
Network Working Group Editor of this version:
Request for Comments: 3416 R. Presuhn
STD: 62 BMC Software, Inc.
Obsoletes: 1905 Authors of previous version:
Category: Standards Track J. Case
 SNMP Research, Inc.
 K. McCloghrie
 Cisco Systems, Inc.
 M. Rose
 Dover Beach Consulting, Inc.
 S. Waldbusser
 International Network Services
 December 2002

 Version 2 of the Protocol Operations for
 the Simple Network Management Protocol (SNMP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document defines version 2 of the protocol operations for the
 Simple Network Management Protocol (SNMP). It defines the syntax and
 elements of procedure for sending, receiving, and processing SNMP
 PDUs. This document obsoletes RFC 1905.

Presuhn, et al. Standards Track [Page 1]

RFC 3416 Protocol Operations for SNMP December 2002

Table of Contents

 1. Introduction .. 3
 2. Overview .. 4
 2.1. Management Information 4
 2.2. Retransmission of Requests 4
 2.3. Message Sizes ... 4
 2.4. Transport Mappings .. 5
 2.5. SMIv2 Data Type Mappings 6
 3. Definitions ... 6
 4. Protocol Specification 9
 4.1. Common Constructs ... 9
 4.2. PDU Processing .. 10
 4.2.1. The GetRequest-PDU 10
 4.2.2. The GetNextRequest-PDU 11
 4.2.2.1. Example of Table Traversal 12
 4.2.3. The GetBulkRequest-PDU 14
 4.2.3.1. Another Example of Table Traversal 17
 4.2.4. The Response-PDU .. 18
 4.2.5. The SetRequest-PDU 19
 4.2.6. The SNMPv2-Trap-PDU 22
 4.2.7. The InformRequest-PDU 23
 5. Notice on Intellectual Property 24
 6. Acknowledgments ... 24
 7. Security Considerations 26
 8. References .. 26
 8.1. Normative References 26
 8.2. Informative References 27
 9. Changes from RFC 1905 28
 10. Editor’s Address ... 30
 11. Full Copyright Statement 31

Presuhn, et al. Standards Track [Page 2]

RFC 3416 Protocol Operations for SNMP December 2002

1. Introduction

 The SNMP Management Framework at the time of this writing consists of
 five major components:

 - An overall architecture, described in STD 62, RFC 3411
 [RFC3411].

 - Mechanisms for describing and naming objects and events for the
 purpose of management. The first version of this Structure of
 Management Information (SMI) is called SMIv1 and described in
 STD 16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC
 1215 [RFC1215]. The second version, called SMIv2, is described
 in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and
 STD 58, RFC 2580 [RFC2580].

 - Message protocols for transferring management information. The
 first version of the SNMP message protocol is called SNMPv1 and
 described in STD 15, RFC 1157 [RFC1157]. A second version of
 the SNMP message protocol, which is not an Internet standards
 track protocol, is called SNMPv2c and described in RFC 1901
 [RFC1901] and STD 62, RFC 3417 [RFC3417]. The third version of
 the message protocol is called SNMPv3 and described in STD 62,
 RFC 3417 [RFC3417], RFC 3412 [RFC3412] and RFC 3414 [RFC3414].

 - Protocol operations for accessing management information. The
 first set of protocol operations and associated PDU formats is
 described in STD 15, RFC 1157 [RFC1157]. A second set of
 protocol operations and associated PDU formats is described in
 this document.

 - A set of fundamental applications described in STD 62, RFC 3413
 [RFC3413] and the view-based access control mechanism described
 in STD 62, RFC 3415 [RFC3415].

 A more detailed introduction to the SNMP Management Framework at the
 time of this writing can be found in RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the mechanisms defined in the SMI.

 This document, Version 2 of the Protocol Operations for the Simple
 Network Management Protocol, defines the operations of the protocol
 with respect to the sending and receiving of PDUs to be carried by
 the message protocol.

Presuhn, et al. Standards Track [Page 3]

RFC 3416 Protocol Operations for SNMP December 2002

2. Overview

 SNMP entities supporting command generator or notification receiver
 applications (traditionally called "managers") communicate with SNMP
 entities supporting command responder or notification originator
 applications (traditionally called "agents"). The purpose of this
 protocol is the transport of management information and operations.

2.1. Management Information

 The term "variable" refers to an instance of a non-aggregate object
 type defined according to the conventions set forth in the SMI
 [RFC2578] or the textual conventions based on the SMI [RFC2579]. The
 term "variable binding" normally refers to the pairing of the name of
 a variable and its associated value. However, if certain kinds of
 exceptional conditions occur during processing of a retrieval
 request, a variable binding will pair a name and an indication of
 that exception.

 A variable-binding list is a simple list of variable bindings.

 The name of a variable is an OBJECT IDENTIFIER which is the
 concatenation of the OBJECT IDENTIFIER of the corresponding object-
 type together with an OBJECT IDENTIFIER fragment identifying the
 instance. The OBJECT IDENTIFIER of the corresponding object-type is
 called the OBJECT IDENTIFIER prefix of the variable.

2.2. Retransmission of Requests

 For all types of request in this protocol, the receiver is required
 under normal circumstances, to generate and transmit a response to
 the originator of the request. Whether or not a request should be
 retransmitted if no corresponding response is received in an
 appropriate time interval, is at the discretion of the application
 originating the request. This will normally depend on the urgency of
 the request. However, such an application needs to act responsibly
 in respect to the frequency and duration of re-transmissions. See
 BCP 41 [RFC2914] for discussion of relevant congestion control
 principles.

2.3. Message Sizes

 The maximum size of an SNMP message is limited to the minimum of:

 (1) the maximum message size which the destination SNMP entity can
 accept; and,

Presuhn, et al. Standards Track [Page 4]

RFC 3416 Protocol Operations for SNMP December 2002

 (2) the maximum message size which the source SNMP entity can
 generate.

 The former may be known on a per-recipient basis; and in the absence
 of such knowledge, is indicated by transport domain used when sending
 the message. The latter is imposed by implementation-specific local
 constraints.

 Each transport mapping for the SNMP indicates the minimum message
 size which a SNMP implementation must be able to produce or consume.
 Although implementations are encouraged to support larger values
 whenever possible, a conformant implementation must never generate
 messages larger than allowed by the receiving SNMP entity.

 One of the aims of the GetBulkRequest-PDU, specified in this
 protocol, is to minimize the number of protocol exchanges required to
 retrieve a large amount of management information. As such, this PDU
 type allows an SNMP entity supporting command generator applications
 to request that the response be as large as possible given the
 constraints on message sizes. These constraints include the limits
 on the size of messages which the SNMP entity supporting command
 responder applications can generate, and the SNMP entity supporting
 command generator applications can receive.

 However, it is possible that such maximum sized messages may be
 larger than the Path MTU of the path across the network traversed by
 the messages. In this situation, such messages are subject to
 fragmentation. Fragmentation is generally considered to be harmful
 [FRAG], since among other problems, it leads to a decrease in the
 reliability of the transfer of the messages. Thus, an SNMP entity
 which sends a GetBulkRequest-PDU must take care to set its parameters
 accordingly, so as to reduce the risk of fragmentation. In
 particular, under conditions of network stress, only small values
 should be used for max-repetitions.

2.4. Transport Mappings

 It is important to note that the exchange of SNMP messages requires
 only an unreliable datagram service, with every message being
 entirely and independently contained in a single transport datagram.
 Specific transport mappings and encoding rules are specified
 elsewhere [RFC3417]. However, the preferred mapping is the use of
 the User Datagram Protocol [RFC768].

Presuhn, et al. Standards Track [Page 5]

RFC 3416 Protocol Operations for SNMP December 2002

2.5. SMIv2 Data Type Mappings

 The SMIv2 [RFC2578] defines 11 base types (INTEGER, OCTET STRING,
 OBJECT IDENTIFIER, Integer32, IpAddress, Counter32, Gauge32,
 Unsigned32, TimeTicks, Opaque, Counter64) and the BITS construct.
 The SMIv2 base types are mapped to the corresponding selection type
 in the SimpleSyntax and ApplicationSyntax choices of the ASN.1 SNMP
 protocol definition. Note that the INTEGER and Integer32 SMIv2 base
 types are mapped to the integer-value selection type of the
 SimpleSyntax choice. Similarly, the Gauge32 and Unsigned32 SMIv2
 base types are mapped to the unsigned-integer-value selection type of
 the ApplicationSyntax choice.

 The SMIv2 BITS construct is mapped to the string-value selection type
 of the SimpleSyntax choice. A BITS value is encoded as an OCTET
 STRING, in which all the named bits in (the definition of) the
 bitstring, commencing with the first bit and proceeding to the last
 bit, are placed in bits 8 (high order bit) to 1 (low order bit) of
 the first octet, followed by bits 8 to 1 of each subsequent octet in
 turn, followed by as many bits as are needed of the final subsequent
 octet, commencing with bit 8. Remaining bits, if any, of the final
 octet are set to zero on generation and ignored on receipt.

3. Definitions

 The PDU syntax is defined using ASN.1 notation [ASN1].

 SNMPv2-PDU DEFINITIONS ::= BEGIN

 ObjectName ::= OBJECT IDENTIFIER

 ObjectSyntax ::= CHOICE {
 simple SimpleSyntax,
 application-wide ApplicationSyntax }

 SimpleSyntax ::= CHOICE {
 integer-value INTEGER (-2147483648..2147483647),
 string-value OCTET STRING (SIZE (0..65535)),
 objectID-value OBJECT IDENTIFIER }

 ApplicationSyntax ::= CHOICE {
 ipAddress-value IpAddress,
 counter-value Counter32,
 timeticks-value TimeTicks,
 arbitrary-value Opaque,
 big-counter-value Counter64,
 unsigned-integer-value Unsigned32 }

Presuhn, et al. Standards Track [Page 6]

RFC 3416 Protocol Operations for SNMP December 2002

 IpAddress ::= [APPLICATION 0] IMPLICIT OCTET STRING (SIZE (4))

 Counter32 ::= [APPLICATION 1] IMPLICIT INTEGER (0..4294967295)

 Unsigned32 ::= [APPLICATION 2] IMPLICIT INTEGER (0..4294967295)

 Gauge32 ::= Unsigned32

 TimeTicks ::= [APPLICATION 3] IMPLICIT INTEGER (0..4294967295)

 Opaque ::= [APPLICATION 4] IMPLICIT OCTET STRING

 Counter64 ::= [APPLICATION 6]
 IMPLICIT INTEGER (0..18446744073709551615)

 -- protocol data units

 PDUs ::= CHOICE {
 get-request GetRequest-PDU,
 get-next-request GetNextRequest-PDU,
 get-bulk-request GetBulkRequest-PDU,
 response Response-PDU,
 set-request SetRequest-PDU,
 inform-request InformRequest-PDU,
 snmpV2-trap SNMPv2-Trap-PDU,
 report Report-PDU }

 -- PDUs

 GetRequest-PDU ::= [0] IMPLICIT PDU

 GetNextRequest-PDU ::= [1] IMPLICIT PDU

 Response-PDU ::= [2] IMPLICIT PDU

 SetRequest-PDU ::= [3] IMPLICIT PDU

 -- [4] is obsolete

 GetBulkRequest-PDU ::= [5] IMPLICIT BulkPDU

 InformRequest-PDU ::= [6] IMPLICIT PDU

 SNMPv2-Trap-PDU ::= [7] IMPLICIT PDU

 -- Usage and precise semantics of Report-PDU are not defined
 -- in this document. Any SNMP administrative framework making
 -- use of this PDU must define its usage and semantics.

Presuhn, et al. Standards Track [Page 7]

RFC 3416 Protocol Operations for SNMP December 2002

 Report-PDU ::= [8] IMPLICIT PDU

 max-bindings INTEGER ::= 2147483647

 PDU ::= SEQUENCE {
 request-id INTEGER (-214783648..214783647),

 error-status -- sometimes ignored
 INTEGER {
 noError(0),
 tooBig(1),
 noSuchName(2), -- for proxy compatibility
 badValue(3), -- for proxy compatibility
 readOnly(4), -- for proxy compatibility
 genErr(5),
 noAccess(6),
 wrongType(7),
 wrongLength(8),
 wrongEncoding(9),
 wrongValue(10),
 noCreation(11),
 inconsistentValue(12),
 resourceUnavailable(13),
 commitFailed(14),
 undoFailed(15),
 authorizationError(16),
 notWritable(17),
 inconsistentName(18)
 },

 error-index -- sometimes ignored
 INTEGER (0..max-bindings),

 variable-bindings -- values are sometimes ignored
 VarBindList
 }

 BulkPDU ::= -- must be identical in
 SEQUENCE { -- structure to PDU
 request-id INTEGER (-214783648..214783647),
 non-repeaters INTEGER (0..max-bindings),
 max-repetitions INTEGER (0..max-bindings),

 variable-bindings -- values are ignored
 VarBindList
 }

 -- variable binding

Presuhn, et al. Standards Track [Page 8]

RFC 3416 Protocol Operations for SNMP December 2002

 VarBind ::= SEQUENCE {
 name ObjectName,

 CHOICE {
 value ObjectSyntax,
 unSpecified NULL, -- in retrieval requests

 -- exceptions in responses
 noSuchObject [0] IMPLICIT NULL,
 noSuchInstance [1] IMPLICIT NULL,
 endOfMibView [2] IMPLICIT NULL
 }
 }

 -- variable-binding list

 VarBindList ::= SEQUENCE (SIZE (0..max-bindings)) OF VarBind

 END

4. Protocol Specification

4.1. Common Constructs

 The value of the request-id field in a Response-PDU takes the value
 of the request-id field in the request PDU to which it is a response.
 By use of the request-id value, an application can distinguish the
 (potentially multiple) outstanding requests, and thereby correlate
 incoming responses with outstanding requests. In cases where an
 unreliable datagram service is used, the request-id also provides a
 simple means of identifying messages duplicated by the network. Use
 of the same request-id on a retransmission of a request allows the
 response to either the original transmission or the retransmission to
 satisfy the request. However, in order to calculate the round trip
 time for transmission and processing of a request-response
 transaction, the application needs to use a different request-id
 value on a retransmitted request. The latter strategy is recommended
 for use in the majority of situations.

 A non-zero value of the error-status field in a Response-PDU is used
 to indicate that an error occurred to prevent the processing of the
 request. In these cases, a non-zero value of the Response-PDU’s
 error-index field provides additional information by identifying
 which variable binding in the list caused the error. A variable
 binding is identified by its index value. The first variable binding
 in a variable-binding list is index one, the second is index two,
 etc.

Presuhn, et al. Standards Track [Page 9]

RFC 3416 Protocol Operations for SNMP December 2002

 SNMP limits OBJECT IDENTIFIER values to a maximum of 128 sub-
 identifiers, where each sub-identifier has a maximum value of
 2**32-1.

4.2. PDU Processing

 In the elements of procedure below, any field of a PDU which is not
 referenced by the relevant procedure is ignored by the receiving SNMP
 entity. However, all components of a PDU, including those whose
 values are ignored by the receiving SNMP entity, must have valid
 ASN.1 syntax and encoding. For example, some PDUs (e.g., the
 GetRequest-PDU) are concerned only with the name of a variable and
 not its value. In this case, the value portion of the variable
 binding is ignored by the receiving SNMP entity. The unSpecified
 value is defined for use as the value portion of such bindings.

 On generating a management communication, the message "wrapper" to
 encapsulate the PDU is generated according to the "Elements of
 Procedure" of the administrative framework in use. The definition of
 "max-bindings" imposes an upper bound on the number of variable
 bindings. In practice, the size of a message is also limited by
 constraints on the maximum message size. A compliant implementation
 must support as many variable bindings in a PDU or BulkPDU as fit
 into the overall maximum message size limit of the SNMP engine, but
 no more than 2147483647 variable bindings.

 On receiving a management communication, the "Elements of Procedure"
 of the administrative framework in use is followed, and if those
 procedures indicate that the operation contained within the message
 is to be performed locally, then those procedures also indicate the
 MIB view which is visible to the operation.

4.2.1. The GetRequest-PDU

 A GetRequest-PDU is generated and transmitted at the request of an
 application.

 Upon receipt of a GetRequest-PDU, the receiving SNMP entity processes
 each variable binding in the variable-binding list to produce a
 Response-PDU. All fields of the Response-PDU have the same values as
 the corresponding fields of the received request except as indicated
 below. Each variable binding is processed as follows:

 (1) If the variable binding’s name exactly matches the name of a
 variable accessible by this request, then the variable
 binding’s value field is set to the value of the named
 variable.

Presuhn, et al. Standards Track [Page 10]

RFC 3416 Protocol Operations for SNMP December 2002

 (2) Otherwise, if the variable binding’s name does not have an
 OBJECT IDENTIFIER prefix which exactly matches the OBJECT
 IDENTIFIER prefix of any (potential) variable accessible by
 this request, then its value field is set to "noSuchObject".

 (3) Otherwise, the variable binding’s value field is set to
 "noSuchInstance".

 If the processing of any variable binding fails for a reason other
 than listed above, then the Response-PDU is re-formatted with the
 same values in its request-id and variable-bindings fields as the
 received GetRequest-PDU, with the value of its error-status field set
 to "genErr", and the value of its error-index field is set to the
 index of the failed variable binding.

 Otherwise, the value of the Response-PDU’s error-status field is set
 to "noError", and the value of its error-index field is zero.

 The generated Response-PDU is then encapsulated into a message. If
 the size of the resultant message is less than or equal to both a
 local constraint and the maximum message size of the originator, it
 is transmitted to the originator of the GetRequest-PDU.

 Otherwise, an alternate Response-PDU is generated. This alternate
 Response-PDU is formatted with the same value in its request-id field
 as the received GetRequest-PDU, with the value of its error-status
 field set to "tooBig", the value of its error-index field set to
 zero, and an empty variable-bindings field. This alternate
 Response-PDU is then encapsulated into a message. If the size of the
 resultant message is less than or equal to both a local constraint
 and the maximum message size of the originator, it is transmitted to
 the originator of the GetRequest-PDU. Otherwise, the snmpSilentDrops
 [RFC3418] counter is incremented and the resultant message is
 discarded.

4.2.2. The GetNextRequest-PDU

 A GetNextRequest-PDU is generated and transmitted at the request of
 an application.

 Upon receipt of a GetNextRequest-PDU, the receiving SNMP entity
 processes each variable binding in the variable-binding list to
 produce a Response-PDU. All fields of the Response-PDU have the same
 values as the corresponding fields of the received request except as
 indicated below. Each variable binding is processed as follows:

 (1) The variable is located which is in the lexicographically
 ordered list of the names of all variables which are

Presuhn, et al. Standards Track [Page 11]

RFC 3416 Protocol Operations for SNMP December 2002

 accessible by this request and whose name is the first
 lexicographic successor of the variable binding’s name in
 the incoming GetNextRequest-PDU. The corresponding variable
 binding’s name and value fields in the Response-PDU are set
 to the name and value of the located variable.

 (2) If the requested variable binding’s name does not
 lexicographically precede the name of any variable
 accessible by this request, i.e., there is no lexicographic
 successor, then the corresponding variable binding produced
 in the Response-PDU has its value field set to
 "endOfMibView", and its name field set to the variable
 binding’s name in the request.

 If the processing of any variable binding fails for a reason other
 than listed above, then the Response-PDU is re-formatted with the
 same values in its request-id and variable-bindings fields as the
 received GetNextRequest-PDU, with the value of its error-status field
 set to "genErr", and the value of its error-index field is set to the
 index of the failed variable binding.

 Otherwise, the value of the Response-PDU’s error-status field is set
 to "noError", and the value of its error-index field is zero.

 The generated Response-PDU is then encapsulated into a message. If
 the size of the resultant message is less than or equal to both a
 local constraint and the maximum message size of the originator, it
 is transmitted to the originator of the GetNextRequest-PDU.

 Otherwise, an alternate Response-PDU is generated. This alternate
 Response-PDU is formatted with the same values in its request-id
 field as the received GetNextRequest-PDU, with the value of its
 error-status field set to "tooBig", the value of its error-index
 field set to zero, and an empty variable-bindings field. This
 alternate Response-PDU is then encapsulated into a message. If the
 size of the resultant message is less than or equal to both a local
 constraint and the maximum message size of the originator, it is
 transmitted to the originator of the GetNextRequest-PDU. Otherwise,
 the snmpSilentDrops [RFC3418] counter is incremented and the
 resultant message is discarded.

4.2.2.1. Example of Table Traversal

 An important use of the GetNextRequest-PDU is the traversal of
 conceptual tables of information within a MIB. The semantics of this
 type of request, together with the method of identifying individual
 instances of objects in the MIB, provides access to related objects
 in the MIB as if they enjoyed a tabular organization.

Presuhn, et al. Standards Track [Page 12]

RFC 3416 Protocol Operations for SNMP December 2002

 In the protocol exchange sketched below, an application retrieves the
 media-dependent physical address and the address-mapping type for
 each entry in the IP net-to-media Address Translation Table [RFC1213]
 of a particular network element. It also retrieves the value of
 sysUpTime [RFC3418], at which the mappings existed. Suppose that the
 command responder’s IP net-to-media table has three entries:

 Interface-Number Network-Address Physical-Address Type

 1 10.0.0.51 00:00:10:01:23:45 static
 1 9.2.3.4 00:00:10:54:32:10 dynamic
 2 10.0.0.15 00:00:10:98:76:54 dynamic

 The SNMP entity supporting a command generator application begins by
 sending a GetNextRequest-PDU containing the indicated OBJECT
 IDENTIFIER values as the requested variable names:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress,
 ipNetToMediaType)

 The SNMP entity supporting a command responder application responds
 with a Response-PDU:

 Response ((sysUpTime.0 = "123456"),
 (ipNetToMediaPhysAddress.1.9.2.3.4 = "000010543210"),
 (ipNetToMediaType.1.9.2.3.4 = "dynamic"))

 The SNMP entity supporting the command generator application
 continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.1.9.2.3.4,
 ipNetToMediaType.1.9.2.3.4)

 The SNMP entity supporting the command responder application responds
 with:

 Response ((sysUpTime.0 = "123461"),
 (ipNetToMediaPhysAddress.1.10.0.0.51 = "000010012345"),
 (ipNetToMediaType.1.10.0.0.51 = "static"))

 The SNMP entity supporting the command generator application
 continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.1.10.0.0.51,
 ipNetToMediaType.1.10.0.0.51)

Presuhn, et al. Standards Track [Page 13]

RFC 3416 Protocol Operations for SNMP December 2002

 The SNMP entity supporting the command responder application responds
 with:

 Response ((sysUpTime.0 = "123466"),
 (ipNetToMediaPhysAddress.2.10.0.0.15 = "000010987654"),
 (ipNetToMediaType.2.10.0.0.15 = "dynamic"))

 The SNMP entity supporting the command generator application
 continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.2.10.0.0.15,
 ipNetToMediaType.2.10.0.0.15)

 As there are no further entries in the table, the SNMP entity
 supporting the command responder application responds with the
 variables that are next in the lexicographical ordering of the
 accessible object names, for example:

 Response ((sysUpTime.0 = "123471"),
 (ipNetToMediaNetAddress.1.9.2.3.4 = "9.2.3.4"),
 (ipRoutingDiscards.0 = "2"))

 Note how, having reached the end of the column for
 ipNetToMediaPhysAddress, the second variable binding from the command
 responder application has now "wrapped" to the first row in the next
 column. Furthermore, note how, having reached the end of the
 ipNetToMediaTable for the third variable binding, the command
 responder application has responded with the next available object,
 which is outside that table. This response signals the end of the
 table to the command generator application.

4.2.3. The GetBulkRequest-PDU

 A GetBulkRequest-PDU is generated and transmitted at the request of
 an application. The purpose of the GetBulkRequest-PDU is to request
 the transfer of a potentially large amount of data, including, but
 not limited to, the efficient and rapid retrieval of large tables.

 Upon receipt of a GetBulkRequest-PDU, the receiving SNMP entity
 processes each variable binding in the variable-binding list to
 produce a Response-PDU with its request-id field having the same
 value as in the request.

 For the GetBulkRequest-PDU type, the successful processing of each
 variable binding in the request generates zero or more variable
 bindings in the Response-PDU. That is, the one-to-one mapping
 between the variable bindings of the GetRequest-PDU, GetNextRequest-

Presuhn, et al. Standards Track [Page 14]

RFC 3416 Protocol Operations for SNMP December 2002

 PDU, and SetRequest-PDU types and the resultant Response-PDUs does
 not apply for the mapping between the variable bindings of a
 GetBulkRequest-PDU and the resultant Response-PDU.

 The values of the non-repeaters and max-repetitions fields in the
 request specify the processing requested. One variable binding in
 the Response-PDU is requested for the first N variable bindings in
 the request and M variable bindings are requested for each of the R
 remaining variable bindings in the request. Consequently, the total
 number of requested variable bindings communicated by the request is
 given by N + (M * R), where N is the minimum of: a) the value of the
 non-repeaters field in the request, and b) the number of variable
 bindings in the request; M is the value of the max-repetitions field
 in the request; and R is the maximum of: a) number of variable
 bindings in the request - N, and b) zero.

 The receiving SNMP entity produces a Response-PDU with up to the
 total number of requested variable bindings communicated by the
 request. The request-id shall have the same value as the received
 GetBulkRequest-PDU.

 If N is greater than zero, the first through the (N)-th variable
 bindings of the Response-PDU are each produced as follows:

 (1) The variable is located which is in the lexicographically
 ordered list of the names of all variables which are accessible
 by this request and whose name is the first lexicographic
 successor of the variable binding’s name in the incoming
 GetBulkRequest-PDU. The corresponding variable binding’s name
 and value fields in the Response-PDU are set to the name and
 value of the located variable.

 (2) If the requested variable binding’s name does not
 lexicographically precede the name of any variable accessible
 by this request, i.e., there is no lexicographic successor,
 then the corresponding variable binding produced in the
 Response-PDU has its value field set to "endOfMibView", and its
 name field set to the variable binding’s name in the request.

 If M and R are non-zero, the (N + 1)-th and subsequent variable
 bindings of the Response-PDU are each produced in a similar manner.
 For each iteration i, such that i is greater than zero and less than
 or equal to M, and for each repeated variable, r, such that r is
 greater than zero and less than or equal to R, the (N + ((i-1) * R)
 + r)-th variable binding of the Response-PDU is produced as follows:

Presuhn, et al. Standards Track [Page 15]

RFC 3416 Protocol Operations for SNMP December 2002

 (1) The variable which is in the lexicographically ordered list of
 the names of all variables which are accessible by this request
 and whose name is the (i)-th lexicographic successor of the (N
 + r)-th variable binding’s name in the incoming
 GetBulkRequest-PDU is located and the variable binding’s name
 and value fields are set to the name and value of the located
 variable.

 (2) If there is no (i)-th lexicographic successor, then the
 corresponding variable binding produced in the Response-PDU has
 its value field set to "endOfMibView", and its name field set
 to either the last lexicographic successor, or if there are no
 lexicographic successors, to the (N + r)-th variable binding’s
 name in the request.

 While the maximum number of variable bindings in the Response-PDU is
 bounded by N + (M * R), the response may be generated with a lesser
 number of variable bindings (possibly zero) for either of three
 reasons.

 (1) If the size of the message encapsulating the Response-PDU
 containing the requested number of variable bindings would be
 greater than either a local constraint or the maximum message
 size of the originator, then the response is generated with a
 lesser number of variable bindings. This lesser number is the
 ordered set of variable bindings with some of the variable
 bindings at the end of the set removed, such that the size of
 the message encapsulating the Response-PDU is approximately
 equal to but no greater than either a local constraint or the
 maximum message size of the originator. Note that the number
 of variable bindings removed has no relationship to the values
 of N, M, or R.

 (2) The response may also be generated with a lesser number of
 variable bindings if for some value of iteration i, such that i
 is greater than zero and less than or equal to M, that all of
 the generated variable bindings have the value field set to
 "endOfMibView". In this case, the variable bindings may be
 truncated after the (N + (i * R))-th variable binding.

 (3) In the event that the processing of a request with many
 repetitions requires a significantly greater amount of
 processing time than a normal request, then a command responder
 application may terminate the request with less than the full
 number of repetitions, providing at least one repetition is
 completed.

Presuhn, et al. Standards Track [Page 16]

RFC 3416 Protocol Operations for SNMP December 2002

 If the processing of any variable binding fails for a reason other
 than listed above, then the Response-PDU is re-formatted with the
 same values in its request-id and variable-bindings fields as the
 received GetBulkRequest-PDU, with the value of its error-status field
 set to "genErr", and the value of its error-index field is set to the
 index of the variable binding in the original request which
 corresponds to the failed variable binding.

 Otherwise, the value of the Response-PDU’s error-status field is set
 to "noError", and the value of its error-index field to zero.

 The generated Response-PDU (possibly with an empty variable-bindings
 field) is then encapsulated into a message. If the size of the
 resultant message is less than or equal to both a local constraint
 and the maximum message size of the originator, it is transmitted to
 the originator of the GetBulkRequest-PDU. Otherwise, the
 snmpSilentDrops [RFC3418] counter is incremented and the resultant
 message is discarded.

4.2.3.1. Another Example of Table Traversal

 This example demonstrates how the GetBulkRequest-PDU can be used as
 an alternative to the GetNextRequest-PDU. The same traversal of the
 IP net-to-media table as shown in Section 4.2.2.1 is achieved with
 fewer exchanges.

 The SNMP entity supporting the command generator application begins
 by sending a GetBulkRequest-PDU with the modest max-repetitions value
 of 2, and containing the indicated OBJECT IDENTIFIER values as the
 requested variable names:

 GetBulkRequest [non-repeaters = 1, max-repetitions = 2]
 (sysUpTime,
 ipNetToMediaPhysAddress,
 ipNetToMediaType)

 The SNMP entity supporting the command responder application responds
 with a Response-PDU:

 Response ((sysUpTime.0 = "123456"),
 (ipNetToMediaPhysAddress.1.9.2.3.4 = "000010543210"),
 (ipNetToMediaType.1.9.2.3.4 = "dynamic"),
 (ipNetToMediaPhysAddress.1.10.0.0.51 = "000010012345"),
 (ipNetToMediaType.1.10.0.0.51 = "static"))

Presuhn, et al. Standards Track [Page 17]

RFC 3416 Protocol Operations for SNMP December 2002

 The SNMP entity supporting the command generator application
 continues with:

 GetBulkRequest [non-repeaters = 1, max-repetitions = 2]
 (sysUpTime,
 ipNetToMediaPhysAddress.1.10.0.0.51,
 ipNetToMediaType.1.10.0.0.51)

 The SNMP entity supporting the command responder application responds
 with:

 Response ((sysUpTime.0 = "123466"),
 (ipNetToMediaPhysAddress.2.10.0.0.15 = "000010987654"),
 (ipNetToMediaType.2.10.0.0.15 = "dynamic"),
 (ipNetToMediaNetAddress.1.9.2.3.4 = "9.2.3.4"),
 (ipRoutingDiscards.0 = "2"))

 Note how, as in the first example, the variable bindings in the
 response indicate that the end of the table has been reached. The
 fourth variable binding does so by returning information from the
 next available column; the fifth variable binding does so by
 returning information from the first available object
 lexicographically following the table. This response signals the end
 of the table to the command generator application.

4.2.4. The Response-PDU

 The Response-PDU is generated by an SNMP entity only upon receipt of
 a GetRequest-PDU, GetNextRequest-PDU, GetBulkRequest-PDU,
 SetRequest-PDU, or InformRequest-PDU, as described elsewhere in this
 document.

 If the error-status field of the Response-PDU is non-zero, the value
 fields of the variable bindings in the variable binding list are
 ignored.

 If both the error-status field and the error-index field of the
 Response-PDU are non-zero, then the value of the error-index field is
 the index of the variable binding (in the variable-binding list of
 the corresponding request) for which the request failed. The first
 variable binding in a request’s variable-binding list is index one,
 the second is index two, etc.

 A compliant SNMP entity supporting a command generator application
 must be able to properly receive and handle a Response-PDU with an
 error-status field equal to "noSuchName", "badValue", or "readOnly".
 (See sections 1.3 and 4.3 of [RFC2576].)

Presuhn, et al. Standards Track [Page 18]

RFC 3416 Protocol Operations for SNMP December 2002

 Upon receipt of a Response-PDU, the receiving SNMP entity presents
 its contents to the application which generated the request with the
 same request-id value. For more details, see [RFC3412].

4.2.5. The SetRequest-PDU

 A SetRequest-PDU is generated and transmitted at the request of an
 application.

 Upon receipt of a SetRequest-PDU, the receiving SNMP entity
 determines the size of a message encapsulating a Response-PDU having
 the same values in its request-id and variable-bindings fields as the
 received SetRequest-PDU, and the largest possible sizes of the
 error-status and error-index fields. If the determined message size
 is greater than either a local constraint or the maximum message size
 of the originator, then an alternate Response-PDU is generated,
 transmitted to the originator of the SetRequest-PDU, and processing
 of the SetRequest-PDU terminates immediately thereafter. This
 alternate Response-PDU is formatted with the same values in its
 request-id field as the received SetRequest-PDU, with the value of
 its error-status field set to "tooBig", the value of its error-index
 field set to zero, and an empty variable-bindings field. This
 alternate Response-PDU is then encapsulated into a message. If the
 size of the resultant message is less than or equal to both a local
 constraint and the maximum message size of the originator, it is
 transmitted to the originator of the SetRequest-PDU. Otherwise, the
 snmpSilentDrops [RFC3418] counter is incremented and the resultant
 message is discarded. Regardless, processing of the SetRequest-PDU
 terminates.

 Otherwise, the receiving SNMP entity processes each variable binding
 in the variable-binding list to produce a Response-PDU. All fields
 of the Response-PDU have the same values as the corresponding fields
 of the received request except as indicated below.

 The variable bindings are conceptually processed as a two phase
 operation. In the first phase, each variable binding is validated;
 if all validations are successful, then each variable is altered in
 the second phase. Of course, implementors are at liberty to
 implement either the first, or second, or both, of these conceptual
 phases as multiple implementation phases. Indeed, such multiple
 implementation phases may be necessary in some cases to ensure
 consistency.

Presuhn, et al. Standards Track [Page 19]

RFC 3416 Protocol Operations for SNMP December 2002

 The following validations are performed in the first phase on each
 variable binding until they are all successful, or until one fails:

 (1) If the variable binding’s name specifies an existing or non-
 existent variable to which this request is/would be denied
 access because it is/would not be in the appropriate MIB view,
 then the value of the Response-PDU’s error-status field is set
 to "noAccess", and the value of its error-index field is set to
 the index of the failed variable binding.

 (2) Otherwise, if there are no variables which share the same
 OBJECT IDENTIFIER prefix as the variable binding’s name, and
 which are able to be created or modified no matter what new
 value is specified, then the value of the Response-PDU’s
 error-status field is set to "notWritable", and the value of
 its error-index field is set to the index of the failed
 variable binding.

 (3) Otherwise, if the variable binding’s value field specifies,
 according to the ASN.1 language, a type which is inconsistent
 with that required for all variables which share the same
 OBJECT IDENTIFIER prefix as the variable binding’s name, then
 the value of the Response-PDU’s error-status field is set to
 "wrongType", and the value of its error-index field is set to
 the index of the failed variable binding.

 (4) Otherwise, if the variable binding’s value field specifies,
 according to the ASN.1 language, a length which is inconsistent
 with that required for all variables which share the same
 OBJECT IDENTIFIER prefix as the variable binding’s name, then
 the value of the Response-PDU’s error-status field is set to
 "wrongLength", and the value of its error-index field is set to
 the index of the failed variable binding.

 (5) Otherwise, if the variable binding’s value field contains an
 ASN.1 encoding which is inconsistent with that field’s ASN.1
 tag, then the value of the Response-PDU’s error-status field is
 set to "wrongEncoding", and the value of its error-index field
 is set to the index of the failed variable binding. (Note that
 not all implementation strategies will generate this error.)

 (6) Otherwise, if the variable binding’s value field specifies a
 value which could under no circumstances be assigned to the
 variable, then the value of the Response-PDU’s error-status
 field is set to "wrongValue", and the value of its error-index
 field is set to the index of the failed variable binding.

Presuhn, et al. Standards Track [Page 20]

RFC 3416 Protocol Operations for SNMP December 2002

 (7) Otherwise, if the variable binding’s name specifies a variable
 which does not exist and could not ever be created (even though
 some variables sharing the same OBJECT IDENTIFIER prefix might
 under some circumstances be able to be created), then the value
 of the Response-PDU’s error-status field is set to
 "noCreation", and the value of its error-index field is set to
 the index of the failed variable binding.

 (8) Otherwise, if the variable binding’s name specifies a variable
 which does not exist but can not be created under the present
 circumstances (even though it could be created under other
 circumstances), then the value of the Response-PDU’s error-
 status field is set to "inconsistentName", and the value of its
 error-index field is set to the index of the failed variable
 binding.

 (9) Otherwise, if the variable binding’s name specifies a variable
 which exists but can not be modified no matter what new value
 is specified, then the value of the Response-PDU’s error-status
 field is set to "notWritable", and the value of its error-index
 field is set to the index of the failed variable binding.

 (10) Otherwise, if the variable binding’s value field specifies a
 value that could under other circumstances be held by the
 variable, but is presently inconsistent or otherwise unable to
 be assigned to the variable, then the value of the Response-
 PDU’s error-status field is set to "inconsistentValue", and the
 value of its error-index field is set to the index of the
 failed variable binding.

 (11) When, during the above steps, the assignment of the value
 specified by the variable binding’s value field to the
 specified variable requires the allocation of a resource which
 is presently unavailable, then the value of the Response-PDU’s
 error-status field is set to "resourceUnavailable", and the
 value of its error-index field is set to the index of the
 failed variable binding.

 (12) If the processing of the variable binding fails for a reason
 other than listed above, then the value of the Response-PDU’s
 error-status field is set to "genErr", and the value of its
 error-index field is set to the index of the failed variable
 binding.

 (13) Otherwise, the validation of the variable binding succeeds.

Presuhn, et al. Standards Track [Page 21]

RFC 3416 Protocol Operations for SNMP December 2002

 At the end of the first phase, if the validation of all variable
 bindings succeeded, then the value of the Response-PDU’s error-status
 field is set to "noError" and the value of its error-index field is
 zero, and processing continues as follows.

 For each variable binding in the request, the named variable is
 created if necessary, and the specified value is assigned to it.
 Each of these variable assignments occurs as if simultaneously with
 respect to all other assignments specified in the same request.
 However, if the same variable is named more than once in a single
 request, with different associated values, then the actual assignment
 made to that variable is implementation-specific.

 If any of these assignments fail (even after all the previous
 validations), then all other assignments are undone, and the
 Response-PDU is modified to have the value of its error-status field
 set to "commitFailed", and the value of its error-index field set to
 the index of the failed variable binding.

 If and only if it is not possible to undo all the assignments, then
 the Response-PDU is modified to have the value of its error-status
 field set to "undoFailed", and the value of its error-index field is
 set to zero. Note that implementations are strongly encouraged to
 take all possible measures to avoid use of either "commitFailed" or
 "undoFailed" - these two error-status codes are not to be taken as
 license to take the easy way out in an implementation.

 Finally, the generated Response-PDU is encapsulated into a message,
 and transmitted to the originator of the SetRequest-PDU.

4.2.6. The SNMPv2-Trap-PDU

 An SNMPv2-Trap-PDU is generated and transmitted by an SNMP entity on
 behalf of a notification originator application. The SNMPv2-Trap-PDU
 is often used to notify a notification receiver application at a
 logically remote SNMP entity that an event has occurred or that a
 condition is present. There is no confirmation associated with this
 notification delivery mechanism.

 The destination(s) to which an SNMPv2-Trap-PDU is sent is determined
 in an implementation-dependent fashion by the SNMP entity. The first
 two variable bindings in the variable binding list of an SNMPv2-
 Trap-PDU are sysUpTime.0 [RFC3418] and snmpTrapOID.0 [RFC3418]
 respectively. If the OBJECTS clause is present in the invocation of
 the corresponding NOTIFICATION-TYPE macro, then each corresponding
 variable, as instantiated by this notification, is copied, in order,

Presuhn, et al. Standards Track [Page 22]

RFC 3416 Protocol Operations for SNMP December 2002

 to the variable-bindings field. If any additional variables are
 being included (at the option of the generating SNMP entity), then
 each is copied to the variable-bindings field.

4.2.7. The InformRequest-PDU

 An InformRequest-PDU is generated and transmitted by an SNMP entity
 on behalf of a notification originator application. The
 InformRequest-PDU is often used to notify a notification receiver
 application that an event has occurred or that a condition is
 present. This is a confirmed notification delivery mechanism,
 although there is, of course, no guarantee of delivery.

 The destination(s) to which an InformRequest-PDU is sent is specified
 by the notification originator application. The first two variable
 bindings in the variable binding list of an InformRequest-PDU are
 sysUpTime.0 [RFC3418] and snmpTrapOID.0 [RFC3418] respectively. If
 the OBJECTS clause is present in the invocation of the corresponding
 NOTIFICATION-TYPE macro, then each corresponding variable, as
 instantiated by this notification, is copied, in order, to the
 variable-bindings field. If any additional variables are being
 included (at the option of the generating SNMP entity), then each is
 copied to the variable-bindings field.

 Upon receipt of an InformRequest-PDU, the receiving SNMP entity
 determines the size of a message encapsulating a Response-PDU with
 the same values in its request-id, error-status, error-index and
 variable-bindings fields as the received InformRequest-PDU. If the
 determined message size is greater than either a local constraint or
 the maximum message size of the originator, then an alternate
 Response-PDU is generated, transmitted to the originator of the
 InformRequest-PDU, and processing of the InformRequest-PDU terminates
 immediately thereafter. This alternate Response-PDU is formatted
 with the same values in its request-id field as the received
 InformRequest-PDU, with the value of its error-status field set to
 "tooBig", the value of its error-index field set to zero, and an
 empty variable-bindings field. This alternate Response-PDU is then
 encapsulated into a message. If the size of the resultant message is
 less than or equal to both a local constraint and the maximum message
 size of the originator, it is transmitted to the originator of the
 InformRequest-PDU. Otherwise, the snmpSilentDrops [RFC3418] counter
 is incremented and the resultant message is discarded. Regardless,
 processing of the InformRequest-PDU terminates.

 Otherwise, the receiving SNMP entity:

 (1) presents its contents to the appropriate application;

Presuhn, et al. Standards Track [Page 23]

RFC 3416 Protocol Operations for SNMP December 2002

 (2) generates a Response-PDU with the same values in its request-id
 and variable-bindings fields as the received InformRequest-PDU,
 with the value of its error-status field set to "noError" and
 the value of its error-index field set to zero; and

 (3) transmits the generated Response-PDU to the originator of the
 InformRequest-PDU.

5. Notice on Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

6. Acknowledgments

 This document is the product of the SNMPv3 Working Group. Some
 special thanks are in order to the following Working Group members:

 Randy Bush
 Jeffrey D. Case
 Mike Daniele
 Rob Frye
 Lauren Heintz
 Keith McCloghrie
 Russ Mundy
 David T. Perkins
 Randy Presuhn
 Aleksey Romanov
 Juergen Schoenwaelder
 Bert Wijnen

Presuhn, et al. Standards Track [Page 24]

RFC 3416 Protocol Operations for SNMP December 2002

 This version of the document, edited by Randy Presuhn, was initially
 based on the work of a design team whose members were:

 Jeffrey D. Case
 Keith McCloghrie
 David T. Perkins
 Randy Presuhn
 Juergen Schoenwaelder

 The previous versions of this document, edited by Keith McCloghrie,
 was the result of significant work by four major contributors:

 Jeffrey D. Case
 Keith McCloghrie
 Marshall T. Rose
 Steven Waldbusser

 Additionally, the contributions of the SNMPv2 Working Group to the
 previous versions are also acknowledged. In particular, a special
 thanks is extended for the contributions of:

 Alexander I. Alten
 Dave Arneson
 Uri Blumenthal
 Doug Book
 Kim Curran
 Jim Galvin
 Maria Greene
 Iain Hanson
 Dave Harrington
 Nguyen Hien
 Jeff Johnson
 Michael Kornegay
 Deirdre Kostick
 David Levi
 Daniel Mahoney
 Bob Natale
 Brian O’Keefe
 Andrew Pearson
 Dave Perkins
 Randy Presuhn
 Aleksey Romanov
 Shawn Routhier
 Jon Saperia
 Juergen Schoenwaelder
 Bob Stewart

Presuhn, et al. Standards Track [Page 25]

RFC 3416 Protocol Operations for SNMP December 2002

 Kaj Tesink
 Glenn Waters
 Bert Wijnen

7. Security Considerations

 The protocol defined in this document by itself does not provide a
 secure environment. Even if the network itself is secure (for
 example by using IPSec), there is no control as to who on the secure
 network is allowed access to management information.

 It is recommended that the implementors consider the security
 features as provided by the SNMPv3 framework. Specifically, the use
 of the User-based Security Model STD 62, RFC 3414 [RFC3414] and the
 View-based Access Control Model STD 62, RFC 3415 [RFC3415] is
 recommended.

 It is then a customer/user responsibility to ensure that the SNMP
 entity is properly configured so that:

 - only those principals (users) having legitimate rights can
 access or modify the values of any MIB objects supported by
 that entity;

 - the occurrence of particular events on the entity will be
 communicated appropriately;

 - the entity responds appropriately and with due credence to
 events and information that have been communicated to it.

8. References

8.1. Normative References

 [RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

Presuhn, et al. Standards Track [Page 26]

RFC 3416 Protocol Operations for SNMP December 2002

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

 [RFC3411] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3412] Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
 "Message Processing and Dispatching for the Simple
 Network Management Protocol (SNMP)", STD 62, RFC 3412,
 December 2002.

 [RFC3413] Levi, D., Meyer, P. and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62, RFC
 3413, December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "The User-Based Security
 Model (USM) for Version 3 of the Simple Network
 Management Protocol (SNMPv3)", STD 62, RFC 3414, December
 2002.

 [RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415, December
 2002.

 [RFC3417] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Transport Mappings for the Simple Network
 Management Protocol", STD 62, RFC 3417, December 2002.

 [RFC3418] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3418, December 2002.

 [ASN1] Information processing systems - Open Systems
 Interconnection - Specification of Abstract Syntax
 Notation One (ASN.1), International Organization for
 Standardization. International Standard 8824, December
 1987.

8.2. Informative References

 [FRAG] Kent, C. and J. Mogul, "Fragmentation Considered
 Harmful," Proceedings, ACM SIGCOMM ’87, Stowe, VT, August
 1987.

Presuhn, et al. Standards Track [Page 27]

RFC 3416 Protocol Operations for SNMP December 2002

 [RFC1155] Rose, M. and K. McCloghrie, "Structure and Identification
 of Management Information for TCP/IP-based Internets",
 STD 16, RFC 1155, May 1990.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin,
 "Simple Network Management Protocol", STD 15, RFC 1157,
 May 1990.

 [RFC1212] Rose, M. and K. McCloghrie, "Concise MIB Definitions",
 STD 16, RFC 1212, March 1991.

 [RFC1213] McCloghrie, K. and M. Rose, Editors, "Management
 Information Base for Network Management of TCP/IP-based
 internets: MIB-II", STD 17, RFC 1213, March 1991.

 [RFC1215] Rose, M., "A Convention for Defining Traps for use with
 the SNMP", RFC 1215, March 1991.

 [RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901,
 January 1996.

 [RFC2576] Frye, R., Levi, D., Routhier, S. and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-Standard Network Management Framework",
 RFC 2576, March 2000.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC
 2914, September 2000.

 [RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

9. Changes from RFC 1905

 These are the changes from RFC 1905:

 - Corrected spelling error in copyright statement;

 - Updated copyright date;

 - Updated with new editor’s name and contact information;

 - Added notice on intellectual property;

Presuhn, et al. Standards Track [Page 28]

RFC 3416 Protocol Operations for SNMP December 2002

 - Cosmetic fixes to layout and typography;

 - Added table of contents;

 - Title changed;

 - Updated document headers and footers;

 - Deleted the old clause 2.3, entitled "Access to Management
 Information";

 - Changed the way in which request-id was defined, though with
 the same ultimate syntax and semantics, to avoid coupling with
 SMI. This does not affect the protocol in any way;

 - Replaced the word "exception" with the word "error" in the old
 clause 4.1. This does not affect the protocol in any way;

 - Deleted the first two paragraphs of the old clause 4.2;

 - Clarified the maximum number of variable bindings that an
 implementation must support in a PDU. This does not affect the
 protocol in any way;

 - Replaced occurrences of "SNMPv2 application" with
 "application";

 - Deleted three sentences in old clause 4.2.3 describing the
 handling of an impossible situation. This does not affect the
 protocol in any way;

 - Clarified the use of the SNMPv2-Trap-Pdu in the old clause
 4.2.6. This does not affect the protocol in any way;

 - Aligned description of the use of the InformRequest-Pdu in old
 clause 4.2.7 with the architecture. This does not affect the
 protocol in any way;

 - Updated references;

 - Re-wrote introduction clause;

 - Replaced manager/agent/SNMPv2 entity terminology with
 terminology from RFC 2571. This does not affect the protocol
 in any way;

 - Eliminated IMPORTS from the SMI, replaced with equivalent in-
 line ASN.1. This does not affect the protocol in any way;

Presuhn, et al. Standards Track [Page 29]

RFC 3416 Protocol Operations for SNMP December 2002

 - Added notes calling attention to two different manifestations
 of reaching the end of a table in the table walk examples;

 - Added content to security considerations clause;

 - Updated ASN.1 comment on use of Report-PDU. This does not
 affect the protocol in any way;

 - Updated acknowledgments section;

 - Included information on handling of BITS;

 - Deleted spurious comma in ASN.1 definition of PDUs;

 - Added abstract;

 - Made handling of additional variable bindings in informs
 consistent with that for traps. This was a correction of an
 editorial oversight, and reflects implementation practice;

 - Added reference to RFC 2914.

10. Editor’s Address

 Randy Presuhn
 BMC Software, Inc.
 2141 North First Street
 San Jose, CA 95131
 USA

 Phone: +1 408 546 1006
 EMail: randy_presuhn@bmc.com

Presuhn, et al. Standards Track [Page 30]

RFC 3416 Protocol Operations for SNMP December 2002

11. Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Presuhn, et al. Standards Track [Page 31]

