xLLiM: High Dimensional Locally-Linear Mapping
Provides a tool for non linear mapping (non linear regression) using a mixture of regression model and an inverse regression strategy. The methods include the GLLiM model (see Deleforge et al (2015) <doi:10.1007/s11222-014-9461-5>) based on Gaussian mixtures and a robust version of GLLiM, named SLLiM (see Perthame et al (2016) <https://hal.archives-ouvertes.fr/hal-01347455>) based on a mixture of Generalized Student distributions. The methods also include BLLiM (see Devijver et al (2017) <arXiv:1701.07899>) which is an extension of GLLiM with a sparse block diagonal structure for large covariance matrices (particularly interesting for transcriptomic data).
Version: |
2.2 |
Imports: |
MASS, abind, corpcor, Matrix, igraph, capushe, glmnet, randomForest, e1071, mda, progress |
Suggests: |
shock |
Published: |
2021-01-04 |
Author: |
Emeline Perthame (emeline.perthame@inria.fr), Florence Forbes (florence.forbes@inria.fr), Antoine Deleforge (antoine.deleforge@inria.fr), Emilie Devijver (emilie.devijver@kuleuven.be), Melina Gallopin (melina.gallopin@u-psud.fr) |
Maintainer: |
Emeline Perthame <emeline.perthame at pasteur.fr> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
no |
Materials: |
README |
CRAN checks: |
xLLiM results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=xLLiM
to link to this page.