Package 'xVA'

March 16, 2022

Type Package

Title Calculates Credit Risk Valuation Adjustments

Version 1.0

Date 2022-03-16

Author Tasos Grivas

Maintainer Tasos Grivas <tasos@openriskcalculator.com>

Description Calculates a number of valuation adjustments including CVA, DVA,

FBA, FCA, MVA and KVA. A two-way margin agreement has been implemented. For the KVA calculation three regulatory frameworks are supported: CEM, (simplified) SA-CCR, OEM

and IMM. The probability of default is implied through the credit spreads curve.

The package supports an exposure calculation based on SA-

CCR which includes several trade types

and a simulated path which is currently available only for IRSwaps.

License GPL-3

Imports methods, SACCR, Trading

URL https://openriskcalculator.com/

Collate 'CalcNGR.R' 'CalcPD.R' 'CalcSimulatedExposure.R' 'CalcVA.R' 'GenerateTimeGrid.R' 'calcCVACapital.R' 'calcDefCapital.R' 'calcEADRegulatory.R' 'calcEffectiveMaturity.R' 'calcKVA.R' 'xVACalculator.R' 'xVACalculatorExample.R' 'onLoad.R'

NeedsCompilation no

RoxygenNote 7.1.1

Repository CRAN

Repository/R-Forge/Project ccr

Repository/R-Forge/Revision 59

Repository/R-Forge/DateTimeStamp 2022-03-16 17:40:19

Date/Publication 2022-03-16 18:20:02 UTC

2 calcCVACapital

R topics documented:

	calcCVACapital	2
	calcDefCapital	3
	calcEADRegulatory	
	calcEffectiveMaturity	4
	calcKVA	5
	CalcNGR	6
	CalcPD	6
	CalcSimulatedExposure	7
	CalcVA	8
	xVACalculator	8
	xVACalculatorExample	10
Index		11

calcCVACapital

Calculates the CVA Capital Charge

Description

Calculates the CVA capital charge based on the standardized approach

Usage

```
calcCVACapital(trades, EAD, cpty_rating, effective_maturity)
```

Arguments

trades The full list of the Trade Objects

EAD Exposure-at-Default

cpty_rating the rating of the counterparty

effective_maturity

The effective maturity of the trades of the netting set

Value

The CVA capital charge of the trade set

Author(s)

calcDefCapital 3

-	_			
C 2	~ 10	efCa	ni	+ つ
Cal	יטט	U I	มบบ	ιаエ

Calculates the Default Capital Charge

Description

Calculates the default capital charge using the advanced IRB methodology and the stressed R

Usage

```
calcDefCapital(trades, EAD, reg_data, effective_maturity)
```

Arguments

trades The full list of the Trade Objects

EAD The Exposure-At-Default of the trades as per the selected regulatory framework

reg_data A list containing data related to the regulatory calculations (for example the

regulatory probability-of-default, the regulatory loss-given-default etc)

effective_maturity

The effective maturity of the trades of the netting set

Value

The default capital charge

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

calcEADRegulatory

Calculates the Exposure-At-Default (EAD)

Description

Calculates the Exposure-At-Default (EAD) based on the given regulatory framework. It supports the CEM, IMM and (simplified) SA-CCR frameworks

Usage

```
calcEADRegulatory(
  trades,
  framework,
  sa_ccr_simplified = "",
  CSA,
  collateral,
  EEE,
  time_points
)
```

Arguments

trades The full list of the Trade Objects

framework Specifies the regulatory framework used in the calculations. It can take the val-

ues of 'IMM', 'CEM', 'SA-CCR'

sa_ccr_simplified

(Optional) Specifies whether the standard SACCR or its simplified version or the OEM will be implemented. It can take the values of ", 'simplified', 'OEM'

CSA The margin agreement with the counterparty

collateral The amount of collaterals currently exchanged with the counterparty

EEE A vector containing the effective expected exposure against the counterparty

time_points The timepoints that the analysis is performed on

Value

The Exposure-At-Default

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

calcEffectiveMaturity Calculates the Effective Maturity

Description

Calculates the effective maturity based on the specified regulatory framework

Usage

calcEffectiveMaturity(trades, time_points, framework, simulated_exposure)

Arguments

trades The full list of the Trade Objects

time_points The timepoints that the analysis is performed on

framework Specifies the regulatory framework used in the calculations. It can take the val-

ues of 'IMM', 'CEM', 'SA-CCR'

simulated_exposure

The exposure profile list containing the EE, EEE etc

Value

The effective maturity of the trade set

Author(s)

calcKVA 5

calcKVA

Calculates the Capital Valuation Adjustment (KVA)

Description

Calculates the capital valuation adjustment by computing the default capital charge and the CVA capital charge and applying the required return-on-capital

Usage

```
calcKVA(
   CSA,
   collateral,
   trades,
   reg_data,
   time_points,
   EAD,
   effective_maturity,
   ignore_def_charge = TRUE
)
```

Arguments

CSA	The margin agreement with the counterparty				
collateral	The current amount of collaterals currently exchanged with the counterparty				
trades	The full list of the Trade Objects				
reg_data	A list containing data related to the regulatory calculations (for example the 'framework' member variable can be 'IMM', 'SACCR', 'CEM')				
time_points	The timepoints that the analysis is performed on				
EAD	The Exposure-at-default calculated based on the prescribed framework as appearing in the 'reg_data'				
effective_maturity					
	The effective maturity of the trades performed with a specific counterparty				
ignore_def_charge					
	if set to true the default capital charge is set to zero				

Value

The capital valuation adjustment (KVA)

Author(s)

6 CalcPD

CalcNGR

Calculates the Net/Gross ratio (NGR)

Description

Calculates the Net/Gross ratio used under the CEM regulatory framework

Usage

```
CalcNGR(MtM_Vector)
```

Arguments

MtM_Vector

A vector containing the trades to be netted

Value

The Net-Gross ratio (NGR)

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

CalcPD

Calculates the Probablity of Default

Description

Calculates the probablity of the default on specific time points by using the spread of the corresponding credit curve and the loss given default

Usage

```
CalcPD(spread, LGD, time_points)
```

Arguments

spread The spread based on the credit curve

LGD The loss-given-default

Value

A vector containing the probablity of default on the specified timepoints

Author(s)

CalcSimulatedExposure Calculated the Simulated Exposure Profile

Description

Calculates the simulated exposure profile (EE, NEE, PFE, EEE) by use of the Hull-White model. Two sets of results are provided: one after taking into account the marging agreement and one assuming that there is no marging agreement present

Usage

```
CalcSimulatedExposure(
  discount_factors,
  time_points,
  spot_curve,
  CSA,
  trades,
  sim_data,
  framework
)
```

Arguments

discount_factors

The discount curve derived from the spot curve

spot_curve The curve derived from interpolating the market spot rates

CSA The margin agreement

trades The list of the trade objects

sim_data A list containing simulation-related data (model parameters and number of sim-

ulation)

framework regulatory framework can be 'IMM', 'SACCR', 'CEM'

Value

A list containing the exposure profile (both collateralized and uncollateralized)

Author(s)

8 xVACalculator

CalcVA

Calculates the Valuation Adjustment

Description

Calculates the Valuation Adjustment based on the exposure, the probability-of-default and the loss-given-default

Usage

```
CalcVA(exposure, discount_factors, PD, LGD)
```

Arguments

exposure A vector containing the exposure values on which the credit risk adjustment will

be calculated

discount_factors

The Discount Curve

PD The probability-of-Default LGD The Loss-Given-Default

Value

The Valuation Adjustment Value

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

xVACalculator

Calculates the xVA values

Description

Calculates the xVA values (CVA, DVA, FVA, FBA, MVA, KVA)

Usage

```
xVACalculator(
  trades,
  CSA,
  collateral,
  sim_data,
  reg_data,
  credit_curve_PO,
```

xVACalculator 9

```
credit_curve_cpty,
funding_curve,
spot_rates,
cpty_LGD,
PO_LGD,
no_simulations
)
```

Arguments

trades The full list of the Trade Objects

CSA The margin agreement with the counterparty

collateral The amount of collateral currently exchanged with the counterparty

sim_data A list containing data related to the calculation of simulated exposures (for ex-

ample the model parameters and the number of simulations)

reg_data A list containing data related to the regulatory calculations (for example the

'framework' member variable can be 'IMM', 'SACCR', 'CEM')

credit_curve_P0

The credit curve of the processing organization

credit_curve_cpty

The credit curve of the processing organization

funding_curve A curve containing the credit spread for the funding of the collateral

spot_rates The spot rates curve

cpty_LGD The loss-given-default of the counterparty

PO_LGD The loss-given-default of the processing organization

no_simulations if true, no simulated exposure will be generated and the regulatory framework

should be SA-CCR

Value

A list containing the xVA values

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Gregory J., The xVA Challenge, 2015, Wiley

 ${\tt xVACalculatorExample} \quad {\it xVA\ calculation\ example}$

Description

Calculates the xVA values for a simple example containing two IR swaps.

Usage

```
xVACalculatorExample()
```

Value

A list with the values of various valuations' adjustments

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```
## run the example
xVACalculatorExample()
```

Index

```
calcCVACapital, 2
calcDefCapital, 3
calcEADRegulatory, 3
calcEffectiveMaturity, 4
calcKVA, 5
CalcNGR, 6
CalcPD, 6
CalcSimulatedExposure, 7
CalcVA, 8
xVACalculator, 8
xVACalculatorExample, 10
```