for plotting and inspecting all ROC-curves. So we can try to group similar pairwise comparison AUC values into clusters and then easily display representative examples for each cluster/group. Again, we (pre)define that we want to obtain 5 groups (like customer-ratings from 5 to 1 stars), a k-Means clustering approach was chosen.

## number of groups for clustering
nGr <- 5
## K-Means clustering
kMAx <- stats::kmeans(standardW(AucAll[,c("PD","MQ","PL")]), nGr)$cluster  
   table(kMAx)
#> kMAx
#>  1  2  3  4  5 
#>  6  8 18  3  1
AucAll[,"clu"] <- kMAx
AucAll <- reorgByCluNo(AucAll, cluNo=kMAx, useColumn=c("PD","MQ","PL"))
AucAll <- cbind(AucAll, iniInd=table1[match(rownames(AucAll), rownames(table1)), "index"])
colnames(AucAll)[1:(which(colnames(AucAll)=="index")-1)] <- paste("Auc",colnames(AucAll)[1:(which(colnames(AucAll)=="index")-1)], sep=".")
AucAll[,"cluNo"] <- rep(nGr:1, table(AucAll[,"cluNo"]))        # make cluNo descending

kMAx <- AucAll[,"cluNo"]      # update
  table(AucAll[,"cluNo"])
#> 
#>  1  2  3  4  5 
#>  6  1  8  3 18
 ## note : column 'index' is relative to table1, iniInd to ordering inside objects from clustering 

To graphically summarize the AUC values, the clustered AUC values are plotted accompagnied by the geometric mean:

profileAsClu(AucAll[,c(1:length(methNa),(length(methNa)+2:3))], clu="cluNo", meanD="geoMean", tit="Pairwise Comparisons as Clustered AUC from ROC Curves", xlab="Comparison number", ylab="AUC", meLty=1, meLwd=3)

From this figure we can see clearly that there are some pairwise comparisons where all initial analysis-software results yield high AUC values, while other pairwise comparisons less discriminative power.

Again, now we can select a representative pairwise-comparison for each cluster (from the center of each cluster):

AucRep <- table(AucAll[,"cluNo"])[rank(unique(AucAll[,"cluNo"]))]   # representative for each cluster
AucRep <- round(cumsum(AucRep) -AucRep/2 +0.1) 

## select representative for each cluster
kable(round(AucAll[AucRep,c("Auc.PD","Auc.MQ","Auc.PL","cluNo")],3), caption="Selected representative for each cluster ", align="c")  
Selected representative for each cluster
Auc.PD Auc.MQ Auc.PL cluNo
12500amol-500amol 0.970 0.992 0.993 5
5000amol-500amol 0.966 0.908 0.977 4
5000amol-50amol 0.923 0.857 0.932 3
125amol-2500amol 0.725 0.577 0.944 2
125amol-250amol 0.562 0.432 0.481 1

Now we can check if some experimental UPS1 log-fold-change have a bias for some clusters.

ratTab <- sapply(5:1, function(x) { y <- table1[match(rownames(AucAll),rownames(table1)),]
  table(factor(signif(y[which(AucAll[,"cluNo"]==x),"log2rat"],1), levels=unique(signif(table1[,"log2rat"],1))) )}) 
colnames(ratTab) <- paste0("clu",5:1,"\nn=",rev(table(kMAx)))
layout(1)
imageW(ratTab, tit="Frequency of rounded log2FC in the 5 clusters", xLab="log2FC (rounded)", col=RColorBrewer::brewer.pal(9,"YlOrRd"),las=1)
mtext("dark red for high number signif proteins", cex=0.7)

We can see, that the cluster of best ROC-curves (cluster 5) covers practically all UPS1 log-ratios from this experiment without being restricted just to the high ratios.

Plotting ROC Curves for the Best Cluster (the ‘+++++’)

colPanel <- 2:5
gr <- 5 
j <- match(rownames(AucAll)[AucRep[6-gr]], colnames(testPD$t)) 

## table of all proteins in cluster
useLi <- which(AucAll[,"cluNo"]==gr)
tmp <- cbind(round(as.data.frame(AucAll)[useLi,c("cluNo","Auc.PD","Auc.MQ","Auc.PL")],3), 
  as.data.frame(table1)[match(names(useLi),rownames(table1)), c(2,5,7,9)])
kable(tmp, caption="AUC details for best pairwise-comparisons ", align="c")  
AUC details for best pairwise-comparisons
cluNo Auc.PD Auc.MQ Auc.PL log2rat sig.PD.BH sig.MQ.BH sig.PL.BH
250amol-50000amol 5 0.982 1.000 0.995 7.644 379 308 325
25000amol-250amol 5 0.980 0.999 0.997 6.644 234 209 200
50000amol-500amol 5 0.982 0.999 0.995 6.644 360 251 363
125amol-50000amol 5 0.977 0.999 0.996 8.644 356 237 415
25000amol-500amol 5 0.978 0.998 0.994 5.644 243 141 197
12500amol-250amol 5 0.975 0.996 0.997 5.644 131 55 130
50000amol-50amol 5 0.974 0.998 0.990 9.966 572 377 572
25000amol-50amol 5 0.972 0.996 0.989 8.966 587 370 548
12500amol-500amol 5 0.970 0.992 0.993 4.644 156 56 129
2500amol-50000amol 5 0.963 0.999 0.992 4.322 284 169 254
25000amol-2500amol 5 0.950 1.000 0.993 3.322 44 14 69
50000amol-5000amol 5 0.961 0.995 0.986 3.322 331 158 324
12500amol-2500amol 5 0.959 0.998 0.982 2.322 19 5 48
125amol-25000amol 5 0.960 0.972 0.995 7.644 327 182 311
25000amol-5000amol 5 0.947 0.996 0.977 2.322 52 22 73
12500amol-50amol 5 0.933 0.990 0.986 7.966 506 290 482
12500amol-50000amol 5 0.935 0.976 0.977 2.000 229 118 165
12500amol-5000amol 5 0.926 0.973 0.934 1.322 25 5 34
## frequent concentrations :
layout(matrix(1:2), heights=c(1,2.5)) 
plotConcHist(mat=tmp, ref=table1)
    
## representative ROC
jR <- match(rownames(AucAll)[AucRep[6-gr]], names(rocPD))
plotROC(rocPD[[jR]], rocMQ[[jR]], rocPL[[jR]], col=colPanel, methNames=methNa, pointSi=0.8, xlim=c(0,0.45),
  txtLoc=c(0.12,0.1,0.033), tit=paste("Cluster",gr," Example: ",names(rocPD)[jR]), legCex=1)

#fcPar1 <- c(text="arrow: expected ratio at",loc="toright")
## This required package 'wrGraph' at version 1.2.5 (or higher)
if(packageVersion("wrGraph")  >= "1.2.5"){
  layout(matrix(1:4,ncol=2))
  try(VolcanoPlotW(testPD, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[1], expFCarrow=TRUE, silent=TRUE),silent=TRUE) 
  try(VolcanoPlotW(testMQ, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[2], expFCarrow=TRUE, silent=TRUE),silent=TRUE)
  try(VolcanoPlotW(testPL, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[3], expFCarrow=TRUE, silent=TRUE),silent=TRUE)}

ROC Curves for 2nd Best Cluster (the ‘++++’)

gr <- 4
j <- match(rownames(AucAll)[AucRep[6-gr]], colnames(testPD$t)) 

## table of all proteins in cluster
useLi <- which(AucAll[,"cluNo"]==gr)
tmp <- cbind(round(as.data.frame(AucAll)[useLi,c("cluNo","Auc.PD","Auc.MQ","Auc.PL")],3), 
  as.data.frame(table1)[match(names(useLi),rownames(table1)), c(2,5,7,9)])
kable(tmp, caption="AUC details for best pairwise-comparisons ", align="c")  
AUC details for best pairwise-comparisons
cluNo Auc.PD Auc.MQ Auc.PL log2rat sig.PD.BH sig.MQ.BH sig.PL.BH
250amol-5000amol 4 0.972 0.925 0.979 4.322 197 162 141
5000amol-500amol 4 0.966 0.908 0.977 3.322 170 101 130
2500amol-250amol 4 0.929 0.886 0.963 3.322 114 31 92
## frequent concentrations :
layout(matrix(1:2), heights=c(1,2.5)) 
plotConcHist(mat=tmp, ref=table1)
    
## representative ROC
jR <- match(rownames(AucAll)[AucRep[6-gr]], names(rocPD))
plotROC(rocPD[[jR]], rocMQ[[jR]], rocPL[[jR]], col=colPanel, methNames=methNa, pointSi=0.8, xlim=c(0,0.45),
  txtLoc=c(0.12,0.1,0.033), tit=paste("Cluster",gr," Example: ",names(rocPD)[jR]), legCex=1)

if(packageVersion("wrGraph")  >= "1.2.5"){
  layout(matrix(1:4,ncol=2))
  try(VolcanoPlotW(testPD, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[1], expFCarrow=TRUE, silent=TRUE),silent=TRUE) 
  try(VolcanoPlotW(testMQ, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[2], expFCarrow=TRUE, silent=TRUE),silent=TRUE)
  try(VolcanoPlotW(testPL, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[3], expFCarrow=TRUE, silent=TRUE),silent=TRUE)}

ROC Curves for the 3rd Best Cluster (the ‘+++’)

gr <- 3 
j <- match(rownames(AucAll)[AucRep[6-gr]], colnames(testPD$t)) 

## table of all proteins in cluster
useLi <- which(AucAll[,"cluNo"]==gr)
tmp <- cbind(round(as.data.frame(AucAll)[useLi,c("cluNo","Auc.PD","Auc.MQ","Auc.PL")],3), 
  as.data.frame(table1)[match(names(useLi),rownames(table1)), c(2,5,7,9)])
kable(tmp, caption="AUC details for best pairwise-comparisons ", align="c")  
AUC details for best pairwise-comparisons
cluNo Auc.PD Auc.MQ Auc.PL log2rat sig.PD.BH sig.MQ.BH sig.PL.BH
12500amol-125amol 3 0.879 0.918 0.992 6.644 220 84 236
125amol-5000amol 3 0.891 0.894 0.967 5.322 281 121 205
2500amol-500amol 3 0.900 0.877 0.959 2.322 113 44 97
5000amol-50amol 3 0.923 0.857 0.932 6.644 599 375 523
12500amol-25000amol 3 0.888 0.882 0.934 1.000 11 0 29
2500amol-5000amol 3 0.811 0.948 0.915 1.000 13 2 13
25000amol-50000amol 3 0.850 0.882 0.926 1.000 136 61 92
2500amol-50amol 3 0.862 0.846 0.882 5.644 556 306 491
## frequent concentrations :
layout(matrix(1:2), heights=c(1,2.5)) 
plotConcHist(mat=tmp, ref=table1)

## representative ROC
jR <- match(rownames(AucAll)[AucRep[6-gr]], names(rocPD))
plotROC(rocPD[[jR]],rocMQ[[jR]],rocPL[[jR]], col=colPanel, methNames=methNa, pointSi=0.8, xlim=c(0,0.45),
  txtLoc=c(0.12,0.1,0.033), tit=paste("Cluster",gr," Example: ",names(rocPD)[jR]), legCex=1)

if(packageVersion("wrGraph")  >= "1.2.5"){
  layout(matrix(1:4,ncol=2))
  try(VolcanoPlotW(testPD, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[1], expFCarrow=TRUE, silent=TRUE),silent=TRUE) 
  try(VolcanoPlotW(testMQ, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[2], expFCarrow=TRUE, silent=TRUE),silent=TRUE)
  try(VolcanoPlotW(testPL, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[3], expFCarrow=TRUE, silent=TRUE),silent=TRUE)}

ROC Curves for the 4th Best Cluster (the ‘++’)

gr <- 2 
j <- match(rownames(AucAll)[AucRep[6-gr]], colnames(testPD$t)) 

## table of all proteins in cluster
useLi <- which(AucAll[,"cluNo"]==gr)
tmp <- cbind(round(as.data.frame(AucAll)[useLi,c("cluNo","Auc.PD","Auc.MQ","Auc.PL")],3), 
  as.data.frame(table1)[match(names(useLi),rownames(table1)), c(2,5,7,9)])
kable(tmp, caption="AUC details for best pairwise-comparisons ", align="c")  
AUC details for best pairwise-comparisons
cluNo Auc.PD Auc.MQ Auc.PL log2rat sig.PD.BH sig.MQ.BH sig.PL.BH
125amol-2500amol 2 0.725 0.577 0.944 4.322 197 76 184
## frequent concentrations :
layout(matrix(1:2), heights=c(1,2.5)) 
plotConcHist(mat=tmp, ref=table1)

## representative ROC
jR <- match(rownames(AucAll)[AucRep[6-gr]], names(rocPD))
plotROC(rocPD[[jR]], rocMQ[[jR]], rocPL[[jR]], col=colPanel, methNames=methNa, pointSi=0.8, xlim=c(0,0.45),
  txtLoc=c(0.12,0.1,0.033), tit=paste("Cluster",gr," Example: ",names(rocPD)[jR]), legCex=1)

if(packageVersion("wrGraph")  >= "1.2.5"){
  layout(matrix(1:4,ncol=2))
  try(VolcanoPlotW(testPD, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[1], expFCarrow=TRUE, silent=TRUE),silent=TRUE) 
  try(VolcanoPlotW(testMQ, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[2], expFCarrow=TRUE, silent=TRUE),silent=TRUE)
  try(VolcanoPlotW(testPL, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[3], expFCarrow=TRUE, silent=TRUE),silent=TRUE)}

ROC Curves for the Weakest Cluster 1 (the ‘+’)

gr <- 1 
j <- match(rownames(AucAll)[AucRep[6-gr]], colnames(testPD$t))

## table of all proteins in cluster
useLi <- which(AucAll[,"cluNo"]==gr)
tmp <- cbind(round(as.data.frame(AucAll)[useLi,c("cluNo","Auc.PD","Auc.MQ","Auc.PL")],3), 
  as.data.frame(table1)[match(names(useLi),rownames(table1)), c(2,5,7,9)])
kable(tmp, caption="AUC details for best pairwise-comparisons ", align="c")  
AUC details for best pairwise-comparisons
cluNo Auc.PD Auc.MQ Auc.PL log2rat sig.PD.BH sig.MQ.BH sig.PL.BH
250amol-500amol 1 0.589 0.561 0.561 1.000 6 2 3
125amol-500amol 1 0.539 0.451 0.677 2.000 21 6 30
125amol-250amol 1 0.562 0.432 0.481 1.000 15 0 2
125amol-50amol 1 0.493 0.326 0.459 1.322 277 120 216
500amol-50amol 1 0.452 0.330 0.469 3.322 426 216 380
250amol-50amol 1 0.377 0.367 0.385 2.322 354 183 315
## frequent concentrations :
layout(matrix(1:2, ncol=1), heights=c(1,2.5)) 
plotConcHist(mat=tmp, ref=table1)
    
## representative ROC
jR <- match(rownames(AucAll)[AucRep[6-gr]], names(rocPD))
plotROC(rocPD[[jR]], rocMQ[[jR]], rocPL[[jR]], col=colPanel, methNames=methNa, pointSi=0.8, xlim=c(0,0.45),
  txtLoc=c(0.12,0.1,0.033), tit=paste("Cluster",gr," Example: ",names(rocPD)[jR]), legCex=1)

if(packageVersion("wrGraph")  >= "1.2.5"){
  layout(matrix(1:4,ncol=2))
  try(VolcanoPlotW(testPD, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[1], expFCarrow=TRUE, silent=TRUE),silent=TRUE) 
  try(VolcanoPlotW(testMQ, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[2], expFCarrow=TRUE, silent=TRUE),silent=TRUE)
  try(VolcanoPlotW(testPL, useComp=j, FCthrs=1.5, FdrThrs=0.05, annColor=c(4,2,3), ProjNa=methNa[3], expFCarrow=TRUE, silent=TRUE),silent=TRUE)}


Analysis Focussing on UPS1 Spike-In Proteins Only

We know from the experimental setup that there were 48 UPS1 proteins) present in the commercial mix added to a constant background of yeast-proteins. The lowest concentrations are extremely challenging and it is no surprise that many of them were not detected at the lowest concentration(s). In order to choose among the various concentrations of UPS1, let’s look how many NAs are in each group of replicates (ie before NA-imputation), and in particular, the number of NAs among the UPS1 proteins.

Previsouly we’ve looked at the total number of NAs, now let’s focus just on the UPS1 proteins. Obviously, instances of non-quantified UPS1 proteins make the following comparisons using these samples rather insecure, since NA-imputation is just an ‘educated guess’.

tab1 <- rbind(PD=sumNAperGroup(dataPD$raw[which(dataPD$annot[,"SpecType"]=="UPS1"),], grp9),
  MQ=sumNAperGroup(dataMQ$raw[which(dataMQ$annot[,"SpecType"]=="UPS1"),], grp9),
  PL= sumNAperGroup(dataPL$raw[which(dataPL$annot[,"SpecType"]=="UPS1"),], grp9)  ) 
kable(tab1, caption="The number of NAs in the UPS1 proteins", align="c")
The number of NAs in the UPS1 proteins
50amol 125amol 250amol 500amol 2500amol 5000amol 12500amol 25000amol 50000amol
PD 79 73 69 43 1 0 0 0 0
MQ 112 113 109 98 19 10 3 4 1
PL 27 32 34 20 0 0 0 0 0

One can see that starting the 5th level of UPS1 concentrations almost all UPS1 proteins were found in nearly all samples. In consequence we’ll avoid using all of them at all times, but this should be made depending on the very protein and quantification method.

Let’s look graphically at the number of NAs in each of the UPS1 proteins along the quantification methods :

countRawNA <- function(dat, newOrd=UPS1$ac, relative=FALSE) {  # count number of NAs per UPS protein and order as UPS
  out <- rowSums(is.na(dat$raw[match(newOrd,rownames(dat$raw)),])) 
  if(relative) out/nrow(dat$raw) else out }

sumNAperMeth <- cbind(PD=countRawNA(dataPD), MQ=countRawNA(dataMQ), PL=countRawNA(dataPL) )
UPS1na <- sub("_UPS","",dataPL$annot[UPS1$ac,"EntryName"])
par(mar=c(6.8, 3.5, 4, 1))   
imageW(sumNAperMeth, rowNa=UPS1na, tit="Number of NAs in UPS proteins", xLab="", yLab="", 
  transp=FALSE, col=RColorBrewer::brewer.pal(9,"YlOrRd"))
mtext("dark red for high number of NAs",cex=0.7)

Typically the number of NAs is similar when comparing the different quantitation approaches, it tends to be a bit higher with MaxQuant. This means that some UPS1 proteins which are easier to (detect and) quantify than others. We can conclude, the capacity to successfully quantify a given protein depends on its abundance and its composition.

Similarity by PCA (UPS1 only)

Plotting the principal components (PCA) typically allows to gain an overview on how samples are related to each other. This type of experiment is special for the fact that the majority of proteins is expected to remain constant (yeast matrix), while only the UPS1 proteins vary. Since we are primarily intereseted in the UPS1 proteins, the regular plots of PCA are not shown here, but PCA of the lines identified as UPS1.

Principal component analysis (PCA) cannot handle NA-values. Either all lines with any NAs have to be excluded, or data after NA-imputation have to be used. Here, the option of plotting data after NA-imputation was chosen (in the context of filtering UPS1 lines only one whould loose too many lines, ie proteins). Below plots are be made using the function plotPCAw() from the package wrGraph. Via indexing we choose only the lines./proteins with the annoation ‘UPS1’.

PCA of UPS1 for ProteomeDiscoverer

plotPCAw(testPD$datImp[which(testPD$annot[,"SpecType"]=="UPS1"),], sampleGrp=grp9, tit="PCA on ProteomeDiscoverer, UPS1 only (NAs imputed)",rowTyName="proteins", useSymb2=0)

PCA of UPS1 for MaxQuant

plotPCAw(testMQ$datImp[which(testMQ$annot[,"SpecType"]=="UPS1"),], sampleGrp=grp9, tit="PCA on MaxQuant, UPS1 only (NAs imputed)",rowTyName="proteins", useSymb2=0)

PCA of UPS1 for Proline

plotPCAw(testPL$datImp[which(testPL$annot[,"SpecType"]=="UPS1"),], sampleGrp=grp9, tit="PCA on Proline, UPS1 only (NAs imputed)",rowTyName="proteins", useSymb2=0)

Based on PCA plots one can see that the concentrations 125 - 500 aMol are very much alike and detecting differences may perform better when not combining them, as also confirmed by ROC part later. In the Screeplot we can see that the first principal component captures almost all variability. Thus, displaying the 3rd principal component (as done above) finally has no importance.

CV of Replicates

In order to have more data available for linear regression modelling it was decided to use UPS1 abundance values after NA-Imputation for linear regressions. Previously it was shown that NA values originate predominantly from absent or very low abundance quantitations, which justified relplacing NA values by low abundance values in a shrinkage like fashion.

As general indicator for data-quality and -usability let’s look at the intra-replicate variability. Here we plot all intra-group CVs (defined by UPS1-concentration), either the CVs for all quantified proteins or the UPS1 proteins only.

In the figure below the complete series (including yeast) is shown on the left side, the human UPS1 proteins only on the right side. Briefly, vioplots show a kernel-estimate for the distribution, in addition, a box-plot is also integrated (see vignette to package wrGraph).

## combined plot : all data (left), Ups1 (right)
layout(1:3)
sumNAinPD <- list(length=18)
sumNAinPD[2*(1:length(unique(grp9))) -1] <- as.list(as.data.frame(log2(rowGrpCV(testPD$datImp, grp9))))
sumNAinPD[2*(1:length(unique(grp9))) ] <- as.list(as.data.frame(log2(rowGrpCV(testPD$datImp[which(testPD$annot[,"SpecType"]=="UPS1"),], grp9))))
names(sumNAinPD)[2*(1:length(unique(grp9))) -1] <-  sub("amol","",unique(grp9))
names(sumNAinPD)[2*(1:length(unique(grp9))) ] <- paste(sub("amol","",unique(grp9)),"Ups",sep=".")
vioplotW(sumNAinPD, halfViolin="pairwise", tit="CV Intra Replicate, ProteomeDiscoverer", cexNameSer=0.6) 
#> -> vioplotW -> asSepList : argument 'fxArg' is depreciated, please use argument 'exclElem' (still using since 'exclElem=NULL'
mtext("left part : all data\nright part: UPS1",adj=0,cex=0.8)

sumNAinMQ <- list(length=18)
sumNAinMQ[2*(1:length(unique(grp9))) -1] <- as.list(as.data.frame(log2(rowGrpCV(testMQ$datImp, grp9))))
sumNAinMQ[2*(1:length(unique(grp9))) ] <- as.list(as.data.frame(log2(rowGrpCV(testMQ$datImp[which(testMQ$annot[,"SpecType"]=="UPS1"),], grp9))))
names(sumNAinMQ)[2*(1:length(unique(grp9))) -1] <- sub("amol","",unique(grp9))                        # paste(unique(grp9),"all",sep=".")
names(sumNAinMQ)[2*(1:length(unique(grp9))) ] <- paste(sub("amol","",unique(grp9)),"Ups",sep=".")      #paste(unique(grp9),"Ups1",sep=".")
vioplotW(sumNAinMQ, halfViolin="pairwise", tit="CV intra replicate, MaxQuant",cexNameSer=0.6) 
#> -> vioplotW -> asSepList : argument 'fxArg' is depreciated, please use argument 'exclElem' (still using since 'exclElem=NULL'
mtext("left part : all data\nright part: UPS1",adj=0,cex=0.8)

sumNAinPL <- list(length=18)
sumNAinPL[2*(1:length(unique(grp9))) -1] <- as.list(as.data.frame(log2(rowGrpCV(testPL$datImp, grp9))))
sumNAinPL[2*(1:length(unique(grp9))) ] <- as.list(as.data.frame(log2(rowGrpCV(testPL$datImp[which(testPL$annot[,"SpecType"]=="UPS1"),], grp9))))
names(sumNAinPL)[2*(1:length(unique(grp9))) -1] <-  sub("amol","",unique(grp9))
names(sumNAinPL)[2*(1:length(unique(grp9))) ] <- paste(sub("amol","",unique(grp9)),"Ups",sep=".")
vioplotW(sumNAinPL, halfViolin="pairwise", tit="CV Intra Replicate, Proline", cexNameSer=0.6) 
#> -> vioplotW -> asSepList : argument 'fxArg' is depreciated, please use argument 'exclElem' (still using since 'exclElem=NULL'
mtext("left part : all data\nright part: UPS1",adj=0,cex=0.8)

The distribution of intra-group CV-values showed (without major surprise) that the highest UPS1 concentrations replicated best. This phenomenon also correlates with the content of NAs in the original data. When imputing NA-values it is a challange to respect the variability of the respective data (NA-neighbours) before NA-imputation. Many NA-values can be observed when looking at very low UPS1-doses and too few initial quantitations values may remain for meaningful comparisons. Of course, with an elevanted content of NAs the mechanism of NA-substitution will also contribute to masking (in part) the true variability.

In consequence pair-wise comparisons using one of the higher UPS1-concentrations group are expected to have a decent chance to rather specifically reveil a high number of UPS1 proteins.

Once can see that lower concentrations of UPS1 usually have worse CV (coefficient of variance) in the respective samples,

Testing All Individual UPS1 Proteins By Linear Regression

First, we construct a container for storing various measures and results which we will look at lateron.

## prepare object for storing all results
datUPS1 <- array(NA, dim=c(length(UPS1$ac),length(methNa),7), dimnames=list(UPS1$ac,c("PD","MQ","PL"),
  c("sco","nPep","medAbund", "logp","slope","startFr","cluNo")))

Now we’ll calculate the linear models, extract slope & pval for each UPS1 protein. The functions used also allow plotting the resulting regression results, but plotting each UPS1 protein would make very crowded figures. Instead, we’ll plot representative examples only aftr clustering the regression-results.

Linear Regression for each UPS1 : ProteomeDiscoverer

lmPD <- list(length=length(NamesUpsPD))
doPl <- FALSE
lmPD[1:length(NamesUpsPD)] <- lapply(NamesUpsPD[1:length(NamesUpsPD)], linModelSelect, dat=dataPD, 
  expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=doPl, silent=TRUE)
names(lmPD) <- NamesUpsPD
## We make a little summary of regression-results (ProteomeDiscoverer)
linIn <- match(names(lmPD), UPS1$ac)
datUPS1[linIn,1,c("logp","slope","startFr")] <- cbind(log10(sapply(lmPD, function(x) x$coef[2,4])), 
  sapply(lmPD, function(x) x$coef[2,1]), sapply(lmPD, function(x) x$startLev) )
## need correct rownames in  dataPD$datImp !!! 
datUPS1[,1,"medAbund"] <- apply(wrMisc::.scale01(dataPD$datImp)[match(UPS1$ac,rownames(dataPD$datImp)),],1,median,na.rm=TRUE)

Linear Regression for each UPS1 : MaxQuant

lmMQ <- list(length=length(NamesUpsMQ))
lmMQ[1:length(NamesUpsMQ)] <- lapply(NamesUpsMQ[1:length(NamesUpsMQ)], linModelSelect, dat=dataMQ, 
  expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=doPl, silent=TRUE)
names(lmMQ) <- NamesUpsMQ
## We make a little summary of regression-results (MaxQuant)
linIn <- match(names(lmMQ), UPS1$ac)
datUPS1[linIn,2,c("logp","slope","startFr")] <- cbind( log10(sapply(lmMQ, function(x) x$coef[2,4])), 
  sapply(lmMQ, function(x) x$coef[2,1]), sapply(lmMQ, function(x) x$startLev) )
datUPS1[,2,"medAbund"] <- apply(wrMisc::.scale01(dataMQ$datImp)[match(UPS1$ac,rownames(dataMQ$datImp)),],1,median,na.rm=TRUE)

Linear Regression for each UPS1 : Proline

lmPL <- list(length=length(NamesUpsPL))
lmPL[1:length(NamesUpsPL)] <- lapply(NamesUpsPL[1:length(NamesUpsPL)], linModelSelect, dat=dataPL, 
  expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=doPl, silent=TRUE)
names(lmPL) <- NamesUpsPL   
linIn <- match(names(lmPL), UPS1$ac)
datUPS1[linIn,3,c("logp","slope","startFr")] <- cbind(log10(sapply(lmPL, function(x) x$coef[2,4])), 
  sapply(lmPL, function(x) x$coef[2,1]), sapply(lmPL, function(x) x$startLev) )
datUPS1[,3,"medAbund"] <- apply(wrMisc::.scale01(dataPL$datImp)[match(UPS1$ac,rownames(dataPL$datImp)),],1,median,na.rm=TRUE)

Frequency Of Starting Levels For Regression

To get a general view, let’s look where regressions typically have their best starting-site (ie how many low concentrations points are usually better omitted):

## at which concentration of UPS1 did the best regression start ?
stTab <- sapply(1:5, function(x) apply(datUPS1[,,"startFr"],2,function(y) sum(x==y)))
colnames(stTab) <- paste("lev",1:5,sep="_")
kable(stTab, caption = "Frequency of starting levels for regression")
Frequency of starting levels for regression
lev_1 lev_2 lev_3 lev_4 lev_5
PD 2 21 12 3 10
MQ 4 12 8 6 18
PL 6 7 10 5 20

Global Comparison Of Regression Models

Next, we’ll inspect the relation between regression-slopes and p-values (for H0: slope=0) :

layout(matrix(1:4,ncol=2))
subTi <- "fill according to median abundance (blue=low - green - red=high)"

plotMultRegrPar(datUPS1,1,xlim=c(-25,-1),ylim=c(0.1,1.6),tit="ProteomeDiscoverer UPS1, p-value vs slope",subTit=subTi)
plotMultRegrPar(datUPS1,2,xlim=c(-25,-1),ylim=c(0.1,1.6),tit="MaxQuant UPS1, p-value vs slope",subTit=subTi)
plotMultRegrPar(datUPS1,3,xlim=c(-25,-1),ylim=c(0.1,1.6),tit="Proline UPS1, p-value vs slope",subTit=subTi)

We can observe, that sope and (log)p-value of the resultant regressions do not necessarily correlate well. Thus, considering only one of these resultant values may not be sufficient.

Summarize Linear Regression Results

When judging results for indivual UPS1 proteins one may see that both the value of the slope as well as the p-value (for H0:slope=0) are important to consider. For example, there are some cases where the quantitations lign up well giving a good p-value but with slopes < 0.4. This is definitely not the type of dose-response characteristics we are looking for. In consequence, let’s construct a combined score for these components slope and p-value for easier consideration of both elements at once :

for(i in 1:(dim(datUPS1)[2])) datUPS1[,i,"sco"] <- -datUPS1[,i,"logp"] - (datUPS1[,i,"slope"] -1)^2    # cut at > 8

Next, let’s bring together all linear-model scores, the number of peptides and meadian protein abundance for each of UPS1 proteins in one object to facilite further steps.

datUPS1[,1,2] <- rowSums(dataPD$count[match(UPS1$ac,dataPD$annot[,1]),,"NoOfPeptides"], na.rm=TRUE)
datUPS1[,2,2] <- rowSums(dataMQ$count[match(UPS1$ac,dataMQ$annot[,1]),,1], na.rm=TRUE)
datUPS1[,3,2] <- rowSums(dataPL$count[match(UPS1$ac,dataPL$annot[,1]),,"NoOfPeptides"], na.rm=TRUE)

Now we can explore the regression score and its context to other parameters, below it’s done graphically.

layout(matrix(1:4, ncol=2))
par(mar=c(5.5, 2.2, 4, 0.4))
col1 <- RColorBrewer::brewer.pal(9,"YlOrRd")  
imageW(datUPS1[,,1], col=col1, tit="Linear regression score", xLab="",yLab="",transp=FALSE)
mtext("red for bad score", cex=0.75)

imageW(log(datUPS1[,,2]), tit="Number of peptides", xLab="",yLab="", col=col1, transp=FALSE)
mtext("dark red for high number of peptides", cex=0.75)

## ratio : regression score vs no of peptides
imageW(datUPS1[,,1]/log(datUPS1[,,2]), col=rev(col1), tit="Regression score / Number of peptides", xLab="",yLab="", transp=FALSE)
mtext("dark red for high (good) lmScore/peptide ratio)", cex=0.75)

## score vs abundance
imageW(datUPS1[,,1]/datUPS1[,,3], col=rev(col1), tit="Regression score / median Abundance", xLab="",yLab="", transp=FALSE)
mtext("dark red for high (good) lmScore/abundance ratio)", cex=0.75)

From the heatmap-like plots we can see that some proteins are rather consistently quantified better by any of the methods. Some of the varaibility may be explained by the number of peptides (in case of MaxQuant ‘razor-peptides’ were used), see plot of ‘regression score / number of peptides’.
In contrast, UPS-protein median abundance does not correlate or explain this phenomenon (see last plot ‘regression score / median abundance’). So we cannot support the hypothesis that highly abundant proteins get quantified better.

Grouping of UPS1 Proteins to Display Representative Proteins

Using the linear regression score defined above we can rank UPS1 proteins and display representative ones in order to avoid crowed and repetitive figures.

Now, we can try to group the regression scores into groups and easily display representative examples for each group. Here, we (pre)define that we want to obtain 5 groups (like ratings from 1 -5 starts), a k-Means clustering approach was chosen.

## number of groups for clustering
nGr <- 5

## clustering using kMeans
kMx <- stats::kmeans(standardW(datUPS1[,,"sco"], byColumn=FALSE), nGr)$cluster  
datUPS1[,,"cluNo"] <- matrix(rep(kMx,dim(datUPS1)[2]), nrow=length(kMx))

geoM <- apply(datUPS1[,,"sco"], 1, function(x) prod(x)^(1/length(x)))        # geometric mean across analysis soft
geoM2 <- lrbind(by(cbind(geoM,datUPS1[,,"sco"], clu=kMx), kMx, function(x) x[order(x[,1],decreasing=TRUE),]))  # organize by clusters
tmp <- tapply(geoM2[,"geoM"], geoM2[,"clu"], median)
geoM2[,"clu"] <- rep(rank(tmp, ties.method="first"), table(kMx))
geoM2 <- geoM2[order(geoM2[,"clu"],geoM2[,"geoM"],decreasing=TRUE),]         # order as decreasing median.per.cluster
geoM2[,"clu"] <- rep(1:max(kMx), table(geoM2[,"clu"])[rank(unique(geoM2[,"clu"]))])    # replace cluster-names to increasing 

profileAsClu(geoM2[,2:4], geoM2[,"clu"], tit="Clustered Regression Results for UPS1 Proteins", ylab="Linear regression score") 

datUPS1 <- datUPS1[match(rownames(geoM2), rownames(datUPS1)),,]               # bring in new order
datUPS1[,,"cluNo"] <- geoM2[,"clu"]                                          # update cluster-names

### prepare annotation of UPS proteins
annUPS1 <- dataPL$annot[match(rownames(datUPS1), dataPL$annot[,1]), c(1,3)]
annUPS1[,2] <- substr(sub("_UPS","",sub("generic_ups\\|[[:alnum:]]+-{0,1}[[:digit:]]\\|","",annUPS1[,2])),1,42)
## index of representative for each cluster  (median position inside cluster)
UPSrep <- tapply(geoM2[,"geoM"], geoM2[,"clu"], function(x) floor(length(x)/2))+ c(0,cumsum(table(geoM2[,"clu"])[-5]))

Previously we organized all UPS1 proteins according to their regression characteristics into 5 clusters and each cluster was ordered for descending scores. Now we can use the median position within each cluster as representative example for this cluster.

Representative UPS1-protein of the Best Group (the ‘+++++’)

gr <- 1
useLi <- which(datUPS1[,1,"cluNo"]==gr)
colNa <- c("Protein",paste(colnames(datUPS1), rep(c("slope","logp"), each=ncol(datUPS1)), sep=" "))
try(kable(cbind(annUPS1[useLi,2], signif(datUPS1[useLi,,"slope"],3), signif(datUPS1[useLi,,"logp"],3)), 
  caption="Regression details for cluster of best UPS1 proteins ", col.names=colNa, align="l"),silent=TRUE)
Regression details for cluster of best UPS1 proteins
Protein PD slope MQ slope PL slope PD logp MQ logp PL logp
P00915 Carbonic anhydrase 1 (Chain 2-261) 1.07 1.4 1.02 -23.6 -16.9 -23.9
P10636-8 Microtubule-associated protein tau (Isofor 1.08 1.42 0.937 -18.2 -17.9 -22
P41159 Leptin (Chain 22-167) 1.22 1.11 0.904 -21.5 -19.1 -17
P00167 Cytochrome b5 (Chain 1-134, N-terminal His 1.06 1.18 0.972 -22.2 -18.2 -17.3
P06732 Creatine kinase M-type (Chain 1-381) 1.15 1.54 0.89 -18.2 -18.1 -18.9
P55957 BH3-interacting domain death agonist (Chai 1.08 1.06 0.969 -19.8 -18.3 -16.6
P00918 Carbonic anhydrase 2 (Chain 2-260) 1.17 1.29 0.925 -18.1 -16.7 -20
P01375 Tumor necrosis factor, soluble form (Chain 1.15 0.944 1.17 -22.4 -15.1 -17.5
P05413 Fatty acid-binding protein, heart (Chain 2 1.07 1.2 0.864 -18.2 -16.9 -19.1
P08758 Annexin A5 (Chain 2-320) 1.09 1.17 0.925 -19.7 -16.7 -16.7
P01344 Insulin-like growth factor II (Chain 25-91 0.996 0.889 0.903 -17.6 -18.2 -16.5
P06396 Gelsolin (Chain 28-782) 1.12 1.41 0.399 -21.7 -19 -13.2
P00709 Alpha-lactalbumin (Chain 20-142) 0.994 1.19 0.944 -19.9 -15.8 -16.5
P02787 Serotransferrin (Chain 20-698) 1.1 1.46 0.813 -22.7 -17.6 -12.5
P02144 Myoglobin (Chain 2-154) 1.18 1.22 0.575 -17.9 -19.1 -13.9
## Plotting the best regressions, this required package wrGraph version 1.2.5 (or higher)
if(packageVersion("wrGraph")  >= "1.2.5"){
  layout(matrix(1:4, ncol=2))
  tit <- paste0(methNa,", ",annUPS1[UPSrep[gr],1])
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataPD, tit=tit[1], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE)
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataMQ, tit=tit[2], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE)
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataPL, tit=tit[3], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE) }

Representative UPS1-protein of the 2nd Best Group (the ‘++++’)

gr <- 2
useLi <- which(datUPS1[,1,"cluNo"]==gr)
try(kable(cbind(annUPS1[useLi,2], signif(datUPS1[useLi,,"slope"],3), signif(datUPS1[useLi,,"logp"],3)), 
  caption="Regression details for cluster of 2nd best UPS1 proteins ", col.names=colNa, align="l"),silent=TRUE)
Regression details for cluster of 2nd best UPS1 proteins
Protein PD slope MQ slope PL slope PD logp MQ logp PL logp
P02768 Serum albumin (Chain 26-609) 1 1.46 0.808 -16.5 -15.4 -19.7
P01579 Interferon Gamma (Chain 23-166) 1.07 1.05 0.831 -18.1 -13.7 -19.2
P01008 Antithrombin-III (Chain 33-464) 0.959 1.24 0.864 -17.2 -16.6 -16.5
P02788 Lactotransferrin (Chain 20-710) 1.3 1.47 0.688 -16.2 -17.9 -16.1
O00762 Ubiquitin-conjugating enzyme E2 C (Chain 1 1.08 1.19 0.917 -18.4 -12.9 -18.7
P04040 Catalase (Chain 2-527) 0.997 1.35 0.75 -13.5 -17.5 -18.2
P12081 Histidyl-tRNA synthetase, cytoplasmic (Cha 0.885 1.28 0.863 -16.6 -15.2 -13.8
P16083 Ribosyldihydronicotinamide dehydrogenase [ 1.24 1.75 0.883 -13.6 -16.3 -16.1
P62937 Peptidyl-prolyl cis-trans isomerase A (Cha 0.979 1.26 0.895 -18.2 -12.3 -15.2
P01127 Platelet-derived growth factor B chain (Ch 1.1 1.48 1.02 -16.4 -11.3 -16.9
P01133 Pro-Epidermal growth factor (EGF) (Chain 9 0.982 1.06 0.89 -17.2 -13.6 -13.1
Q06830 Peroxiredoxin 1 (Chain 2-199) 0.78 0.89 0.698 -15 -12.2 -16.6
O76070 Gamma-synuclein (Chain 1-127) 1.06 1.04 0.698 -16.4 -15.2 -12.1
P51965 Ubiquitin-conjugating enzyme E2 E1 (Chain 1 1.16 0.465 -18.9 -11.4 -14
P61626 Lysozyme C (Chain 19-148) 1.17 0.658 1.16 -17.2 -11.6 -13.7
if(packageVersion("wrGraph")  >= "1.2.5"){
  layout(matrix(1:4, ncol=2))
  tit <- paste0(methNa,", ",annUPS1[UPSrep[gr],1])
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataPD, tit=tit[1], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE)
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataMQ, tit=tit[2], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE)
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataPL, tit=tit[3], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE) }

Representative UPS1-protein of the 3rd Group (the ‘+++’)

gr <- 3
useLi <- which(datUPS1[,1,"cluNo"]==gr)
try(kable(cbind(annUPS1[useLi,2], signif(datUPS1[useLi,,"slope"],3), signif(datUPS1[useLi,,"logp"],3)), 
  caption="Regression details for 3rd cluster UPS1 proteins ", col.names=colNa, align="l"),silent=TRUE)
Regression details for 3rd cluster UPS1 proteins
Protein PD slope MQ slope PL slope PD logp MQ logp PL logp
P68871 Hemoglobin subunit beta (Chain 2-147) 0.689 1.51 0.804 -13.4 -13.8 -14.9
P01112 GTPase HRas (Chain 1-189) 0.805 0.703 0.835 -12.8 -11.4 -15.6
P62988 Ubiquitin (Chain 1-76, N-terminal His tag) 0.869 1.06 0.0609 -13.2 -12.1 -14.9
P99999 Cytochrome c (Chain 2-105) 0.908 1.32 0.438 -12 -12.9 -12.2
P15559 NAD(P)H dehydrogenase [quinone] 1 (Chain 2 0.0732 1.04 0.113 -10.1 -14.8 -13
P08263 Glutathione S-transferase A1 (Chain 2-222) 0.403 1.12 0.21 -10.4 -16.4 -10.6
P02753 Retinol-binding protein 4 (Chain 19-201) 0.329 0.548 0.849 -10.3 -9.58 -15.9
P09211 Glutathione S-transferase P (Chain 2-210) 0.719 0.897 0.629 -10.5 -10.9 -12.3
P63165 Small ubiquitin-related modifier 1 (Chain 1.3 0.844 0.704 -9.04 -11.1 -13.5
if(packageVersion("wrGraph")  >= "1.2.5"){
  layout(matrix(1:4, ncol=2))
  tit <- paste0(methNa,", ",annUPS1[UPSrep[gr],1])
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataPD, tit=tit[1], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE)
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataMQ, tit=tit[2], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE)
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataPL, tit=tit[3], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE) }

Representative UPS1-protein of the 4th Group (the ‘++’)

gr <- 4
useLi <- which(datUPS1[,1,"cluNo"]==gr)
try(kable(cbind(annUPS1[useLi,2], signif(datUPS1[useLi,,"slope"],3), signif(datUPS1[useLi,,"logp"],3)), 
  caption="Regression details for 3rd cluster UPS1 proteins ", col.names=colNa, align="l"),silent=TRUE)
Regression details for 3rd cluster UPS1 proteins
Protein PD slope MQ slope PL slope PD logp MQ logp PL logp
P61769 Beta-2-microglobulin (Chain 21-119) 1.26 0.625 0.664 -17.5 -8.74 -12.2
Q15843 NEDD8 (Chain 1-81) 1.17 0.852 1 -12.6 -7.2 -14.3
P10599 Thioredoxin (Chain 2-105, N-terminal His 0.94 0.333 0.959 -15.5 -5.14 -15.3
P10145 Interleukin-8, IL-8 (Chain 28-99) 0.881 1.09 0.983 -10.9 -8.31 -10.7
P02741 C-reactive protein (Chain 19-224) 0.265 1.03 0.872 -12.2 -7.2 -11.2
P00441 Superoxide dismutase [Cu-Zn] (Chain 2-154) 0.758 1.18 0.505 -11.6 -7.5 -10.3
P63279 SUMO-conjugating enzyme UBC9 (Chain 1-158) 0.853 1.08 0.549 -12.7 -8.57 -7.9

if(packageVersion("wrGraph")  >= "1.2.5"){
  layout(matrix(1:4, ncol=2))
  tit <- paste0(methNa,", ",annUPS1[UPSrep[gr],1])
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataPD, tit=tit[1], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE)
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataMQ, tit=tit[2], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE)
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataPL, tit=tit[3], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE) }

Representative UPS1-protein of the 5th (And Last) Group (the ‘+’)

gr <- 5
useLi <- which(datUPS1[,1,"cluNo"]==gr)
try(kable(cbind(annUPS1[useLi,2], signif(datUPS1[useLi,,"slope"],3), signif(datUPS1[useLi,,"logp"],3)), 
  caption="Regression details for 5th cluster UPS1 proteins ", col.names=colNa, align="l"),silent=TRUE)
Regression details for 5th cluster UPS1 proteins
Protein PD slope MQ slope PL slope PD logp MQ logp PL logp
P01031 Complement C5 (C5a anaphylatoxin) (Chain 6 0.465 1.16 0.888 -8.08 -6.34 -12.7
P69905 Hemoglobin subunit alpha (Chain 2-142) 0.507 0.306 1.01 -9.24 -1.41 -8.73
if(packageVersion("wrGraph")  >= "1.2.5"){
  layout(matrix(1:4, ncol=2))
  tit <- paste0(methNa,", ",annUPS1[UPSrep[gr],1])
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataPD, tit=tit[1], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE)
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataMQ, tit=tit[2], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE)
  try(tm <- linModelSelect(annUPS1[UPSrep[gr],1], dat=dataPL, tit=tit[3], expect=grp9, startLev=1:5, cexXAxis=0.7, logExpect=TRUE, plotGraph=TRUE, silent=TRUE),silent=TRUE) }

Additional Comments

The choice of the ‘best suited’ approach to quantify and compare proteomics data is not trivial at all. Particular attention has to be given to the choice of the numerous ‘small’ parameters which may have a very strong impact on the final outcome, as it has been experienced when preparing the data for this vignette or at other places (eg Chawade et al 2015). Thus, knowing and understanding well the software/tools one has chosen is of prime importance ! Of course, this also concerns for the protein identifcation part/software chosen.

The total number of proteins identified varies considerably between methods, this information may be very important to the user in real-world settings but is only taken in consideration in part in the comparisons presented.

ROC curves allow us to gain more insight in choosing cutoff values for statistical testing. Frequently the ideal threshold maximizing sensitivity and specificity lies quite distant to the common 5-percent threshold. This indicates that many times the common 5-percent threshold may not be the ‘optimal’ compromise as thershold for calling differential abundant proteins.

Acknowledgements

The author wants to acknowledge the support by the IGBMC (CNRS UMR 7104, Inserm U 1258, UdS), CNRS, Université de Strasbourg and Inserm and of course all collegues from the IGBMC proteomics platform. The author wishes to thank the CRAN -staff for all their help with new entries and their efforts in maintaining this repository of R-packages. Furthermore, many very fruitful discussions with colleages on national and international level have helped to formulate ideas and improve the tools presented here.

Thank you for you interest, this package is constantly evolving, new featues/functions may get added to the next version.

Session-Info

For completeness :

#> R version 4.1.2 (2021-11-01)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19042)
#> 
#> Matrix products: default
#> 
#> locale:
#> [1] LC_COLLATE=C                   LC_CTYPE=French_France.1252   
#> [3] LC_MONETARY=French_France.1252 LC_NUMERIC=C                  
#> [5] LC_TIME=French_France.1252    
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] rmarkdown_2.11 knitr_1.37     wrGraph_1.3.0  wrProteo_1.6.0 wrMisc_1.8.1  
#> 
#> loaded via a namespace (and not attached):
#>  [1] qvalue_2.24.0      tidyselect_1.1.1   xfun_0.29          bslib_0.3.1       
#>  [5] purrr_0.3.4        reshape2_1.4.4     splines_4.1.2      colorspace_2.0-2  
#>  [9] vctrs_0.3.8        generics_0.1.2     htmltools_0.5.2    yaml_2.2.2        
#> [13] utf8_1.2.2         rlang_1.0.1        R.oo_1.24.0        sm_2.2-5.7        
#> [17] jquerylib_0.1.4    pillar_1.7.0       R.utils_2.11.0     glue_1.5.1        
#> [21] DBI_1.1.2          RColorBrewer_1.1-2 readxl_1.3.1       lifecycle_1.0.1   
#> [25] plyr_1.8.6         stringr_1.4.0      cellranger_1.1.0   munsell_0.5.0     
#> [29] gtable_0.3.0       R.methodsS3_1.8.1  evaluate_0.14      fastmap_1.1.0     
#> [33] fdrtool_1.2.17     fansi_1.0.2        highr_0.9          Rcpp_1.0.8        
#> [37] scales_1.1.1       limma_3.48.3       jsonlite_1.7.3     ggplot2_3.3.5     
#> [41] digest_0.6.29      stringi_1.7.6      dplyr_1.0.8        grid_4.1.2        
#> [45] cli_3.1.1          tools_4.1.2        magrittr_2.0.2     sass_0.4.0        
#> [49] tibble_3.1.6       crayon_1.5.0       pkgconfig_2.0.3    ellipsis_0.3.2    
#> [53] assertthat_0.2.1   R6_2.5.1           compiler_4.1.2