
Managing IP Networks
with Free Software

Joe Abley jabley@isc.org
Stephen Stuart stuart@isc.org

Why use Free Software?

• Free software can give you room to experiment
– Figure out what your requirements are without guessing
– Answer questions quickly
– Inefficiently-gathered answers to ad-hoc questions are

better than no answers
• Insert other usual foam-at-mouth reasons here

What do you know today?

• Network topology
– Half-erased diagrams on whiteboards
– “Ask Leo, I think he knows”
– traceroute

• Traffic
– MRTG
– “show interface”

• Configuration Changes
– syslog (maybe)
– tac-plus logs (maybe)

Who here can say with absolute
confidence that there are no

undefined route-maps on any
router in their network?

Do you know, or are you guessing?

Grand Unified Network
Management Tool

• Various vendors sell this tool already!
– ho ho

• Many developers have already started trying to
write this tool
– some have even not yet stopped trying.
– scheduled for release in $(date -v+1y)

• Fortunately, we don’t actually need this tool
– focus on making things incrementally better, and real

progress can be made
– small, well-defined problems are easy to solve

General Architecture

• Data in
– Router configurations, interface counters, a list

of customers, a table of things to ping
• Do Something

– Store stuff, compare stuff, ping stuff, pipe stuff
through awk

• Data out
– Draw a map, generate a zone file, send mail

Ad-Hoc Modularity

• Ad-hack, maybe
• Scripts breed

– Output of one ad-hoc script might provide an
opportunity to write another ad-hoc script

– Script food pyramid
• Look after your ecosystem

– The top carnivore will get sad if all the cows
stop mooing

Choice of Tool, Language

• Focus on results
– Use whatever makes you the most productive
– Don’t get distracted by linguistic esoterica or

architectural grand visions
• Concentrate on getting something written within

half an hour
– You can always throw it away and do it properly later if

it turns out to be useful
– In the mean time you can answer some questions

Gathering and Storing Router
Configuration

Shrubbery
• Easy access to the configuration of all your network

elements in one place makes it easy to find things out
– grep
– More complicated stuff

• Revision history is also cool
• At least two freely-available packages exist

– ciscoconf (slightly crusty, barely maintained)
• http://dist.automagic.org/ciscoconf-1.1.tar.gz

– rancid (much better, use this instead)
• http://www.shrubbery.net/rancid/

rancid

• Really Awesome Network ConfIg Differ
• Data in:

– various show commands on routers
• Data out:

– Processed output of show commands, stored in CVS
– diffs by mail

• Hey! Things got better already, and we haven’t
even started yet

Router Configuration Audit

Config Audits

• This is an example config audit
– checks for particular kinds of self-consistency within

router configs
– this is a simple example
– there are lots of other things you can audit

• Some vendors allow you to refer to filters and lists
which are not defined
no ip prefix-list USEFUL-FILTER-BBB
!
router bgp AAA
 neighbor 192.168.0.1 remote-AS BBB
 neighbor 192.168.0.1 prefix-list USEFUL-FILTER-BBB in

Undefined/Unused Filter Audit

• What information do we need to find
problems?
– router configs from rancid

• What should we do when we find
problems?
– Send mail

• Suddenly the problem looks easy to solve

3-Minute Design Exercise

• Every $time, run a script against each router
config file stored by rancid
– cron
– By way of example, we’ll do cisco configs, but there

are certainly other vendors for whom such audits are
useful

• As the config file is being processed:
– Make a note every time you see a filter definition
– Make a note every time you see a filter reference

• At the end of the file, find out what doesn’t add up

Architecture Reminder

• Data in:
– Configs retrieved and stored by rancid

• Data manipulation:
– Identify inconsistent bits of config

• Data out:
– Send mail
– Could also open tickets, page people, etc.

filter_audit

• Written in awk and sh, as nature intended
• Sends mail to a nominated recipient

– e.g. to internal NOC mailing list
– Daily mail lists all undefined and unused filters
– Immediate mail when the list changes

• ftp://ftp.isc.org/isc/toolmakers/filter_audit.tar.gz
– Gratuitous bullet points added
– To make URL above fit on one line

Max Prefix

20 prefixes into the future

Peer Prefixes

• Record the number of prefixes that BGP
peers send you
– Can be a useful troubleshooting tool
– Might help choosing max-prefix limits

• Who is Max Prefix?
– Lame joke, designed to make Stephen suffer
– Everybody groan at Stephen

Handwaving

• Not obvious how to poll for this data using SNMP
– A standard-across-vendors way of getting data would

be nice, too bad there isn’t one now
– We could use MRTG if the data were in a MIB,

available within our lifetimes?
• Various vendor-specific show commands give us

the information we need
– “show ip bgp summary”
– “show bgp summary”

• Let’s go with what we’ve got

2-Minute Design Exercise

• Every $time we’ll connect to all our
routers and issue “show” commands

• We’ll parse the output, and record data
– (time, neighbor address, neighbor AS, prefixes)

• We’ll store the data in flat-files
– One file per (neighbor address, neighbor AS)
– Store a timestamp and the number of prefixes

Architecture Reminder

• Data in:
– List of routers, usernames and passwords
– rancid’s router.db and .cloginrc
– Output from show commands

• Data manipulation:
– Strip out the columns we’re interested in

• Data output:
– Flat files

peer_prefixes

• awk and sh
– You weren’t expecting perl, were you? Hello?

• Could piggyback on rancid to do the show
commands
– Would require minor rancid tweaking (don’t want a

rancid diff every time a peer drops a prefix)
– Would result in fewer logins to routers, which is

probably good
• ftp://ftp.isc.org/isc/toolmakers/peer_prefixes.tar.gz

Sample Use

• Implement sensible max-prefix limits on peers
• max(announced prefixes, IRR registered prefixes)

+ N%
– Scale N% according to your comfort level
– ~1,000 routes, N% can be “large” (say, 20)
– ~30,000, maybe N% ought to be “small” (say, 5)

• Evaluate and update daily

Topology Visualisation

kc? You here?

IP Network Topology

• Representation of the network as an undirected
graph
– Edges are “circuits” which connect router interfaces int-

a and int-b
• (int-a-name, int-a-addr, int-b-name, int-b-addr)

– Nodes are routers
• router name

• We can build this easily from router configs
– Match up interfaces on different routers that are in the

same subnet

Applications

• If we have a representation of the network as an
undirected graph, we can use diagramming tools
to build maps for us
– Since we have edges identified according to interfaces,

we could even colour circuits in maps according to
error conditions or traffic load

• With a bit more effort we can answer questions
– “What are all the ways of getting from Vancouver to

New York in under four hops?”
– Assuming that’s a useful question to ask :)
– It’s a fun question, anyway (NB, Joe is from Canada)

Applications

• The topology information contains other
things which could be useful
– (address, interface name, router name)
– We can generate DNS zone files from that, with

great ease
– Hooray for software reuse

1-Minute Design Exercise

• These design exercises are getting quicker
– Note design reuse

• Every $time, run a script against each
router config file stored by rancid
– Where have we seen this before?

• Match up connected interfaces
• Output the result as some kind of flat file

Architecture Reminder

• Data in:
– Router configs, retrieved and stored by rancid

• Data manipulation:
– Match up the interfaces

• Data out:
– Topology file

mktop

• Written in perl (only kidding, you know it’s awk)
• Pipe a concatenated set of cisco or Juniper configs

together, and feed them to mktop

cat configs/* | mktop >net.top

• Output file format is too ugly to put on a slide
– Colon-delimited flat-file of doom
– There’s a man page, though

• ftp://ftp.isc.org/isc/toolmakers/mktop.tar.gz

Automatic Map Construction

Drawing Maps

• Various tools exist which can generate graphical
representations of undirected graphs

• One such tool is GraphViz
– /usr/ports/graphics/graphviz (don’t you just love ports?)
– http://www.research.att.com/sw/tools/graphviz/ for the

ports-less
• Input file format is “dot”
• We just need to convert “top” to “dot”

30-Second Design Exercise

• This is really easy
• Read a .top file, shuffle a couple of things around

and make a .dot file
• By playing with the dot files, we can make the

maps more readable
– Choose a subset of routers to include
– Make edges between cities longer
– Ugly maps for now, since beauty is in the eye of the

operator

Architecture Reminder

• Data in:
– A “.top” file generated using mktop

• Data manipulation:
– Trivial awkery

• Data out:
– A “.dot” file which is edible by graphviz (dotty)
– graphviz will give us PNGs, imagemaps, etc.

top2dot

• This is a very basic tool; it can be extended:
– Include tags for imagemaps in DOT file
– Colour links between routers in a useful way
– Make links between cities stretchier than links within

cities
• Run it periodically to generate maps, or run it on-

demand from a CGI script
• ftp://ftp.isc.org/isc/toolmakers/top2dot.tar.gz

Router Interfaces in the DNS

PTRs and As

• Having accurate RRs in the DNS for router
interface addresses and names makes
traceroute output more comprehensible
– Can help customers help themselves
– Can improve quality of questions
– Useful for quick troubleshooting
– Makes you look as though you know what

you’re doing

15-Second Design Exercise

• Take (interface address, router name, interface
name) from a .top file

• Apply the naming policy that:
– The architects just spent two years arguing over
– Has only stabilised because it’s the only thing that

everyone dislikes and can therefore agree upon
– Fortunately by this stage nobody cares any more

• Spit out a hosts(5) file
– Generate PTR and A records from the hosts(5) file
– Throw the resulting zone files at BIND

Did Somebody Say hosts(5)?!

• Hey, give me a break, I only had 15 seconds
to think about it

• There are existing tools to generate zone
files from hosts(5) files, so by creating a
hosts(5) file we avoid reinventing the wheel

• Also, not everybody uses BIND, and not all
nameservers are driven using zone files

top2hosts

• Written in fortran^W awk
– Those awk gags just don’t get old

• The naming scheme represented in top2hosts is
from a promising local ISP:
– er1a.iad2.us:so-3/2 Æ so-3-2.er1a.iad2.us
– pr2.pao1.us:Gig4/1.357 Æ 357.ge-4-1.pr2.pao1.us

• Substituting alternate naming schemes is not hard
– Topology-based naming schemes can also be

accommodated
• ftp://ftp.isc.org/isc/toolmakers/top2hosts.tar.gz

Parting Thoughts

Cause and Effect

• Think about synchrony, load on routers
– Locking problems?
– vty exhaustion? Other resources?
– Set limits on tools running simultaneously

• Think about failure modes
– Check that valid input was received
– Consider failure modes, and contain damage

rather than spreading it

Multiple Vendor Pain

• There are lots of reasons to run a multi-
vendor network

• The greater the similarities between
different vendors’ instrumentation, the
easier it is to write tools that talk to different
kinds of routers

Pictures of a Better Place

• Vendor-specific features are at least presented in
some vendor-neutral way
– XML with a DTD per vendor (Juniper does this)
– SNMP (ha!)
– Some help would be an improvement over no help

• If vendors won’t do it, middleware would be
useful
– Something that can wrangle “show” commands into

some consistent (e.g. XML) output format

Script Crappiness

• Some of the scripts presented in this tutorial are
crappy
– Deliberately crappy! Honest!
– Stephen made me do it! (I did)

• Crappy != bad
– Focus on the task at hand, not on code purity
– Perfect is the enemy of done
– Small scripts with well-defined purposes can always be

replaced later, if they turn out to be useful

Toolmaker-thon

• This tutorial has hopefully legitimised some
degree of empowered scripting
– There is also a BOF

• There is a new mailing list for general
discussion of network scriptery:
toolmakers-request@isc.org
“subscribe” in subject or message body

• Go Forth and Make Tools

