
Package ‘wrTopDownFrag’
September 8, 2020

Title Internal Fragment Identification from Top-Down Mass Spectrometry

Version 1.0.2

Author Wolfgang Raffelsberger [aut, cre]

Maintainer Wolfgang Raffelsberger <w.raffelsberger@unistra.fr>

Description Top-Down mass spectrometry aims to identify entire proteins as well as their (post-
translational) modifica-
tions or ions bound (eg Chen et al (2018) <doi:10.1021/acs.analchem.7b04747>).
The pattern of internal fragments (Haverland et al (2017) <doi:10.1007/s13361-017-1635-
x>) may reveal important information about the original structure of the proteins studied
(Skinner et al (2018) <doi:10.1038/nchembio.2515> and Li et al (2018) <doi:10.1038/nchem.2908>).
However, the number of possible internal fragments gets huge with longer proteins and subse-
quent identification of internal fragments remains challenging,
in particular since the the accuracy of measurements with current mass spectrometers repre-
sents a limiting factor.
This package attempts to deal with the complexity of internal fragments and allows identifica-
tion of terminal and internal fragments from deconvoluted mass-spectrometry data.

Depends R (>= 3.1.0)

VignetteBuilder knitr, rmarkdown

Imports graphics, grDevices, stats, utils, wrMisc, wrProteo

Suggests BiocParallel, boot, data.tree, fdrtool, knitr, limma,
parallel, preprocessCore, RColorBrewer, rmarkdown, wrGraph

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2020-09-08 08:10:02 UTC

1

2 AAfragSettings

R topics documented:
AAfragSettings . 2
addMassModif . 3
checkModTy . 5
combinateAllAndSum . 5
countChildrenParent . 6
countPotModifAAs . 8
evalIsoFragm . 9
fragmentSeq . 10
identifFixedModif . 11
makeFragments . 13
plotNTheor . 15
scoreChargeCatch . 16

Index 18

AAfragSettings Settings for AA fragments

Description

This function provides basic settings for what types of fragments may accomodate which type of
modifications : $knownMods: information about which modifications may be considered, $specAAMod:
specifc AA sites (if applicable), $specAAMod: specifc AA sites (if applicable). For example, here
’p’ codes for gain of mass for HPO3 only at S, T and Y residues. Note: $knownMods$Nterm and
$knownMods$Cterm are treated as mutually exclusive

Usage

AAfragSettings(outTy = "all")

Arguments

outTy (character) default "all" or any of the list-elements

Value

list ($knownMods, $knspecAAMods, $modChem, $neutralLossOrGain)

See Also

makeFragments, fragmentSeq, massDeFormula

Examples

AAfragSettings()

addMassModif 3

addMassModif Add modifications to peptide mass

Description

Adjust/add mass for modifications from ’modTy’ to all peptides in ’pepTab’ based on count ’cou’
of occurances of modifications : Either fixed or variable modifications will be added to the mass of
initial peptides from argument papTab. Terminal ionization (like ’b’ or ’y’ -fragments) is treated
as fixed modification and the resulting masses will correspond to standard mono-protonated ions.
Since variable and fixed modification types can’t be run in a single instance, the function has to
get calles twice, it is recommended to always start with the fixed modfications, In the case of fixed
modifications (like defining ’b’ or ’y’ fragments) neutral peptide masses should be given to add the
corresponding mass-shift (and to obtain mono-protonated ions). In case of variable modifications
(like ’d’ or ’p’), the corresponding ions from the fixed modifications should get furnished to add
the corresponding mass-shift, the masses resulting from the initial fixed modifications run can be
used. Note, that transforming a neutral precursor M into MH+ is also considered a modification.
The results are also correct with obligatory fragments that can’t occur the same time (eg x & y ions
can’t be same time, need to make add’l lines...). This function has a multiprocessor mode, with
small data-sets (like the toy example below) there is typcally no gain in performance.

Usage

addMassModif(
cou,
pepTab,
combTerm,
modTy,
lastIndex = NULL,
modChem = NULL,
basVarMod = "basMod",
massTy = "mono",
knownMods = NULL,
nProc = 1,
parallDefault = TRUE,
silent = FALSE,
debug = FALSE,
callFrom = NULL

)

Arguments

cou (list) list of matrixes with counts for number of modifications per peptide

pepTab (matrix) table with peptide properties

combTerm (matrix) table with separate rows for $basMod that are exclusive (ie can’t be
accumulated, eg x & y ions)

modTy (character) list of modification types to be considered

4 addMassModif

lastIndex (integer) index-1 (ie last index from prev matrix) from which new peptide-
variants should start from

modChem (character) optional modifications

basVarMod (character) toggle if fixed (’basMod’) or variable (’varMod’) modificatons should
be calculated

massTy (character) default ’mono’

knownMods (list) optional custom definition whoch modification is N-term, etc (see AAfragSettings

nProc (integer) number of processors in case of multi-processor use (requires Biocon-
ductor package BiocParallel)

parallDefault (logical) for use of other/previously set register(bpstart()) in case .parCombinateAllAndSum
is called

silent (logical) suppress messages

debug (logical) for bug-tracking: more/enhanced messages and intermediate objects
written in global name-space

callFrom (character) allows easier tracking of message(s) produced

Value

list of $pepTab (table of peptide as single charge positive ions), $abc (’representative’ list of all
combinations to add). Main result in $pepTab

See Also

convToNum

Examples

pep1 <- c(pe1="KPEPTI")
The table of possible terminal fragments (for simplicity terminal only)
pepTab1 <- makeFragments(pep1, min=3, max=7, internFra=FALSE)
Which fragment may be subject to how many modification (including ionization by H+)
cou1 <- countPotModifAAs(pepTab=pepTab1, modTy=list(basMod=c("b","y")))
Add modifications (here: ionize all pepptides by H+)
preMa1 <- addMassModif(cou=cou1$cou, pepTab=pepTab1, combTerm=cou1$combTerm,

modTy=list(basMod=c("b","y")), basVarMod="basMod")
preMa1

Example including variable modifications
modT3 <- list(basMod=c("b","y"),varMod=c("p","h","d"))
cou3 <- countPotModifAAs(pepTab=pepTab1, modTy=modT3)
Now we re-use/inject the results for the fixed modificatons
preMa3 <- addMassModif(cou=cou3$cou, pepTab=preMa1$pepTab, combTerm=cou1$combTerm,

modTy=modT3, basVarMod="varMod")
head(preMa3$pepTab,12)

checkModTy 5

checkModTy Check & complete mixed of variable and fixed modifications

Description

Check & complete settings for mixed of variable and fixed modifications. The final format is a list
with $basMod, $varMod and $varMo2

Usage

checkModTy(modTy, knownMods = NULL, silent = TRUE, callFrom = NULL)

Arguments

modTy (character) list of modification types to be considered
knownMods (character) optonal custom list of known modifications, default from AAfragSettings(outTy="all")$knownMods

silent (logical) suppress messages
callFrom (character) allow easier tracking of message(s) produced

Value

corrected list of mixed of variable and fixed modifications ($basMod, $varMod and $varMo2)

See Also

AAfragSettings

Examples

modTy1 <- list(basMod=c("b","y","h"),varMod=c("p","o","q"))
checkModTy(modTy1)

combinateAllAndSum Full combinatorial and cumulative values

Description

Use for all preparing all combinations of non-compulsatory, ie variable, mass modifications Variable
modifications may or may not be present. Thus, for a given amino-acid with a variable modifica-
tion two versions of the molecular weight need to be considered. Most (variable) modifications are
linked to a type of amino acid, like serine-residues for phosphorlylation. Thus in this case, each
instance of the amino acid in question may or may not be modified. So, for example if there are
2 serines, 0, 1 or 2 phosphorylation modifications may be present. For this reason the is the argu-
ment nMax to stay within biologically relevant ranges (external knowledge) and reduce complexity
significantly. Some modifications are exclusive to others, argument notSingle : An (artificially
occuring) de-phosphorylation event during fragmentation can only happen if the amino acid was
already phosphorylated in the first place.

6 countChildrenParent

Usage

combinateAllAndSum(
nMax,
modVal,
notSingle = NULL,
silent = TRUE,
callFrom = NULL

)

Arguments

nMax (integer or data.frame with 1 line) maximum number of modifications

modVal (numeric, has to have names !) the change of molecular mass introduced by
given modifications (as specified by the name of the value)

notSingle (character) names of ’modVal’ where 1st element of ’notSingle’ cannot hap-
pen/appear if 2nd element not present (eg de-phospho/phosphorylation)

silent (logical) suppress messages

callFrom (character) allow easier tracking of message(s) produced

Value

named (concatenated names of modVal) numeric vector

See Also

convToNum

Examples

to follow easily the results, hypothetical mass-modification values were chosen
mo1 <- c(a=10, b=1, c=0.1, d=0.01); nMa1 <- c(1,2,0,3)
combinateAllAndSum(nMa1, mo1)
like 'b' for phospho & 'd' for de-phospho (which can't happen without phospho event)
combinateAllAndSum(nMa1, mo1, notSingle=c("d","b"))

countChildrenParent Identify Children/Parent settings as a+b=c

Description

This functions helps identifying fragments (’parent’) characterized by a start- and end-position, that
got split into 2 ’children’ fragments. So, each one of the new ’children’ conserves either the start-
or end-site of the parent and the the remaining ends are on consecutive positions. For example if the
sequence ’BCDEFG’ (parent) gets split into ’BCD’ (positions 1-3) and ’EFG’ (positions 4-6), this
will be identified as a children/parent ’family’ which could be represented as ’a+b=c’ case. Note
: At this point only settings with 2 children are considered, for more complex scenarions one may

countChildrenParent 7

build trees using buildTree (however, this function does not identify ’parents’). In proteomics-
applications some start- and end-sites may occur multiple times, representing eg unmodified and
modified versions of the same basal peptide-sequence. Such duplicated start- and end-cases are han-
deled as allowed, a ’child’ (characterized by its start- and end-position) may occur multiple times,
and the corresponding redundant rownames (eg peptide sequence like ’BCD’) will be conserved.
However, information reflecting eg different peptide modifications must be stored separately. If re-
dudant start- and end-sites accur with different row-names, repeated start- and end-sites will display
NA.

Usage

countChildrenParent(
fragments,
output = "count",
silent = FALSE,
callFrom = NULL

)

Arguments

fragments (matrix or data.frame) integer values in 1st column, for start site of fragment,
and in 2nd column as end-sites of fragments, rownames as IDs

output (character) choose simply returning results as counts or as list with $counts and
$detailIndex (list with details showing each child1,child2 & parent)

silent (logical) suppress messages

callFrom (character) allows easier tracking of message(s) produced

Value

either numeric vector with cumulated counts (corresponding to rows of fragments) or list with
$count and $detailIndex (list with indexes refering to non-redundant entries of all a+b=c settings
identified)

See Also

simpleFragFig for graphical representation,countSameStartEnd; for building longer consecutive
trees (without identification of ’parent’) buildTree and contribToContigPerFrag

Examples

frag3 <- cbind(beg=c(4,2,3,7,13,13,15, 2,9,2,9), end=c(14,6,12,8,18,20,20, 8,12,12,18))
rownames(frag3) <- c("K","A","E","B","C","D","F", "H","G","I","J")
countChildrenParent(frag3)
example with duplicate start- and end-position positions
frag3c <- cbind(beg=c(4,2,3,7, 7,13, 13,13,15, 2,9,2,9,9),

end=c(14,6,12,8, 8,18, 18,20,20, 8,12,12,12,18))
rownames(frag3c) <- c("K","A","E", "B","B", "C","C","D","F", "H","G","I","G","J")
countChildrenParent(frag3c, out="det")

8 countPotModifAAs

countPotModifAAs Make table with counts of potential modification sites

Description

Makes table ’cou’ with counts of (potential) modification sites based on column ’seq’ in matrix
’pepTab’. Note: if multiple N-or C-term modifs, then only the first is shown in resulting table
’cou’.

Usage

countPotModifAAs(
pepTab,
modTy,
maxMod = c(p = 3, h = 1, k = 1, o = 1, m = 1, n = 1, u = 1, r = 1, s = 1),
specAAMod = NULL,
knownMods = NULL,
silent = FALSE,
callFrom = NULL,
debug = FALSE

)

Arguments

pepTab (matrix) peptide sequences, start and end sites, typically result from makeFragments

modTy (list) modifications : $basMod for character vector of fixed modifications and
$varMod for variable modifications. For one letter-code see AAfragSettings("modChem")

maxMod (integer) maximal number variable modifications will be considered in given
fragment (may increase complexity and RAM consumption)

specAAMod (list) optional custom list showing which AA to be considered with which (one-
letter) modification code (default AAfragSettings)

knownMods (list) optional custom list showing which modification appears at what type of
location, eg N-terminal, internal ... (default AAfragSettings)

silent (logical) suppress messages

callFrom (character) allow easier tracking of message(s) produced

debug (logical) for bug-tracking: more/enhanced messages and intermediate objects
written in global name-space

Value

list of matrixes $cou and $combTerm, with number of modifications per peptides (line in ’pepTab’)
for basMod, varMod & varMo2

See Also

AAfragSettings, makeFragments

evalIsoFragm 9

Examples

protP2 <- c(mesp="MESPEPTIDES", pepe="PEPEPEP")
pepTab1 <- makeFragments(protTab=protP2, minFra=6, internFr=TRUE, massTy="mono")
cou1 <- countPotModifAAs(pepTab=pepTab1, modTy=list(basMod=c("b","y"),

varMod=c("p","h")), debug=FALSE)
modTy2 <- list(basMod=c("b","y","h"), varMod=c("x","p","o","q","e","j"))
cou2 <- countPotModifAAs(pepTab=pepTab1, modTy=modTy2)

evalIsoFragm Evaluate selected lines of pepTab (iso-mass) for preferential cutting
sites

Description

Evaluate selected lines of pepTab (iso-mass) for preferential cutting sites. Such sites are taken by
default from .prefFragPattern() simplified from a publication by the Kelleher group (Haverland
2017, J Am Soc Mass Spectrom) or can be furnished by the user.

Usage

evalIsoFragm(
z,
prefFragPat = NULL,
seqCol = "seq",
silent = FALSE,
callFrom = NULL

)

Arguments

z (matrix) main input, must contain cols specified as seqCol and "no","tailAA","precAA"

prefFragPat (matrix) specifies preferential fragmentation (which combination of AA to con-
sider cols cTer,nTer,score), default made by .prefFragPattern()

seqCol (character) column names for the column containing the sequence to search for
preferential cutting sites

silent (logical) suppress messages

callFrom (character) allows easier tracking of message(s) produced

Value

line ID-numbers (pepTab[,"no"]) for those below median score (ie to remove from pepTab) or
NULL if nothing to remove due to preferential fragmentation

See Also

makeFragments

10 fragmentSeq

Examples

peTab <- matrix(c("9","13","14","15", "LPVIAGHEAAG","PVIAGHEAAGI","EKKPFSI","KKPFSIE",
"P","L","E","E", "I","V","E","E"),nr=4,dimnames=list(NULL,c("no","seq","precAA","tailAA")))

evalIsoFragm(peTab)

fragmentSeq Fragment protein or peptide sequence

Description

Makes internal/terminal fragments of a SINGLE peptide/protein input (as single letter amino-acid
code) and returns list of all possible sequences ($full, $Nter, $Cter, $inter).

Usage

fragmentSeq(
sequ,
minSize = 3,
maxSize = 300,
internFragments = TRUE,
separTerm = FALSE,
keepRedSeqs = TRUE,
prefName = NULL,
silent = FALSE,
callFrom = NULL

)

Arguments

sequ (character, length=1) sequence used for fragmenting, as as mono-aminoacid let-
ter code (so that cuting will be perfomed between all the letters/characters)

minSize (integer) min number of AA residues for considering peptide fragments

maxSize (integer) max number of AA residues for considering peptide fragments
internFragments

(logical) logical (return only terminal fragments if ’FALSE’)

separTerm (logical) if ’TRUE’, separate N-terminal, C-terminal and internal fragments in
list

keepRedSeqs (logical) if ’FALSE’ remove fragments with redundant content (but my be from
different origin in ’sequ’); remove redundant so far only when no separation of
Nterm/Cterm/intern as list

prefName (logical) alternative name for all fragments (default the sequence itself), avoid
separators ’.’ and ’-’

silent (logical) suppress messages

callFrom (character) allow easier tracking of message(s) produced

identifFixedModif 11

Value

numeric vector with mass

See Also

makeFragments; convAASeq2mass

Examples

fragmentSeq("ABCDE")
fragmentSeq("ABCDE", minSize=3, internFragments=FALSE)
fragmentSeq("ABCDE", minSize=3, internFragments=TRUE)

Run multiple peptides/proteins
twoPep <- cbind(c("a","ABCABCA"), c("e","EFGEFGEF"))
apply(twoPep, 2, function(x) fragmentSeq(x[2], mi=3, kee=FALSE, sep=TRUE, pre=x[1]))

Ubiquitin example
P0CG48 <- "MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG"
system.time(fra1 <- (fragmentSeq(P0CG48, mi=5, kee=FALSE))) # < 0.5 sec

identifFixedModif Identify Fixed Modifications

Description

Identify peptide/protein fragment based on experimental m/z values ’expMass’ for given range
of aa-length. Internally all possible fragments will be predicted and their mass compared to the
experimental values (argument expMass).

Usage

identifFixedModif(
prot,
expMass,
minFragSize = 5,
maxFragSize = 60,
indexStart = 1,
suplPepTab = NULL,
internFra = TRUE,
filtChargeCatch = TRUE,
maxMod = c(p = 3, h = 1, k = 1, o = 1, m = 1, n = 1, u = 1, r = 1, s = 1),
modTy = NULL,
specModif = NULL,
knownMods = NULL,
identMeas = "ppm",
limitIdent = 5,

12 identifFixedModif

filtAmbiguous = FALSE,
recalibrate = FALSE,
chargeCatchFilter = TRUE,
massTy = "mono",
prefFragPat = NULL,
silent = FALSE,
debug = FALSE,
callFrom = NULL

)

Arguments

prot (character) amino-acid sequene of peptide or protein
expMass (numeric) erperimental masses to identify peptides from
minFragSize (integer) min number of AA residues for considering peptide fragments
maxFragSize (integer) max number of AA residues for considering peptide fragments
indexStart (integer) for starting at correct index (if not 1)
suplPepTab (matrix) additional peptides to be add to theoretical peptides
internFra (logical) decide whether internal fragments should be cosiered
filtChargeCatch

(logical) by default removing of all fragments not containing a (polar) charge-
cathing residue

maxMod (integer) maximum number of residue modifications to be consiered in frag-
ments (values >1 will increase complexity and RAM consumption)

modTy (character) type of fixed and variable modifications
specModif (list) supplemental custom fixed or variable modifications (eg Zn++ at given

residue)
knownMods (character) optional custom alternative to AAfragSettings(ou="all")$knownMods

identMeas (character) default ’ppm’
limitIdent (character) thershold for identification in ’identMeas’ units
filtAmbiguous (logical) allows filtering/removing ambiguous results (ie same mass peptides)
recalibrate (logical or numeric) may be direct recalibration-factor (numeric,length=1), if

’TRUE’ fresh determination of ’recalibFact’ or ’FALSE’ (no action); final recalibration-
factor used exported in result as $recalibFact

chargeCatchFilter

(logical) optionally remove all peptides not containing charge-catch AAs (K, R,
H, defined via .chargeCatchingAA())

massTy (character) ’mono’ or ’average’
prefFragPat (numeric) pattern for preferential fragmentation (see also Haverland 2017), if

NULL default will be taken (in function evalIsoFragm) from .prefFragPattern()

silent (logical) suppress messages
debug (logical) additional messages and objects exportet to current session for debug-

ging
callFrom (character) allow easier tracking of message(s) produced

makeFragments 13

Value

list, ie result of massMatch() on ’pepTab’ and ’expMass’

See Also

makeFragments

Examples

protP <- c(protP="PEPTIDEKR")
obsMassX <- cbind(a=c(199.1077,296.1605,397.2082,510.2922,625.3192),

b=c(227.1026,324.1554,425.2031,538.2871,653.3141),
x=c(729.2937,600.2511,503.1984,402.1507,289.0666),
y=c(703.3145,574.2719,477.2191,376.1714,263.0874))

rownames(obsMassX) <- c("E","P","T","I","D") # all 1 & 7 ions not included
identP1 <- identifFixedModif(prot=protP, expMass=as.numeric(obsMassX), minFragSize=2,

maxFragSize=7,modTy=list(basMod=c("b","y"))) # looks ok
identP2 <- identifFixedModif(prot=protP, expMass=as.numeric(obsMassX), minFragSize=2,
maxFragSize=7, modTy=list(basMod=c("a","x"), varMod=c("h","o","r","m")))
head(identP1$preMa,n=17) # predicted masses incl fixed modif
head(identP2$preMa,n=17) # predicted masses incl fixed modif

makeFragments Make terminal and internal fragments from proteins

Description

Makes terminal and internal fragments based on protein-sequence and present as matrix including
heading and/or tailing amino-acid or theoretical molecular mass of all fragments. As the number
of theoretically possible fragments increases with the size of the peptide/protein treated it is recom-
mended to adopt arguments like masFragSize to realizstic values for the type of mass spectrometer
used, since efficient filtering will reduce considerably the amount of memory (RAM) needed and
will improve overal performance.

Usage

makeFragments(
protTab,
minFragSize = 6,
maxFragSize = 300,
internFra = TRUE,
knownMods = NULL,
redRedundSeq = FALSE,
prefFragPat = NULL,
remNonConfPrefFragm = TRUE,
ambigLab = c(duplSequence = "duplSequence", isoMass = "isoMass"),
massTy = "mono",
specModif = NULL,

14 makeFragments

silent = FALSE,
debug = FALSE,
callFrom = NULL

)

Arguments

protTab (character or matrix) named vector of protein-seqences to fragment or matrix
(character) with lines for initial proteins/peptides, cols as name/sequence/mass

minFragSize (integer) minimum number of amino-acids for being considered

maxFragSize (integer) maximum number of amino-acids for being considered

internFra (logical) toggle if internal framents will be produced or not

knownMods (character) optional custom alternative to AAfragSettings(ou="all")$knownMods

redRedundSeq (logical) reduce redundant sequences to 1st appearance in all further treatments

prefFragPat (matrix) for preferential fragmentation rules (see also .prefFragPattern)

remNonConfPrefFragm

(logical) allows to remove (peptide-)fragments non conform with preferential
fragmentation rules (using evalIsoFragm)

ambigLab (character) text-labels for ambiguities (first for duplicated sequences second for
iso-mass)

massTy (character) default ’mono’ for mono-isotopic masses (alterative ’average’)

specModif (list) supplemental custom fixed or variable modifications (eg Zn++ at given
residue)

silent (logical) suppress messages

debug (logical) for bug-tracking: more/enhanced messages

callFrom (character) allow easier tracking of message(s) produced

Value

matrix with fragment sequence, mass, start- and end-position, heading and tailing AA (or NA if
terminal fragment)

See Also

makeFragments; evalIsoFragm, from package wrProteo convAASeq2mass, AAmass, massDeFormula

Examples

protP <- c(protP="PEPTIDE")
pepT1 <- makeFragments(protTab=protP, minFragSize=2, maxFragSize=9, internFra=TRUE)
tail(pepT1)

https://CRAN.R-project.org/package=wrProteo

plotNTheor 15

plotNTheor Plot the number of theoretical random fragments

Description

This simple function allows plotting the expected number of theoretical fragments from random
fragmentation of peptides/proteins (in mass spectrometry). Here, only the pure fragmentation with-
out any variable fragmentation is considered, all fragment-sizes are included (ie, no gating). For
simplicity, possible (variable) modifications like loss of neutrals, etc, are not considered.

Usage

plotNTheor(
x,
tit = "Number of term and intern fragm",
xlab = "Number of aa",
ylab = "",
col = 2:3,
log = "",
mark = NULL,
cexMark = 0.75

)

Arguments

x (integer) length (in amino-acids) of input peptides/proteins to be considered

tit (character) custom title

xlab (character) custom x-axis label

ylab (character) custom y-axis label

col (character or integer) cutsom colors

log (character) define which axis should be log (use "xy" for drawing both x- and
y-axis as log-scale)

mark (matrix) first column for text and second column for where it should be stated
along the top border of the figure (x-coordinate)

cexMark (numeric) cex expansion-factor for text from argument mark

Value

figure only

See Also

AAfragSettings

16 scoreChargeCatch

Examples

marks <- data.frame(name=c("Ubiquitin\n76aa", "Glutamate dehydrogenase 1\n501aa"),
length=c(76,501))

plotNTheor(x=20:750, log="", mark=marks)

scoreChargeCatch Scoring of charge catching potential for peptides

Description

Make score based on cumulative search for AA with given potential to catch charge (H+, or option-
ally any charge). Note : at current cumulative scoring large peptides may get priviliged.

Usage

scoreChargeCatch(
resTab,
pepCol = "seq",
scale01 = TRUE,
chargeMode = "pos",
silent = FALSE,
callFrom = NULL

)

Arguments

resTab (matrix or data.frame) matrix or data.frame of results for SINGLE protein (here
only the column specified with argument ’pepCol’ will be used)

pepCol (character) column name of ’resTab’ containing the peptide sequence to be scored

scale01 (logical) linear rescale output to maximum 1.0

chargeMode (character) this value may be ’pos’ (default) for the positively charged amino-
acids K,R and H or, if this argument has any other value, than all charged amino-
acids (K,R,H, S,T,N,Q, D,E, W and Y) will be considered.

silent (logical) suppress messages

callFrom (character) allow easier tracking of message(s) produced

Value

numeric vector with score for each peptide of resTab (even if scale01=TRUE minimum may be >0
if all peptides do contain charge-catching AAs)

See Also

fragmentSeq

scoreChargeCatch 17

Examples

resTa <- matrix(c(1:4,"PEPTID","PEPTIK","PEPTRK","AGV"), ncol=2,
dimnames=list(NULL,c("predInd","seq")))

scoreChargeCatch(resTa)

Index

AAfragSettings, 2, 4, 5, 8, 15
AAmass, 14
addMassModif, 3

buildTree, 7

checkModTy, 5
combinateAllAndSum, 5
contribToContigPerFrag, 7
convAASeq2mass, 11, 14
convToNum, 4, 6
countChildrenParent, 6
countPotModifAAs, 8
countSameStartEnd, 7

evalIsoFragm, 9, 14

fragmentSeq, 2, 10, 16

identifFixedModif, 11

makeFragments, 2, 8, 9, 11, 13, 13, 14
massDeFormula, 2, 14

plotNTheor, 15

scoreChargeCatch, 16
simpleFragFig, 7

18

	AAfragSettings
	addMassModif
	checkModTy
	combinateAllAndSum
	countChildrenParent
	countPotModifAAs
	evalIsoFragm
	fragmentSeq
	identifFixedModif
	makeFragments
	plotNTheor
	scoreChargeCatch
	Index

