Network Working Group L. Dusseault, Ed.
Request for Comments: 4918 CommerceNet
Obsoletes: 2518 June 2007
Category: Standards Track

HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)
Status of This Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards™ (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The IETF Trust (2007).

Abstract
Web Distributed Authoring and Versioning (WebDAV) consists of a set
of methods, headers, and content-types ancillary to HTTP/1.1 for the
management of resource properties, creation and management of
resource collections, URL namespace manipulation, and resource
locking (collision avoidance).
RFC 2518 was published in February 1999, and this specification

obsoletes RFC 2518 with minor revisions mostly due to
interoperability experience.

Dusseault Standards Track [Page 1]

RFC 4918 WebDAV June 2007

Table of Contents

1. IntrodUCtEON . e e e e e a e aeaaan 7
2. Notational ConventioNS e e a et a e e e aaa e 8
3. Terminology - . oo e e e e e e e 8
4. Data Model for Resource Propertieso eoeaacanaaaann 10
4.1. The Resource Property Model i eaaeaaaann 10
4.2_ Properties and HTTP Headers i aaaaaaan- 10
4_.3. Property Values 10
4.3.1. Example - Property with Mixed Content _...._...__... 12
4.4 . Property NamesS it e et e e e e aaaaaaa 14
4.5. Source Resources and Output Resourcescceccucacan- 14
5. Collections of Web ReSOUrCeSt ie e aaea e aeaaaan 14
5.1. HTTP URL Namespace Model i aaa 15
5.2. Collection ReSOUNCES oot a e e a e e e aaa e e 15
6. LOCKIENG - oo e e e e e e e e e e e aeaaa 17
6.1. Lock Model ... e i aaaaaaan 18
6.2. Exclusive vs. Shared LoCKSot ieiaaaaaann 19
6.3. Requiired SUPPOrt i e e ccaacaeaaaaaaaanan- 20
6.4. Lock Creator and Privileges i iaiiaiaaanann 20
6.5. Lock ToKens a e 21
6.6. LoCK TEMEOUT .. .t e i e e a e e e e e e aae s 21
6.7. Lock Capability DESCOVENYot a e aaaaaaae 22
6.8. Active Lock DISCOVErY e e ceeacaaaaaaan 22
7. WrEte LOCK .o e e e e e e e e e e 23
7.1. Write Locks and Properties e e e aaaaaaann 24
7.2. Avoiding Lost Updates a e aaa 24
7.3. Write Locks and Unmapped URLS oo 25
7.4. Write Locks and Collections i ciaiaaaaaann- 26
7.5. Write Locks and the ITf Request Header 28
7.5.1. Example - Write Lock and COPY cooeoooo... 28

7.5.2. Example - Deleting a Member of a Locked
ColleCtion ...t 29
7.6. Write Locks and COPY/MOVEo e e e e ea e aa s 30
7.7. Refreshing Write Locks i i e 30
8. General Request and Response Handlingo cooaoao. 31
8.1. Precedence in Error Handling i aeaaaaaaan 31
8.2. Use OF XML ..ot d e e d e e e aeaaeceaaaaaaaaan 31
8.3. URL Handling - ... oo e e e e d e e e d e aaaaaa 32
8.3.1. Example - Correct URL Handling_ _....... 32
8.4. Required Bodies In Requests oo aae ey 33
8.5. HTTP Headers for Use in WebDAV 33
S B T i 1= o 33
8.7. Including Error Response Bodieso oioaao-. 34
8.8. Impact of Namespace Operations on Cache Validators 34
9. HTTP Methods for Distributed Authoring_ _ 35
9.1. PROPFIND Method e e d e e c e e aaaaaaan 35
9.1.1. PROPFIND Status Codes i ie e e ieaaaaaaann 37

Dusseault Standards Track [Page 2]

RFC 4918 WebDAV June 2007
9.1.2. Status Codes for Use in ’propstat” Element 37
9.1.3. Example - Retrieving Named Properties 38
9.1.4. Example - Using “propname” to Retrieve All

Property Names e a e a e e 39

9.1.5. Example - Using So-called “allprop” 41
9.1.6. Example - Using “allprop” with “include” 43

9.2. PROPPATCH Methodt e e e e aaa e e 44
9.2.1. Status Codes for Use in ’propstat’ Element 44
9.2.2. Example - PROPPATCH e ie e eaaaeaaann 45

9.3. MKCOL Method e e e d e e caeeaaaaaaan 46
9.3.1. MKCOL Status Codesottt aaaaaaaan 47
9.3.2. Example - MKCOL ... et e et aieaaceaaan 47

9.4. GET, HEAD for Collections i aaa e e 48
9.5. POST for ColleCctions it e e e e aaaa e 48
9.6. DELETE Requirements e it e a e e a e aeaaaa 48
9.6.1. DELETE for Collections i iaiaaaaaan 49
9.6.2. Example - DELETE ... i e e e e aeaaaeaaann 49

9.7. PUT ReqUIremeNntsS ... e it e e e ce e e aea e aaaaaaaaan 50
9.7.1. PUT for Non-Collection Resourcescocccooan- 50
9.7.2. PUT for Collections i e aaaaaaaaan 51

9.8. COPY Methodt d e a e e e e aaaa e 51
9.8.1. COPY for Non-collection Resources_.._.._. 51
9.8.2. COPY for Propertiesot aaaaaaaan 52
9.8.3. COPY for Collections i it iaaaaaaaann 52
9.8.4. COPY and Overwriting Destination Resources 53
9.8.5. Status CoUeS ...ttt e a e e 54
9.8.6. Example - COPY with Overwrite_ _.._..... 55
9.8.7. Example - COPY with No Overwrite ..._ _....... 55
9.8.8. Example - COPY of a Collection_ 56

9.9. MOVE Method e d e e e e e aaaa e 56
9.9.1. MOVE for Properties e e e e aaaaaaaaan 57
9.9.2. MOVE for Collectionso iaaaaaaannn 57
9.9.3. MOVE and the Overwrite Header_ 58
9.9.4. Status Codes aeaaan 59
9.9.5. Example - MOVE of a Non-Collection .._..._.__._.._........ 60
9.9.6. Example - MOVE of a Collection 60
9.10. LOCK Method i e e a e a e e aaaa e 61
9.10.1. Creating a Lock on an Existing Resource 61
9.10.2. Refreshing Locks oo.. 62
9.10.3. Depth and Locking - e 62
9.10.4. Locking Unmapped URLS oo i ey 63
9.10.5. Lock Compatibility Table 63
9.10.6. LOCK RESPONSES .. i i i it i e i e e e e acac e aeaeaaaaaaan 63
9.10.7. Example - Simple Lock Request 64
9.10.8. Example - Refreshing a Write Lock 65
9.10.9. Example - Multi-Resource Lock Request ..._.......... 66
9.11. UNLOCK Method it d e d e e aaeeaaaaaaans 68
9.11.1. Status Codesot a e 68
Dusseault Standards Track [Page 3]

RFC 4918 WebDAV June 2007

9.11.2. Example — UNLOCK it ec e ccaaaaaaaaan 69
10. HTTP Headers for Distributed Authoring 69
10.1. DAV Header e e e e e e acaceceaeaaaaaaaaan 69
10.2. Depth Header e a e e e aaa e 70
10.3. Destination Header it a e aaaaaaas 71
10.4. 1T Header et e e e 72
O | o T 1 72
O S o 1 = 0 G 72
10.4.3. List Evaluation i ececaaaanan- 73
10.4.4. Matching State Tokens and ETags - . -.--._ 74
10.4.5. 1f Header and Non-DAV-Aware Proxies 74
10.4.6. Example - No-tag Productionooc.... 75
10.4.7. Example - Using "Not" with No-tag Production 75

10.4.8. Example - Causing a Condition to Always
Evaluate to True it a e e 75
10.4.9. Example - Tagged List If Header in COPY ._._......... 76

10.4.10. Example - Matching Lock Tokens with

Collection Locks i i iaa 76
10.4.11. Example - Matching ETags on Unmapped URLS 76
10.5. Lock-Token Header e e e e aeaaaaaaan 77
10.6. Overwrite Header e ceceaaaaaaaaan 77
10.7. Timeout Request Header e 78
11. Status Code Extensions to HTTP/1.1 oo aaiaaaan- 78
11.1. 207 MUBEI-Status ittt i d e e e aaa e 78
11.2. 422 Unprocessable Entity i e ieaaaaaann 78
11.3. 423 Locked ..o e e e eeeeeaaaaaaaan 78
11.4. 424 Failed DependencCy . .. oo e e e et 79
11.5. 507 Insufficient Storage i aeaaa e 79
12. Use of HTTP Status Codes it a et aaaaaaas 79
12.1. 412 Precondition Failed 79
12.2. 414 Request-URI TOO LONG ..o oo i e e e e e aeaaaaaaas 79
13. Multi-Status ReSpONSEttt et e d e e aaa e m s 80
13.1. Response Headersottt e e e e e 80
13.2. Handling Redirected Child Resources_ _..... 81
13.3. Internal Status Codesot e e e 81
14_. XML Element DefInitioNS it it e e e aaa e e 81
14_.1. activelock XML Element i e ea e 81
14.2. allprop XML Element i a e ccaacaaaaaaan 82
14_.3. collection XML Element e eeeeaaaaaaan 82
14.4. depth XML Element e a e e e aaa e 82
14.5. error XML Elemento a e 82
14.6. exclusive XML Elementot e e aa e e 83
14.7. href XML Elementt e e e caa e e 83
14.8. include XML Element e e e ececeaeaaaaaaan 83
14.9. location XML Element e e ceaeaaaaaaan 83
14.10. Bockentry XML Element aaa s 84
14.11. Bockinfo XML Element it ae e 84
14.12. lockroot XML Element i i e caa e e 84

Dusseault Standards Track [Page 4]

RFC 4918 WebDAV June 2007

15.
16.
17.
18.

19.
20.

21.

22.

14.13. lockscope XML Element oo eaaaaaaaaann 84
14.14. locktoken XML Element i e e eeaeaeaaaaan 85
14_.15. locktype XML Elementt 85
14.16. multistatus XML Element e e e eaaaaaan 85
14.17. owner XML Element aaa e 85
14.18. prop XML Element i i e ccaaaaaaaaann 86
14.19. propertyupdate XML Element i eeaaaaaann 86
14.20. propfind XML Element e e e e 86
14.21. propname XML Element i aaaaan 87
14.22. propstat XML Element aaaaaan 87
14.23. remove XML Element ... e aaaaaaan 87
14.24. response XML Element e eeaaaaaaaann 88
14.25. responsedescription XML Element cio.oao-.. 88
14.26. set XML Element i e i e ecececeaeaaaaaaan 88
14.27. shared XML Element e e ceceaaaaaaaan 89
14.28. status XML Element i ceceacaaaaaaan 89
14.29. timeout XML Element e 89
14.30. write XML Element e 89
DAY PropertieS i i i i i i e e e e a e e a e a e ama e a e e 90
Precondition/Postcondition XML Elements 98
XML Extensibility In DAV e aaaaan 101
DAV Compliance ClassSest e e e e e a e aaaaaa 103
18 .. Class I ..ot ot e e e e e e d e e e 103
18 .2, ClasSsS 2 ..ot e e e e e 103
18.3. ClasSs 3 .ottt e e e e e e e e 103
Internationalization Considerationso ceoaaan. 104
Security Considerations e 105
20.1. Authentication of Clientso aaaaann 105
20.2. Denial of ServicCe aaa e 106
20.3. Security through Obscurity i aaaaaann 106
20.4. Privacy lIssues Connected to LoCckSo aaaaaann 106
20.5. Privacy Issues Connected to Properties 107
20.6. Implications of XML Entities_... 107
20.7. Risks Connected with Lock Tokens 108
20.8. Hosting Malicious Content i iiauaaaann 108
IANA Considerationsot it d e e ee e e e e e e 109
21.1. New URI ScChemest e e e e e 109
21.2. XML NamMESPACES - . oo i e i e e a e e e e e e e e — e 109
21.3. Message Header Fields -.-.... 109
248 R T R) 109
21.3.2. Depth .. e e e e e 110
21.3.3. Destination i e e e 110

230 R T S I 110
21.3.5. Lock-Token e e e e e e aaaaaaaa 110
21.3.6. Overwrite e eeaeaaaaaaaan 111
21.3.7. TImeOoUt e ecacecaaeaaaaaaaaaaan 111
21.4. HTTP Status Codesot a e a e e e aaa e 111
Acknowledgementst i e e e e e eeaaaaaaaaaan 112

Dusseault Standards Track [Page 5]

RFC 4918 WebDAV June 2007

23. Contributors to This Specificationo ieiaeaan- 113
24. Authors of RFC 2518 i e e e e a e ccaaaaaaan 113
25 . ReferenCes e e e 114
25.1. Normative References.ot aaa e 114
25.2. Informative References i aa s 115
Appendix A. Notes on Processing XML Elements 117
A.1. Notes on Empty XML Elements eccaaaaaaaaan 117
A_2. Notes on lllegal XML ProcessinNg ..o ccceiooaeeacaaaaaaaaan 117
A_3. Example - XML Syntax Error 117
A_4_ Example - Unexpected XML Element _ 118
Appendix B. Notes on HTTP Client Compatibility .._.._._..____.__.._.._... 119
Appendix C. The opaquelocktoken” Scheme and URIs 120
Appendix D. Lock-null ReSOUNCES e e e e ccaaaaaaaaan 120
D.1. Guidance for Clients Using LOCK to Create Resources 121
Appendix E. Guidance for Clients Desiring to Authenticate 121
Appendix F. Summary of Changes from RFC 2518 _....... 123
F.1. Changes for Both Client and Server Implementations 123
F.2. Changes for Server Implementations 125
F.3. Other Changes ... i i e i e e e c e c e aeccaaaaaaaaaan 126

Dusseault Standards Track [Page 6]

RFC 4918 WebDAV June 2007

1.

Introduction

This document describes an extension to the HTTP/1.1 protocol that

allows clients to perform remote Web content authoring operations.

This extension provides a coherent set of methods, headers, request
entity body formats, and response entity body formats that provide

operations for:

Properties: The ability to create, remove, and query information
about Web pages, such as their authors, creation dates, etc.

Collections: The ability to create sets of documents and to retrieve
a hierarchical membership listing (like a directory listing in a file
system).

Locking: The ability to keep more than one person from working on a
document at the same time. This prevents the "lost update problem™,
in which modifications are lost as first one author, then another,
writes changes without merging the other author’s changes.

Namespace Operations: The ability to instruct the server to copy and
move Web resources, operations that change the mapping from URLs to
resources.

Requirements and rationale for these operations are described in a
companion document, "Requirements for a Distributed Authoring and
Versioning Protocol for the World Wide Web"™ [RFC2291].

This document does not specify the versioning operations suggested by
[RFC2291]. That work was done in a separate document, "Versioning
Extensions to WebDAV" [RFC3253].

The sections below provide a detailed introduction to various WebDAV
abstractions: resource properties (Section 4), collections of
resources (Section 5), locks (Section 6) in general, and write locks
(Section 7) specifically.

These abstractions are manipulated by the WebDAV-specific HTTP
methods (Section 9) and the extra HTTP headers (Section 10) used with
WebDAV methods. General considerations for handling HTTP requests
and responses in WebDAV are found in Section 8.

While the status codes provided by HTTP/1.1 are sufficient to
describe most error conditions encountered by WebDAV methods, there
are some errors that do not fall neatly into the existing categories.
This specification defines extra status codes developed for WebDAV
methods (Section 11) and describes existing HTTP status codes
(Section 12) as used in WebDAV. Since some WebDAV methods may

Dusseault Standards Track [Page 7]

RFC 4918 WebDAV June 2007

operate over many resources, the Multi-Status response (Section 13)
has been introduced to return status information for multiple
resources. Finally, this version of WebDAV introduces precondition
and postcondition (Section 16) XML elements in error response bodies.

WebDAV uses XML ([REC-XML]) for property names and some values, and
also uses XML to marshal complicated requests and responses. This
specification contains DTD and text definitions of all properties
(Section 15) and all other XML elements (Section 14) used in
marshalling. WebDAV includes a few special rules on extending WebDAV
XML marshalling in backwards-compatible ways (Section 17).

Finishing off the specification are sections on what it means for a
resource to be compliant with this specification (Section 18), on
internationalization support (Section 19), and on security

(Section 20).

2. Notational Conventions

Since this document describes a set of extensions to the HTTP/1.1
protocol, the augmented BNF used herein to describe protocol elements
is exactly the same as described in Section 2.1 of [RFC2616],
including the rules about implied linear whitespace. Since this
augmented BNF uses the basic production rules provided in Section 2.2
of [RFC2616], these rules apply to this document as well. Note this
is not the standard BNF syntax used in other RFCs.

The key words "MUST™, "MUST NOT', "REQUIRED"™, "SHALL'™, "SHALL NOT",
""SHOULD™, "SHOULD NOT'", "RECOMMENDED'", "MAY", and "OPTIONAL"™ in this
document are to be interpreted as described in [RFC2119].

Note that in natural language, a property like the '‘creationdate"
property in the "DAV:" XML namespace is sometimes referred to as
"DAV:creationdate' for brevity.

3. Terminology

URIZURL - A Uniform Resource ldentifier and Uniform Resource Locator,
respectively. These terms (and the distinction between them) are
defined in [RFC3986].

URIZURL Mapping - A relation between an absolute URI and a resource.
Since a resource can represent items that are not network
retrievable, as well as those that are, it is possible for a resource
to have zero, one, or many URI mappings. Mapping a resource to an
"http'" scheme URI makes it possible to submit HTTP protocol requests
to the resource using the URI.

Dusseault Standards Track [Page 8]

RFC 4918 WebDAV June 2007

Path Segment - Informally, the characters found between slashes (/')
in a URI. Formally, as defined in Section 3.3 of [RFC3986].

Collection - Informally, a resource that also acts as a container of
references to child resources. Formally, a resource that contains a
set of mappings between path segments and resources and meets the
requirements defined in Section 5.

Internal Member (of a Collection) - Informally, a child resource of a
collection. Formally, a resource referenced by a path segment
mapping contained in the collection.

Internal Member URL (of a Collection) - A URL of an internal member,
consisting of the URL of the collection (including trailing slash)
plus the path segment identifying the internal member.

Member (of a Collection) - Informally, a "descendant™ of a
collection. Formally, an internal member of the collection, or,
recursively, a member of an internal member.

Member URL (of a Collection) - A URL that is either an internal
member URL of the collection itself, or is an internal member URL of
a member of that collection.

Property - A name/value pair that contains descriptive information
about a resource.

Live Property - A property whose semantics and syntax are enforced by
the server. For example, the live property DAV:getcontentlength has
its value, the length of the entity returned by a GET request,
automatically calculated by the server.

Dead Property - A property whose semantics and syntax are not
enforced by the server. The server only records the value of a dead
property; the client is responsible for maintaining the consistency
of the syntax and semantics of a dead property.

Principal - A distinct human or computational actor that initiates
access to network resources.

State Token - A URI that represents a state of a resource. Lock
tokens are the only state tokens defined in this specification.

Dusseault Standards Track [Page 9]

RFC 4918 WebDAV June 2007

4. Data Model for Resource Properties
4_.1. The Resource Property Model

Properties are pieces of data that describe the state of a resource.
Properties are data about data.

Properties are used in distributed authoring environments to provide
for efficient discovery and management of resources. For example, a
>subject” property might allow for the indexing of all resources by
their subject, and an “author” property might allow for the discovery
of what authors have written which documents.

The DAV property model consists of name/value pairs. The name of a
property identifies the property’s syntax and semantics, and provides
an address by which to refer to its syntax and semantics.

There are two categories of properties: "live" and "dead". A live
property has its syntax and semantics enforced by the server. Live
properties include cases where a) the value of a property is
protected and maintained by the server, and b) the value of the
property is maintained by the client, but the server performs syntax
checking on submitted values. All instances of a given live property
MUST comply with the definition associated with that property name.

A dead property has its syntax and semantics enforced by the client;
the server merely records the value of the property verbatim.

4_.2. Properties and HTTP Headers

Properties already exist, in a limited sense, in HTTP message
headers. However, in distributed authoring environments, a
relatively large number of properties are needed to describe the
state of a resource, and setting/returning them all through HTTP
headers is inefficient. Thus, a mechanism is needed that allows a
principal to identify a set of properties in which the principal is
interested and to set or retrieve just those properties.

4_.3. Property Values
The value of a property is always a (well-formed) XML fragment.

XML has been chosen because it is a flexible, self-describing,
structured data format that supports rich schema definitions, and
because of its support for multiple character sets. XML’s self-
describing nature allows any property’s value to be extended by
adding elements. Clients will not break when they encounter
extensions because they will still have the data specified in the
original schema and MUST ignore elements they do not understand.

Dusseault Standards Track [Page 10]

RFC 4918 WebDAV June 2007

XML”s support for multiple character sets allows any human-readable
property to be encoded and read in a character set familiar to the
user. XML’s support for multiple human languages, using the "xml:
lang” attribute, handles cases where the same character set is
employed by multiple human languages. Note that xml:lang scope is
recursive, so an xml:lang attribute on any element containing a
property name element applies to the property value unless it has
been overridden by a more locally scoped attribute. Note that a
property only has one value, in one language (or language MAY be left
undefined); a property does not have multiple values in different
languages or a single value in multiple languages.

A property is always represented with an XML element consisting of
the property name, called the "property name element'”. The simplest
example is an empty property, which is different from a property that
does not exist:

<R:title xmIns:R="http://www.example.com/ns/"></R:title>
The value of the property appears inside the property name element.
The value may be any kind of well-formed XML content, including both
text-only and mixed content. Servers MUST preserve the following XML
Information ltems (using the terminology from [REC-XML-INFOSET]) 1in
storage and transmission of dead properties:
For the property name Element Information Item itself:

[namespace name]

[local name]

[attributes] named "xml:lang"™ or any such attribute in scope

[children] of type element or character
On all Element Information Items in the property value:

[namespace name]

[local name]

[attributes]

[children] of type element or character

Dusseault Standards Track [Page 11]

RFC 4918 WebDAV June 2007

On Attribute Information Items in the property value:
[namespace name]
[local name]
[normalized value]

On Character Information ltems in the property value:

[character code]

Since prefixes are used in some XML vocabularies (XPath and XML
Schema, for example), servers SHOULD preserve, for any Information
Item in the value:

[prefix]

XML Infoset attributes not listed above MAY be preserved by the
server, but clients MUST NOT rely on them being preserved. The above

rules would also apply by default to live properties, unless defined
otherwise.

Servers MUST ignore the XML attribute xml:space if present and never

use it to change whitespace handling. Whitespace in property values
is significant.

4.3.1. Example - Property with Mixed Content

Consider a dead property “author’ created by the client as follows:

<D:prop xml:lang="en" xmlns:D="DAV:">
<x:author xmlns:x="http://example.com/ns’>
<x:name>Jane Doe</x:name>
<I-- Jane’s contact info -->
<x:uri type=email”’
added="2005-11-26">mai lto: jane.doe@example.com</Xx:uri>
<x:uri type=’web’
added="2005-11-27">http://www.example.com</x:uri>
<x:notes xmIns:h="http://www.w3.0rg/1999/xhtml”>
Jane has been working way <h:em>too</h:em> long on the
long-awaited revision of <I[CDATA[<RFC2518>]]>.
</X:notes>
</x:author>
</D:prop>

Dusseault Standards Track [Page 12]

RFC 4918 WebDAV June 2007

When this property is requested, a server might return:

<D:prop xmlns:D="DAV:~><author
xml zlang="en”
xmIns:x="http://example.com/ns”’
xmIns="http://example.com/ns”’
xmIns:h="http://ww.w3.0rg/1999/xhtml”>
<x:name>Jane Doe</X:name>
<x:-uri added="2005-11-26" type="email™
>mailto: jane.doe@example.com</x:uri>
<x:uri added="2005-11-27" type="‘web"
>http://www.example.com</x:uri>
<x:notes>
Jane has been working way <h:em>too</h:em> long on the
long-awaited revision of &It;RFC2518>.
</x:notes>
</author>
</D:prop>

Note in this example:

o

The [prefix] for the property name itself was not preserved, being
non-significant, whereas all other [prefix] values have been
preserved,

attribute values have been rewritten with double quotes instead of
single quotes (quoting style is not significant), and attribute
order has not been preserved,

the xml:lang attribute has been returned on the property name
element itself (it was in scope when the property was set, but the
exact position in the response is not considered significant as
long as it is in scope),

whitespace between tags has been preserved everywhere (whitespace
between attributes not so),

CDATA encapsulation was replaced with character escaping (the
reverse would also be legal),

the comment item was stripped (as would have been a processing
instruction item).

Implementation note: there are cases such as editing scenarios where
clients may require that XML content is preserved character by
character (such as attribute ordering or quoting style). In this
case, clients should consider using a text-only property value by
escaping all characters that have a special meaning in XML parsing.

Dusseault Standards Track [Page 13]

RFC 4918 WebDAV June 2007

4.4_. Property Names

A property name is a universally unique identifier that is associated
with a schema that provides information about the syntax and
semantics of the property.

Because a property’s name is universally unique, clients can depend
upon consistent behavior for a particular property across multiple
resources, on the same and across different servers, so long as that
property is "live" on the resources in question, and the
implementation of the live property is faithful to its definition.

The XML namespace mechanism, which is based on URIs ([RFC3986]), is
used to name properties because it prevents namespace collisions and
provides for varying degrees of administrative control.

The property namespace is flat; that is, no hierarchy of properties
is explicitly recognized. Thus, if a property A and a property A/B
exist on a resource, there is no recognition of any relationship
between the two properties. It is expected that a separate
specification will eventually be produced that will address issues
relating to hierarchical properties.

Finally, it is not possible to define the same property twice on a
single resource, as this would cause a collision in the resource’s
property namespace.

4_.5_. Source Resources and Output Resources

Some HTTP resources are dynamically generated by the server. For
these resources, there presumably exists source code somewhere
governing how that resource is generated. The relationship of source
files to output HTTP resources may be one to one, one to many, many
to one, or many to many. There is no mechanism in HTTP to determine
whether a resource is even dynamic, let alone where its source files
exist or how to author them. Although this problem would usefully be
solved, interoperable WebDAV implementations have been widely
deployed without actually solving this problem, by dealing only with
static resources. Thus, the source vs. output problem is not solved
in this specification and has been deferred to a separate document.

5. Collections of Web Resources

This section provides a description of a type of Web resource, the
collection, and discusses its interactions with the HTTP URL
namespace and with HTTP methods. The purpose of a collection
resource is to model collection-like objects (e.g., file system
directories) within a server’s namespace.

Dusseault Standards Track [Page 14]

RFC 4918 WebDAV June 2007

All DAV-compliant resources MUST support the HTTP URL namespace model
specified herein.

5.1. HTTP URL Namespace Model

The HTTP URL namespace is a hierarchical namespace where the
hierarchy is delimited with the '"/" character.

An HTTP URL namespace is said to be consistent if it meets the
following conditions: for every URL in the HTTP hierarchy there
exists a collection that contains that URL as an internal member URL.
The root, or top-level collection of the namespace under
consideration, is exempt from the previous rule. The top-level
collection of the namespace under consideration is not necessarily
the collection identified by the absolute path ’/” -- it may be
identified by one or more path segments (e.g., /servlets/webdav/...)

Neither HTTP/1.1 nor WebDAV requires that the entire HTTP URL
namespace be consistent -- a WebDAV-compatible resource may not have
a parent collection. However, certain WebDAV methods are prohibited
from producing results that cause namespace inconsistencies.

As is implicit in [RFC2616] and [RFC3986], any resource, including
collection resources, MAY be identified by more than one URI. For
example, a resource could be identified by multiple HTTP URLs.

5.2. Collection Resources

Collection resources differ from other resources in that they also
act as containers. Some HTTP methods apply only to a collection, but
some apply to some or all of the resources inside the container
defined by the collection. When the scope of a method is not clear,
the client can specify what depth to apply. Depth can be either zero
levels (only the collection), one level (the collection and directly
contained resources), or infinite levels (the collection and all
contained resources recursively).

A collection’s state consists of at least a set of mappings between
path segments and resources, and a set of properties on the
collection itself. In this document, a resource B will be said to be
contained in the collection resource A if there is a path segment
mapping that maps to B and that is contained in A. A collection MUST
contain at most one mapping for a given path segment, i.e., it is
illegal to have the same path segment mapped to more than one
resource.

Dusseault Standards Track [Page 15]

RFC 4918 WebDAV June 2007

Properties defined on collections behave exactly as do properties on
non-collection resources. A collection MAY have additional state
such as entity bodies returned by GET.

For all WebDAV-compliant resources A and B, identified by URLs U™
and "V", respectively, such that "V" is equal to "U/SEGMENT', A MUST
be a collection that contains a mapping from "SEGMENT" to B. So, if
resource B with URL "http://example.com/bar/blah" is WebDAV compliant
and if resource A with URL "http://example._.com/bar/" is WebDAV
compliant, then resource A must be a collection and must contain
exactly one mapping from "blah™ to B.

Although commonly a mapping consists of a single segment and a
resource, in general, a mapping consists of a set of segments and a
resource. This allows a server to treat a set of segments as
equivalent (i.e., either all of the segments are mapped to the same
resource, or none of the segments are mapped to a resource). For
example, a server that performs case-folding on segments will treat
the segments "ab'", "Ab"™, "aB', and "AB"™ as equivalent. A client can
then use any of these segments to identify the resource. Note that a
PROPFIND result will select one of these equivalent segments to
identify the mapping, so there will be one PROPFIND response element
per mapping, not one per segment in the mapping.

Collection resources MAY have mappings to non-WebDAV-compliant
resources in the HTTP URL namespace hierarchy but are not required to
do so. For example, if resource X with URL
"http://example.com/bar/blah™ is not WebDAV compliant and resource A
with "URL http://example.com/bar/" identifies a WebDAV collection,
then A may or may not have a mapping from "blah”™ to X.

IT a WebDAV-compliant resource has no WebDAV-compliant internal
members in the HTTP URL namespace hierarchy, then the WebDAV-
compliant resource is not required to be a collection.

There is a standing convention that when a collection is referred to
by its name without a trailing slash, the server MAY handle the

request as if the trailing slash were present. In this case, it
SHOULD return a Content-Location header in the response, pointing to
the URL ending with the "/"_. For example, if a client invokes a

method on http://example.com/blah (no trailing slash), the server may
respond as if the operation were invoked on http://example.com/blah/
(trailing slash), and should return a Content-Location header with
the value http://example.com/blah/. Wherever a server produces a URL
referring to a collection, the server SHOULD include the trailing
slash. In general, clients SHOULD use the trailing slash form of
collection names. If clients do not use the trailing slash form the
client needs to be prepared to see a redirect response. Clients will

Dusseault Standards Track [Page 16]

RFC 4918 WebDAV June 2007

find the DAV:resourcetype property more reliable than the URL to find
out if a resource is a collection.

Clients MUST be able to support the case where WebDAV resources are
contained inside non-WebDAV resources. For example, if an OPTIONS
response from "http://example.com/serviet/dav/collection"” indicates
WebDAV support, the client cannot assume that
"http://example._com/servilet/dav/" or its parent necessarily are
WebDAV collections.

A typical scenario in which mapped URLs do not appear as members of
their parent collection is the case where a server allows links or
redirects to non-WebDAV resources. For instance, "/col/link" might
not appear as a member of "/col/", although the server would respond
with a 302 status to a GET request to '"/col/link"; thus, the URL
"/col/link™ would indeed be mapped. Similarly, a dynamically-
generated page might have a URL mapping from *"*/col/index._html™, thus
this resource might respond with a 200 OK to a GET request yet not
appear as a member of "/col/".

Some mappings to even WebDAV-compliant resources might not appear in
the parent collection. An example for this case are servers that
support multiple alias URLs for each WebDAV-compliant resource. A
server may implement case-insensitive URLs, thus "/col/a" and
"/col/A" identify the same resource, yet only either "a" or "A" is
reported upon listing the members of "/col™. |In cases where a server
treats a set of segments as equivalent, the server MUST expose only
one preferred segment per mapping, consistently chosen, in PROPFIND
responses.

6. Locking

The ability to lock a resource provides a mechanism for serializing
access to that resource. Using a lock, an authoring client can
provide a reasonable guarantee that another principal will not modify
a resource while it is being edited. In this way, a client can
prevent the "lost update' problem.

This specification allows locks to vary over two client-specified
parameters, the number of principals involved (exclusive vs. shared)
and the type of access to be granted. This document defines locking
for only one access type, write. However, the syntax is extensible,
and permits the eventual specification of locking for other access
types.

Dusseault Standards Track [Page 17]

RFC 4918 WebDAV June 2007

6.1.

Lock Model

This section provides a concise model for how locking behaves. Later
sections will provide more detail on some of the concepts and refer
back to these model statements. Normative statements related to LOCK
and UNLOCK method handling can be found in the sections on those
methods, whereas normative statements that cover any method are
gathered here.

1.

2.

A lock either directly or indirectly locks a resource.

A resource becomes directly locked when a LOCK request to a URL
of that resource creates a new lock. The "lock-root" of the new
lock is that URL. If at the time of the request, the URL is not
mapped to a resource, a hew empty resource is created and
directly locked.

An exclusive lock (Section 6.2) conflicts with any other kind of
lock on the same resource, whether either lock is direct or
indirect. A server MUST NOT create conflicting locks on a
resource.

For a collection that is locked with a depth-infinity lock L, all
member resources are indirectly locked. Changes in membership of
such a collection affect the set of indirectly locked resources:

* 1T a member resource is added to the collection, the new
member resource MUST NOT already have a conflicting lock,
because the new resource MUST become indirectly locked by L.

* If a member resource stops being a member of the collection,
then the resource MUST no longer be indirectly locked by L.

Each lock is identified by a single globally unique lock token
(Section 6.5).

An UNLOCK request deletes the lock with the specified lock token.
After a lock is deleted, no resource is locked by that lock.

A lock token is "submitted" in a request when it appears in an
"I header (Section 7, "Write Lock™, discusses when token
submission is required for write locks).

IT a request causes the lock-root of any lock to become an
unmapped URL, then the lock MUST also be deleted by that request.

Dusseault Standards Track [Page 18]

RFC 4918 WebDAV June 2007

6.2. Exclusive vs. Shared Locks

The most basic form of lock is an exclusive lock. Exclusive locks
avoid having to deal with content change conflicts, without requiring
any coordination other than the methods described in this
specification.

However, there are times when the goal of a lock is not to exclude
others from exercising an access right but rather to provide a
mechanism for principals to indicate that they intend to exercise
their access rights. Shared locks are provided for this case. A
shared lock allows multiple principals to receive a lock. Hence any
principal that has both access privileges and a valid lock can use
the locked resource.

With shared locks, there are two trust sets that affect a resource.
The first trust set is created by access permissions. Principals who
are trusted, for example, may have permission to write to the
resource. Among those who have access permission to write to the
resource, the set of principals who have taken out a shared lock also
must trust each other, creating a (typically) smaller trust set
within the access permission write set.

Starting with every possible principal on the Internet, in most
situations the vast majority of these principals will not have write
access to a given resource. Of the small number who do have write
access, some principals may decide to guarantee their edits are free
from overwrite conflicts by using exclusive write locks. Others may
decide they trust their collaborators will not overwrite their work
(the potential set of collaborators being the set of principals who
have write permission) and use a shared lock, which informs their
collaborators that a principal may be working on the resource.

The WebDAV extensions to HTTP do not need to provide all of the
communications paths necessary for principals to coordinate their
activities. When using shared locks, principals may use any out-of-
band communication channel to coordinate their work (e.g., face-to-
face interaction, written notes, post-it notes on the screen,
telephone conversation, email, etc.) The intent of a shared lock is
to let collaborators know who else may be working on a resource.

Shared locks are included because experience from Web-distributed
authoring systems has indicated that exclusive locks are often too
rigid. An exclusive lock is used to enforce a particular editing
process: take out an exclusive lock, read the resource, perform
edits, write the resource, release the lock. This editing process
has the problem that locks are not always properly released, for
example, when a program crashes or when a lock creator leaves without

Dusseault Standards Track [Page 19]

RFC 4918 WebDAV June 2007

unlocking a resource. While both timeouts (Section 6.6) and
administrative action can be used to remove an offending lock,
neither mechanism may be available when needed; the timeout may be
long or the administrator may not be available.

A successful request for a new shared lock MUST result in the
generation of a unique lock associated with the requesting principal.
Thus, if Ffive principals have taken out shared write locks on the
same resource, there will be five locks and five lock tokens, one for
each principal.

6.3. Required Support

A WebDAV-compliant resource is not required to support locking in any
form. If the resource does support locking, it may choose to support
any combination of exclusive and shared locks for any access types.

The reason for this flexibility is that locking policy strikes to the
very heart of the resource management and versioning systems employed
by various storage repositories. These repositories require control
over what sort of locking will be made available. For example, some
repositories only support shared write locks, while others only
provide support for exclusive write locks, while yet others use no
locking at all. As each system is sufficiently different to merit
exclusion of certain locking features, this specification leaves
locking as the sole axis of negotiation within WebDAV.

6.4. Lock Creator and Privileges

The creator of a lock has special privileges to use the lock to
modify the resource. When a locked resource is modified, a server
MUST check that the authenticated principal matches the lock creator
(in addition to checking for valid lock token submission).

The server MAY allow privileged users other than the lock creator to
destroy a lock (for example, the resource owner or an administrator).
The “unlock” privilege in [RFC3744] was defined to provide that
permission.

There is no requirement for servers to accept LOCK requests from all
users or from anonymous users.

Note that having a lock does not confer full privilege to modify the
locked resource. Write access and other privileges MUST be enforced
through normal privilege or authentication mechanisms, not based on

the possible obscurity of lock token values.

Dusseault Standards Track [Page 20]

RFC 4918 WebDAV June 2007

6.5. Lock Tokens

A lock token is a type of state token that identifies a particular
lock. Each lock has exactly one unique lock token generated by the
server. Clients MUST NOT attempt to interpret lock tokens in any
way -

Lock token URIs MUST be unique across all resources for all time.
This uniqueness constraint allows lock tokens to be submitted across
resources and servers without fear of confusion. Since lock tokens
are unique, a client MAY submit a lock token in an If header on a
resource other than the one that returned it.

When a LOCK operation creates a new lock, the new lock token is
returned in the Lock-Token response header defined in Section 10.5,
and also in the body of the response.

Servers MAY make lock tokens publicly readable (e.g., in the DAV:
lockdiscovery property). One use case for making lock tokens
readable is so that a long-lived lock can be removed by the resource
owner (the client that obtained the lock might have crashed or
disconnected before cleaning up the lock). Except for the case of
using UNLOCK under user guidance, a client SHOULD NOT use a lock
token created by another client instance.

This specification encourages servers to create Universally Unique
Identifiers (UUIDs) for lock tokens, and to use the URI form defined
by "A Universally Unique ldentifier (UUID) URN Namespace"
([RFC4122]). However, servers are free to use any URI (e.g., from
another scheme) so long as it meets the uniqueness requirements. For
example, a valid lock token might be constructed using the
""opaguelocktoken' scheme defined in Appendix C.

Example: "urn:uuid:f8ld4fae-7dec-11d0-a765-00a0c91e6bf6™

6.6. Lock Timeout
A lock MAY have a limited lifetime. The lifetime is suggested by the
client when creating or refreshing the lock, but the server
ultimately chooses the timeout value. Timeout is measured iIn seconds
remaining until lock expiration.
The timeout counter MUST be restarted if a refresh lock request is
successful (see Section 9.10.2). The timeout counter SHOULD NOT be
restarted at any other time.

IT the timeout expires, then the lock SHOULD be removed. In this
case the server SHOULD act as if an UNLOCK method was executed by the

Dusseault Standards Track [Page 21]

RFC 4918 WebDAV June 2007

server on the resource using the lock token of the timed-out lock,
performed with its override authority.

Servers are advised to pay close attention to the values submitted by
clients, as they will be indicative of the type of activity the
client intends to perform. For example, an applet running in a
browser may need to lock a resource, but because of the instability
of the environment within which the applet is running, the applet may
be turned off without warning. As a result, the applet is likely to
ask for a relatively small timeout value so that if the applet dies,
the lock can be quickly harvested. However, a document management
system is likely to ask for an extremely long timeout because its
user may be planning on going offline.

A client MUST NOT assume that just because the timeout has expired,
the lock has immediately been removed.

Likewise, a client MUST NOT assume that just because the timeout has
not expired, the lock still exists. Clients MUST assume that locks
can arbitrarily disappear at any time, regardless of the value given
in the Timeout header. The Timeout header only indicates the
behavior of the server if extraordinary circumstances do not occur.
For example, a sufficiently privileged user may remove a lock at any
time, or the system may crash in such a way that it loses the record
of the lock’s existence.

6.7. Lock Capability Discovery

Since server lock support is optional, a client trying to lock a
resource on a server can either try the lock and hope for the best,
or perform some form of discovery to determine what lock capabilities
the server supports. This is known as lock capability discovery. A
client can determine what lock types the server supports by
retrieving the DAV:supportedlock property.

Any DAV-compliant resource that supports the LOCK method MUST support
the DAV:supportedlock property.

6.8. Active Lock Discovery

IT another principal locks a resource that a principal wishes to
access, it is useful for the second principal to be able to find out
who the First principal is. For this purpose the DAV:lockdiscovery
property is provided. This property lists all outstanding locks,
describes their type, and MAY even provide the lock tokens.

Any DAV-compliant resource that supports the LOCK method MUST support
the DAV:lockdiscovery property.

Dusseault Standards Track [Page 22]

RFC 4918 WebDAV June 2007

7. Write Lock

This section describes the semantics specific to the write lock type.
The write lock is a specific instance of a lock type, and is the only
lock type described in this specification.

An exclusive write lock protects a resource: it prevents changes by
any principal other than the lock creator and in any case where the
lock token is not submitted (e.g., by a client process other than the
one holding the lock).

Clients MUST submit a lock-token they are authorized to use in any
request that modifies a write-locked resource. The list of
modifications covered by a write-lock include:

1. A change to any of the following aspects of any write-locked
resource:

* any variant,
* any dead property,

* any live property that is lockable (a live property is
lockable unless otherwise defined.)

2. For collections, any modification of an internal member URI. An
internal member URI of a collection is considered to be modified
if It is added, removed, or identifies a different resource.
More discussion on write locks and collections is found in
Section 7.4.

3. A modification of the mapping of the root of the write lock,
either to another resource or to no resource (e.g., DELETE).

Of the methods defined in HTTP and WebDAV, PUT, POST, PROPPATCH,
LOCK, UNLOCK, MOVE, COPY (for the destination resource), DELETE, and
MKCOL are affected by write locks. All other HTTP/WebDAV methods
defined so far -- GET in particular -- function independently of a
write lock.

The next few sections describe In more specific terms how write locks
interact with various operations.

Dusseault Standards Track [Page 23]

RFC 4918 WebDAV June 2007

7.1. Write Locks and Properties

While those without a write lock may not alter a property on a
resource it is still possible for the values of live properties to
change, even while locked, due to the requirements of their schemas.
Only dead properties and live properties defined as lockable are
guaranteed not to change while write locked.

7.2. Avoiding Lost Updates

Although the write locks provide some help in preventing lost
updates, they cannot guarantee that updates will never be lost.
Consider the following scenario:

Two clients A and B are interested in editing the resource
index.html”. Client A is an HTTP client rather than a WebDAV
client, and so does not know how to perform locking.

Client A doesn’t lock the document, but does a GET, and begins
editing.

Client B does LOCK, performs a GET and begins editing.
Client B finishes editing, performs a PUT, then an UNLOCK.
Client A performs a PUT, overwriting and losing all of B’s changes.

There are several reasons why the WebDAV protocol itself cannot
prevent this situation. First, it cannot force all clients to use
locking because it must be compatible with HTTP clients that do not
comprehend locking. Second, it cannot require servers to support
locking because of the variety of repository implementations, some of
which rely on reservations and merging rather than on locking.
Finally, being stateless, it cannot enforce a sequence of operations
like LOCK /7 GET / PUT / UNLOCK.

WebDAV servers that support locking can reduce the likelihood that
clients will accidentally overwrite each other’s changes by requiring
clients to lock resources before modifying them. Such servers would
effectively prevent HTTP 1.0 and HTTP 1.1 clients from modifying
resources.

WebDAV clients can be good citizens by using a lock / retrieve /

write /Zunlock sequence of operations (at least by default) whenever
they iInteract with a WebDAV server that supports locking.

Dusseault Standards Track [Page 24]

RFC 4918 WebDAV June 2007

HTTP 1.1 clients can be good citizens, avoiding overwriting other
clients’” changes, by using entity tags in If-Match headers with any
requests that would modify resources.

Information managers may attempt to prevent overwrites by
implementing client-side procedures requiring locking before
modifying WebDAV resources.

7.3. Write Locks and Unmapped URLs

WebDAV provides the ability to send a LOCK request to an unmapped URL
in order to reserve the name for use. This is a simple way to avoid
the lost-update problem on the creation of a new resource (another
way is to use If-None-Match header specified in Section 14.26 of
[RFC2616]). It has the side benefit of locking the new resource
immediately for use of the creator.

Note that the lost-update problem is not an issue for collections
because MKCOL can only be used to create a collection, not to
overwrite an existing collection. When trying to lock a collection
upon creation, clients can attempt to increase the likelihood of
getting the lock by pipelining the MKCOL and LOCK requests together
(but because this doesn’t convert two separate operations into one
atomic operation, there’s no guarantee this will work).

A successful lock request to an unmapped URL MUST result in the
creation of a locked (non-collection) resource with empty content.
Subsequently, a successful PUT request (with the correct lock token)
provides the content for the resource. Note that the LOCK request
has no mechanism for the client to provide Content-Type or Content-
Language, thus the server will use defaults or empty values and rely
on the subsequent PUT request for correct values.

A resource created with a LOCK is empty but otherwise behaves 1in
every way as a normal resource. It behaves the same way as a
resource created by a PUT request with an empty body (and where a
Content-Type and Content-Language was not specified), followed by a
LOCK request to the same resource. Following from this model, a
locked empty resource:

o Can be read, deleted, moved, and copied, and in all ways behaves
as a regular non-collection resource.

0 Appears as a member of its parent collection.
0 SHOULD NOT disappear when its lock goes away (clients must

therefore be responsible for cleaning up their own mess, as with
any other operation or any non-empty resource).

Dusseault Standards Track [Page 25]

RFC 4918 WebDAV June 2007

0 MAY NOT have values for properties like DAV:getcontentlanguage
that haven’t been specified yet by the client.

0 Can be updated (have content added) with a PUT request.

0 MUST NOT be converted into a collection. The server MUST fail a
MKCOL request (as it would with a MKCOL request to any existing
non-collection resource).

0 MUST have defined values for DAV:lockdiscovery and DAV:
supportedlock properties.

0 The response MUST indicate that a resource was created, by use of
the "201 Created" response code (a LOCK request to an existing
resource instead will result in 200 OK). The body must still
include the DAV:lockdiscovery property, as with a LOCK request to
an existing resource.

The client is expected to update the locked empty resource shortly
after locking it, using PUT and possibly PROPPATCH.

Alternatively and for backwards compatibility to [RFC2518], servers
MAY implement Lock-Null Resources (LNRs) instead (see definition in
Appendix D). Clients can easily interoperate both with servers that
support the old model LNRs and the recommended model of "locked empty
resources" by only attempting PUT after a LOCK to an unmapped URL,
not MKCOL or GET, and by not relying on specific properties of LNRs.

7.4. Write Locks and Collections

There are two kinds of collection write locks. A depth-0 write lock
on a collection protects the collection properties plus the internal
member URLs of that one collection, while not protecting the content
or properties of member resources (if the collection itself has any
entity bodies, those are also protected). A depth-infinity write

lock on a collection provides the same protection on that collection
and also provides write lock protection on every member resource.

Expressed otherwise, a write lock of either kind protects any request
that would create a new resource in a write locked collection, any
request that would remove an internal member URL of a write locked
collection, and any request that would change the segment name of any
internal member.

Thus, a collection write lock protects all the following actions:

o DELETE a collection’s direct internal member,

Dusseault Standards Track [Page 26]

RFC 4918 WebDAV June 2007

0 MOVE an internal member out of the collection,

0 MOVE an internal member into the collection,

0o MOVE to rename an internal member within a collection,

0 COPY an internal member into a collection, and

0 PUT or MKCOL request that would create a new internal member.

The collection’s lock token is required in addition to the lock token
on the internal member itself, if it is locked separately.

In addition, a depth-infinity lock affects all write operations to
all members of the locked collection. With a depth-infinity lock,
the resource identified by the root of the lock is directly locked,
and all i1ts members are indirectly locked.

0 Any new resource added as a descendant of a depth-infinity locked
collection becomes indirectly locked.

o0 Any indirectly locked resource moved out of the locked collection
into an unlocked collection is thereafter unlocked.

0 Any indirectly locked resource moved out of a locked source
collection into a depth-infinity locked target collection remains
indirectly locked but is now protected by the lock on the target
collection (the target collection’s lock token will thereafter be
required to make further changes).

IT a depth-infinity write LOCK request is issued to a collection
containing member URLs identifying resources that are currently
locked in a manner that conflicts with the new lock (see Section 6.1,
point 3), the request MUST fail with a 423 (Locked) status code, and
the response SHOULD contain the “no-conflicting-lock” precondition.

IT a lock request causes the URL of a resource to be added as an
internal member URL of a depth-infinity locked collection, then the
new resource MUST be automatically protected by the lock. For
example, if the collection /a/b/ is write locked and the resource /c
is moved to /a/b/c, then resource /a/b/c will be added to the write
lock.

Dusseault Standards Track [Page 27]

RFC 4918 WebDAV June 2007

7.5. Write Locks and the 1If Request Header

A user agent has to demonstrate knowledge of a lock when requesting
an operation on a locked resource. Otherwise, the following scenario
might occur. In the scenario, program A, run by User A, takes out a
write lock on a resource. Program B, also run by User A, has no
knowledge of the lock taken out by program A, yet performs a PUT to
the locked resource. In this scenario, the PUT succeeds because
locks are associated with a principal, not a program, and thus
program B, because it is acting with principal A’s credential, is
allowed to perform the PUT. However, had program B known about the
lock, it would not have overwritten the resource, preferring instead
to present a dialog box describing the conflict to the user. Due to
this scenario, a mechanism is needed to prevent different programs
from accidentally ignoring locks taken out by other programs with the
same authorization.

In order to prevent these collisions, a lock token MUST be submitted
by an authorized principal for all locked resources that a method may
change or the method MUST fail. A lock token is submitted when it
appears in an If header. For example, if a resource is to be moved
and both the source and destination are locked, then two lock tokens
must be submitted in the If header, one for the source and the other
for the destination.

7.5.1. Example - Write Lock and COPY
>>Request

COPY /~fielding/index.html HTTP/1.1

Host: www.example.com

Destination: http://www.example.com/users/f/fielding/index.html

IT: <http://www.example.com/users/f/fielding/index.html>
(<urn:uuid:f8ld4fae-7dec-11d0-a765-00a0c91e6bf6>)

>>Response
HTTP/1.1 204 No Content

In this example, even though both the source and destination are
locked, only one lock token must be submitted (the one for the lock
on the destination). This is because the source resource is not
modified by a COPY, and hence unaffected by the write lock. In this
example, user agent authentication has previously occurred via a
mechanism outside the scope of the HTTP protocol, in the underlying
transport layer.

Dusseault Standards Track [Page 28]

RFC 4918 WebDAV June 2007

7.5.2. Example - Deleting a Member of a Locked Collection

Consider a collection "/locked™ with an exclusive, depth-infinity
write lock, and an attempt to delete an internal member */locked/
member™:

>>Request

DELETE /locked/member HTTP/1.1
Host: example.com

>>Response

HTTP/1.1 423 Locked
Content-Type: application/xml; charset="utf-8"
Content-Length: XxXxX

<?xml version="1.0" encoding="utf-8" ?>
<D:error xmlns:D="DAV:"">
<D: lock-token-submitted>
<D:href>/locked/</D:href>
</D: lock-token-submitted>
</D:error>

Thus, the client would need to submit the lock token with the request
to make it succeed. To do that, various forms of the If header (see
Section 10.4) could be used.
"No-Tag-List™ format:

IT: (<urn:uuid:150852e2-3847-42d5-8cbe-0f4F296F26cT>)
"Tagged-List" format, for "http://example.com/locked/":

IT: <http://example.com/locked/>
(<urn:uuid:150852e2-3847-42d5-8cbe-0f41296F26cT>)

"Tagged-List" format, for "http://example.com/locked/member™:

IT: <http://example.com/locked/member>
(<urn:uuid:150852e2-3847-42d5-8cbe-0f41296F26cT>)

Note that, for the purpose of submitting the lock token, the actual

form doesn’t matter; what’s relevant is that the lock token appears
in the ITf header, and that the If header itself evaluates to true.

Dusseault Standards Track [Page 29]

RFC 4918 WebDAV June 2007

7.6. Write Locks and COPY/MOVE

A COPY method invocation MUST NOT duplicate any write locks active on
the source. However, as previously noted, if the COPY copies the
resource into a collection that is locked with a depth-infinity lock,
then the resource will be added to the lock.

A successful MOVE request on a write locked resource MUST NOT move
the write lock with the resource. However, if there is an existing
lock at the destination, the server MUST add the moved resource to
the destination lock scope. For example, if the MOVE makes the
resource a child of a collection that has a depth-infinity lock, then
the resource will be added to that collection’s lock. Additionally,
if a resource with a depth-infinity lock is moved to a destination
that is within the scope of the same lock (e.g., within the URL
namespace tree covered by the lock), the moved resource will again be
added to the lock. In both these examples, as specified in

Section 7.5, an If header must be submitted containing a lock token
for both the source and destination.

7.7. Refreshing Write Locks

A client MUST NOT submit the same write lock request twice. Note
that a client is always aware it is resubmitting the same lock
request because it must include the lock token in the If header in
order to make the request for a resource that is already locked.

However, a client may submit a LOCK request with an If header but
without a body. A server receiving a LOCK request with no body MUST
NOT create a new lock -- this form of the LOCK request is only to be
used to "refresh” an existing lock (meaning, at minimum, that any
timers associated with the lock MUST be reset).

Clients may submit Timeout headers of arbitrary value with their lock
refresh requests. Servers, as always, may ignore Timeout headers
submitted by the client, and a server MAY refresh a lock with a
timeout period that is different than the previous timeout period
used for the lock, provided it advertises the new value in the LOCK
refresh response.

IT an error is received in response to a refresh LOCK request, the
client MUST NOT assume that the lock was refreshed.

Dusseault Standards Track [Page 30]

RFC 4918 WebDAV June 2007

8. General Request and Response Handling
8.1. Precedence in Error Handling

Servers MUST return authorization errors in preference to other
errors. This avoids leaking information about protected resources
(e.g., a client that finds that a hidden resource exists by seeing a
423 Locked response to an anonymous request to the resource).

8.2. Use of XML

In HTTP/1.1, method parameter information was exclusively encoded in
HTTP headers. Unlike HTTP/1.1, WebDAV encodes method parameter
information either in an XML ([REC-XML]) request entity body, or in
an HTTP header. The use of XML to encode method parameters was
motivated by the ability to add extra XML elements to existing
structures, providing extensibility; and by XML’s ability to encode
information in ISO 10646 character sets, providing
internationalization support.

In addition to encoding method parameters, XML is used in WebDAV to
encode the responses from methods, providing the extensibility and
internationalization advantages of XML for method output, as well as
input.

When XML is used for a request or response body, the Content-Type
type SHOULD be application/xml. Implementations MUST accept both
text/xml and application/xml In request and response bodies. Use of
text/xml is deprecated.

All DAV-compliant clients and resources MUST use XML parsers that are
compliant with [REC-XML] and [REC-XML-NAMES]. AlIl XML used in either
requests or responses MUST be, at minimum, well formed and use
namespaces correctly. If a server receives XML that is not well-
formed, then the server MUST reject the entire request with a 400
(Bad Request). If a client receives XML that is not well-formed in a
response, then the client MUST NOT assume anything about the outcome
of the executed method and SHOULD treat the server as malfunctioning.

Note that processing XML submitted by an untrusted source may cause
risks connected to privacy, security, and service quality (see
Section 20). Servers MAY reject questionable requests (even though
they consist of well-formed XML), for instance, with a 400 (Bad
Request) status code and an optional response body explaining the
problem.

Dusseault Standards Track [Page 31]

RFC 4918 WebDAV June 2007

8.3. URL Handling

URLs appear in many places in requests and responses.
Interoperability experience with [RFC2518] showed that many clients
parsing Multi-Status responses did not fully implement the full
Reference Resolution defined in Section 5 of [RFC3986]. Thus,
servers in particular need to be careful in handling URLs in
responses, to ensure that clients have enough context to be able to
interpret all the URLs. The rules in this section apply not only to
resource URLs in the “href” element in Multi-Status responses, but
also to the Destination and If header resource URLs.

The sender has a choice between two approaches: using a relative
reference, which is resolved against the Request-URI, or a full URI.
A server MUST ensure that every “href” value within a Multi-Status
response uses the same format.

WebDAV only uses one form of relative reference in its extensions,
the absolute path.

Simple-ref = absolute-URI | (path-absolute ["?" query])

The absolute-URI, path-absolute and query productions are defined in
Sections 4.3, 3.3, and 3.4 of [RFC3986].

Within Simple-ref productions, senders MUST NOT:

0 use dot-segments ("." or

.."), or

0 have prefixes that do not match the Request-URI (using the
comparison rules defined in Section 3.2.3 of [RFC2616]).

Identifiers for collections SHOULD end in a */” character.
8.3.1. Example - Correct URL Handling
Consider the collection http://example.com/sample/ with the internal
member URL http://example.com/sample/a%20test and the PROPFIND
request below:
>>Request:
PROPFIND /sample/ HTTP/1.1

Host: example.com
Depth: 1

Dusseault Standards Track [Page 32]

RFC 4918 WebDAV June 2007

In this case, the server should return two href” elements containing
either

o ’http://example.com/sample/” and
“http://example.com/sample/a%20test”, or

o ’/sample/’ and */sample/a%20test’

Note that even though the server may be storing the member resource
internally as ’a test’, it has to be percent-encoded when used inside
a URI reference (see Section 2.1 of [RFC3986]). Also note that a
legal URI may still contain characters that need to be escaped within
XML character data, such as the ampersand character.

8.4. Required Bodies in Requests

Some of these new methods do not define bodies. Servers MUST examine
all requests for a body, even when a body was not expected. In cases
where a request body is present but would be ignored by a server, the
server MUST reject the request with 415 (Unsupported Media Type).
This informs the client (which may have been attempting to use an
extension) that the body could not be processed as the client
intended.

8.5. HTTP Headers for Use in WebDAV

HTTP defines many headers that can be used in WebDAV requests and
responses. Not all of these are appropriate in all situations and
some interactions may be undefined. Note that HTTP 1.1 requires the
Date header in all responses if possible (see Section 14.18,
[RFC2616]) -

The server MUST do authorization checks before checking any HTTP
conditional header.

8.6. ETag

HTTP 1.1 recommends the use of ETags rather than modification dates,
for cache control, and there are even stronger reasons to prefer
ETags for authoring. Correct use of ETags iIs even more important in
a distributed authoring environment, because ETags are necessary
along with locks to avoid the lost-update problem. A client might
fail to renew a lock, for example, when the lock times out and the
client is accidentally offline or in the middle of a long upload.
When a client fails to renew the lock, it’s quite possible the
resource can still be relocked and the user can go on editing, as
long as no changes were made in the meantime. ETags are required for
the client to be able to distinguish this case. Otherwise, the

Dusseault Standards Track [Page 33]

RFC 4918 WebDAV June 2007

client is forced to ask the user whether to overwrite the resource on
the server without even being able to tell the user if it has
changed. Timestamps do not solve this problem nearly as well as
ETags.-

Strong ETags are much more useful for authoring use cases than weak
ETags (see Section 13.3.3 of [RFC2616]). Semantic equivalence can be
a useful concept but that depends on the document type and the
application type, and interoperability might require some agreement
or standard outside the scope of this specification and HTTP. Note
also that weak ETags have certain restrictions in HTTP, e.g., these
cannot be used in If-Match headers.

Note that the meaning of an ETag in a PUT response is not clearly
defined either in this document or in RFC 2616 (i.e., whether the
ETag means that the resource is octet-for-octet equivalent to the
body of the PUT request, or whether the server could have made minor
changes in the formatting or content of the document upon storage).
This is an HTTP issue, not purely a WebDAV issue.

Because clients may be forced to prompt users or throw away changed
content if the ETag changes, a WebDAV server SHOULD NOT change the
ETag (or the Last-Modified time) for a resource that has an unchanged
body and location. The ETag represents the state of the body or
contents of the resource. There is no similar way to tell if
properties have changed.

8.7. Including Error Response Bodies

HTTP and WebDAV did not use the bodies of most error responses for
machine-parsable information until the specification for Versioning
Extensions to WebDAV introduced a mechanism to include more specific
information in the body of an error response (Section 1.6 of
[RFC3253])-. The error body mechanism is appropriate to use with any
error response that may take a body but does not already have a body
defined. The mechanism is particularly appropriate when a status
code can mean many things (for example, 400 Bad Request can mean
required headers are missing, headers are incorrectly formatted, or
much more). This error body mechanism is covered in Section 16.

8.8. Impact of Namespace Operations on Cache Validators

Note that the HTTP response headers "Etag" and "Last-Modified" (see
[RFC2616], Sections 14.19 and 14.29) are defined per URL (not per
resource), and are used by clients for caching. Therefore servers
must ensure that executing any operation that affects the URL
namespace (such as COPY, MOVE, DELETE, PUT, or MKCOL) does preserve
their semantics, in particular:

Dusseault Standards Track [Page 34]

RFC 4918 WebDAV June 2007

9.

9.

0 For any given URL, the "Last-Modified" value MUST increment every
time the representation returned upon GET changes (within the
limits of timestamp resolution).

o For any given URL, an "ETag"™ value MUST NOT be reused for
different representations returned by GET.

In practice this means that servers

o might have to increment "Last-Modified" timestamps for every
resource inside the destination namespace of a namespace operation
unless it can do so more selectively, and

o similarly, might have to re-assign "ETag" values for these
resources (unless the server allocates entity tags in a way so
that they are unique across the whole URL namespace managed by the
server).

Note that these considerations also apply to specific use cases, such
as using PUT to create a new resource at a URL that has been mapped
before, but has been deleted since then.

Finally, WebDAV properties (such as DAV:getetag and DAV:
getlastmodified) that inherit their semantics from HTTP headers must
behave accordingly.

HTTP Methods for Distributed Authoring
1. PROPFIND Method

The PROPFIND method retrieves properties defined on the resource
identified by the Request-URI, if the resource does not have any
internal members, or on the resource identified by the Request-URI
and potentially its member resources, if the resource is a collection
that has internal member URLs. All DAV-compliant resources MUST
support the PROPFIND method and the propfind XML element

(Section 14.20) along with all XML elements defined for use with that
element.

A client MUST submit a Depth header with a value of 0", "1", or
“infinity” with a PROPFIND request. Servers MUST support 0" and "1™
depth requests on WebDAV-compliant resources and SHOULD support
"infinity" requests. In practice, support for infinite-depth
requests MAY be disabled, due to the performance and security
concerns associated with this behavior. Servers SHOULD treat a
request without a Depth header as if a "Depth: infinity" header was
included.

Dusseault Standards Track [Page 35]

RFC 4918 WebDAV June 2007

A client may submit a “propfind” XML element in the body of the
request method describing what information is being requested. It is
possible to:

0 Request particular property values, by naming the properties
desired within the ’prop” element (the ordering of properties in
here MAY be ignored by the server),

0 Request property values for those properties defined in this
specification (at a minimum) plus dead properties, by using the
allprop” element (the ”include” element can be used with
allprop” to instruct the server to also include additional live
properties that may not have been returned otherwise),

0 Request a list of names of all the properties defined on the
resource, by using the ’propname” element.

A client may choose not to submit a request body. An empty PROPFIND
request body MUST be treated as if it were an “allprop’ request.

Note that ~allprop” does not return values for all live properties.
WebDAV servers increasingly have expensively-calculated or lengthy
properties (see [RFC3253] and [RFC3744]) and do not return all
properties already. Instead, WebDAV clients can use propname
requests to discover what live properties exist, and request named
properties when retrieving values. For a live property defined
elsewhere, that definition can specify whether or not that live
property would be returned in “allprop’ requests.

All servers MUST support returning a response of content type text/
xml or application/xml that contains a multistatus XML element that
describes the results of the attempts to retrieve the various
properties.

IT there is an error retrieving a property, then a proper error
result MUST be included in the response. A request to retrieve the
value of a property that does not exist is an error and MUST be noted
with a “response” XML element that contains a 404 (Not Found) status
value.

Consequently, the ’multistatus” XML element for a collection resource
MUST include a “response’ XML element for each member URL of the
collection, to whatever depth was requested. 1t SHOULD NOT include
any “response’ elements for resources that are not WebDAV-compliant.
Each ’response” element MUST contain an “href” element that contains
the URL of the resource on which the properties in the prop XML
element are defined. Results for a PROPFIND on a collection resource
are returned as a flat list whose order of entries is not

Dusseault Standards Track [Page 36]

RFC 4918 WebDAV June 2007

significant. Note that a resource may have only one value for a
property of a given name, so the property may only show up once in
PROPFIND responses.

Properties may be subject to access control. In the case of
allprop” and ’propname’ requests, if a principal does not have the
right to know whether a particular property exists, then the property
MAY be silently excluded from the response.

Some PROPFIND results MAY be cached, with care, as there is no cache
validation mechanism for most properties. This method is both safe
and idempotent (see Section 9.1 of [RFC2616]).

9.1.1. PROPFIND Status Codes

This section, as with similar sections for other methods, provides
some guidance on error codes and preconditions or postconditions
(defined in Section 16) that might be particularly useful with
PROPFIND.

403 Forbidden - A server MAY reject PROPFIND requests on collections
with depth header of "Infinity"”, In which case it SHOULD use this
error with the precondition code “propfind-finite-depth” inside the
error body.

9.1.2. Status Codes for Use in ’propstat’ Element

In PROPFIND responses, information about individual properties is
returned inside ’propstat’ elements (see Section 14.22), each
containing an individual “status’ element containing information
about the properties appearing in it. The list below summarizes the
most common status codes used inside ’propstat’; however, clients
should be prepared to handle other 2/3/4/5xx series status codes as
well.

200 OK - A property exists and/or its value is successfully returned.

401 Unauthorized - The property cannot be viewed without appropriate
authorization.

403 Forbidden - The property cannot be viewed regardless of
authentication.

404 Not Found - The property does not exist.

Dusseault Standards Track [Page 37]

RFC 4918 WebDAV June 2007

9.1.3. Example - Retrieving Named Properties
>>Request

PROPFIND /Ffile HTTP/1.1

Host: www.example.com

Content-type: application/xml; charset="utf-8"
Content-Length: Xxxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmIns:D=""DAV:">
<D:prop xmlns:R="http://ns.example.com/boxschemas/">
<R:bigbox/>
<R:author/>
<R:DingALing/>
<R:Random/>
</D:prop>
</D:propfind>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: application/xml; charset="utf-8"
Content-Length: Xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<D:multistatus xmlns:D="DAV:">
<D:response xmIns:R="http://ns.example.com/boxschema/"'>
<D:href>http://www.example.com/file</D:href>
<D:propstat>
<D:prop>
<R:bigbox>
<R:BoxType>Box type A</R:BoxType>
</R:bigbox>
<R:author>
<R:Name>J.J. Johnson</R:Name>
</R:author>
</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
<D:propstat>
<D:prop><R:DingALing/><R:Random/></D:prop>
<D:status>HTTP/1.1 403 Forbidden</D:status>
<D:responsedescription> The user does not have access to the
DingALiIng property.
</D:responsedescription>
</D:propstat>

Dusseault Standards Track [Page 38]

RFC 4918 WebDAV June 2007

</D:response>
<D:responsedescription> There has been an access violation error.
</D:responsedescription>

</D:multistatus>

In this example, PROPFIND is executed on a non-collection resource
http://www.example.com/file. The propfind XML element specifies the
name of four properties whose values are being requested. In this
case, only two properties were returned, since the principal issuing
the request did not have sufficient access rights to see the third
and fourth properties.

9.1.4. Example - Using ’propname” to Retrieve All Property Names

>>Request

PROPFIND /container/ HTTP/1.1

Host: www.example.com

Content-Type: application/xml; charset="utf-8"
Content-Length: Xxxxx

<?xml version="1.0" encoding="utf-8" ?>
<propfind xmlns="DAV:">

<propname/>
</propfind>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: application/xml; charset="utf-8"
Content-Length: Xxxxx

<?xml version="1.0" encoding="utf-8" ?>
<multistatus xmIns="DAV:'>
<response>
<href>http://www.example.com/container/</href>
<propstat>
<prop xmlns:R="http://ns.example.com/boxschemas/ >
<R:bigbox/>
<R:author/>
<creationdate/>
<displayname/>
<resourcetype/>
<supportedlock/>
</prop>
<status>HTTP/1.1 200 OK</status>

Dusseault Standards Track [Page 39]

RFC 4918 WebDAV June 2007

</propstat>
</response>
<response>
<href>http://www.example.com/container/front_html</href>
<propstat>
<prop xmIns:R="http://ns.example.com/boxschemas/">
<R:bigbox/>
<creationdate/>
<displayname/>
<getcontentlength/>
<getcontenttype/>
<getetag/>
<getlastmodified/>
<resourcetype/>
<supportedlock/>
</prop>
<status>HTTP/1.1 200 OK</status>
</propstat>
</response>
</multistatus>

In this example, PROPFIND is invoked on the collection resource
http://www.example.com/container/, with a propfind XML element
containing the propname XML element, meaning the name of all
properties should be returned. Since no Depth header is present, it
assumes its default value of "infinity", meaning the name of the
properties on the collection and all its descendants should be
returned.

Consistent with the previous example, resource
http://www.example.com/container/ has six properties defined on it:
bigbox and author in the "http://ns.example.com/boxschemas"
namespace, and creationdate, displayname, resourcetype, and
supportedlock in the "DAV:" namespace.

The resource http://www.example.com/container/index.html, a member of
the "container™ collection, has nine properties defined on it, bigbox
in the "http://ns.example.com/boxschema/" namespace and creationdate,
displayname, getcontentlength, getcontenttype, getetag,
getlastmodified, resourcetype, and supportedlock in the "DAV:"
namespace.

This example also demonstrates the use of XML namespace scoping and
the default namespace. Since the "xmIns'" attribute does not contain
a prefix, the namespace applies by default to all enclosed elements.
Hence, all elements that do not explicitly state the namespace to
which they belong are members of the "DAV:" namespace.

Dusseault Standards Track [Page 40]

RFC 4918 WebDAV June 2007

9.1.5. Example - Using So-called ~allprop’

Note that ~allprop”, despite its name, which remains for backward-
compatibility, does not return every property, but only dead
properties and the live properties defined In this specification.

>>Request

PROPFIND /container/ HTTP/1.1

Host: www.example.com

Depth: 1

Content-Type: application/xml; charset="utf-8"
Content-Length: Xxxx

<?xml version="1.0" encoding=""utf-8" ?>

<D:propfind xmIns:D=""DAV:">
<D:allprop/>

</D:propfind>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: application/xml; charset="utf-8"
Content-Length: Xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<D:multistatus xmlns:D="DAV:">
<D:response>
<D:href>/container/</D:href>
<D:propstat>
<D:prop xmIns:R="http://ns._example.com/boxschema/'>
<R:bigbox><R:BoxType>Box type A</R:BoxType></R:bigbox>
<R:author><R:Name>Hadrian</R:Name></R:author>
<D:creationdate>1997-12-01T17:42:21-08:00</D:creationdate>
<D:displayname>Example collection</D:displayname>
<D:resourcetype><D:collection/></D:resourcetype>
<D:supportedlock>
<D:lockentry>
<D:lockscope><D:exclusive/></D: lockscope>
<D:locktype><D:write/></D:locktype>
</D:lockentry>
<D:lockentry>
<D:lockscope><D:shared/></D: lockscope>
<D:locktype><D:write/></D: locktype>
</D:lockentry>
</D:supportedlock>
</D:prop>

Dusseault Standards Track [Page 41]

RFC 4918 WebDAV June 2007

<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
</D:response>
<D:response>
<D:href>/container/front_html</D:href>
<D:propstat>
<D:prop xmlns:R="http://ns.example.com/boxschema/">
<R:bigbox><R:BoxType>Box type B</R:BoxType>
</R:bigbox>
<D:creationdate>1997-12-01T18:27:21-08:00</D:creationdate>
<D:displayname>Example HTML resource</D:displayname>
<D:getcontentlength>4525</D:getcontentlength>
<D:getcontenttype>text/html</D:getcontenttype>
<D:getetag>"'zzyzx''</D:getetag>
<D:getlastmodified
>Mon, 12 Jan 1998 09:25:56 GMT</D:getlastmodified>
<D:resourcetype/>
<D:supportedlock>
<D: lockentry>
<D:lockscope><D:exclusive/></D: lockscope>
<D:locktype><D:write/></D: locktype>
</D:lockentry>
<D:lockentry>
<D: lockscope><D:shared/></D: lockscope>
<D: locktype><D:write/></D: locktype>
</D:lockentry>
</D:supportedlock>
</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
</D:response>
</D:multistatus>

In this example, PROPFIND was invoked on the resource
http://www._example.com/container/ with a Depth header of 1, meaning
the request applies to the resource and its children, and a propfind
XML element containing the allprop XML element, meaning the request
should return the name and value of all the dead properties defined
on the resources, plus the name and value of all the properties
defined in this specification. This example illustrates the use of
relative references in the “href” elements of the response.

The resource http://www.example.com/container/ has six properties
defined on it: ’bigbox” and “author in the
"http://ns.example.com/boxschema/" namespace, DAV:creationdate, DAV:
displayname, DAV:resourcetype, and DAV:supportedlock.

Dusseault Standards Track [Page 42]

RFC 4918 WebDAV June 2007

The last four properties are WebDAV-specific, defined in Section 15.
Since GET is not supported on this resource, the get* properties
(e.g., DAV:getcontentlength) are not defined on this resource. The
WebDAV-specific properties assert that '‘container’™ was created on
December 1, 1997, at 5:42:21PM, in a time zone 8 hours west of GMT
(DAV:creationdate), has a name of "Example collection™ (DAV:
displayname), a collection resource type (DAV:resourcetype), and
supports exclusive write and shared write locks (DAV:supportedlock).

The resource http://www.example.com/container/front_html has nine
properties defined on it:

bigbox” in the "http://ns.example.com/boxschema/" namespace (another
instance of the "bigbox" property type), DAV:creationdate, DAV:
displayname, DAV:getcontentlength, DAV:getcontenttype, DAV:getetag,
DAV:getlastmodified, DAV:resourcetype, and DAV:supportedlock.

The DAV-specific properties assert that "front.html"™ was created on
December 1, 1997, at 6:27:21PM, in a time zone 8 hours west of GMT
(DAV:creationdate), has a name of "Example HTML resource"™ (DAV:
displayname), a content length of 4525 bytes (DAV:getcontentlength),
a MIME type of "text/html" (DAV:getcontenttype), an entity tag of
“"zzyzx" (DAV:6:getetag), was last modified on Monday, January 12, 1998,
at 09:25:56 GMT (DAV:getlastmodified), has an empty resource type,
meaning that it is not a collection (DAV:resourcetype), and supports
both exclusive write and shared write locks (DAV:supportedlock).

9.1.6. Example - Using ~allprop” with ”include’
>>Request

PROPFIND /mycol/ HTTP/1.1

Host: www.example.com

Depth: 1

Content-Type: application/xml; charset="utf-8"
Content-Length: Xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmIns:D="DAV:'>
<D:allprop/>
<D:include>
<D:supported-live-property-set/>
<D:supported-report-set/>
</D:include>
</D:propfind>

Dusseault Standards Track [Page 43]

RFC 4918 WebDAV June 2007

In this example, PROPFIND is executed on the resource
http://www.example.com/mycol/ and its internal member resources. The
client requests the values of all live properties defined in this
specification, plus all dead properties, plus two more live
properties defined in [RFC3253]. The response is not shown.

9.2. PROPPATCH Method

The PROPPATCH method processes instructions specified in the request
body to set and/or remove properties defined on the resource
identified by the Request-URI.

All DAV-compliant resources MUST support the PROPPATCH method and
MUST process instructions that are specified using the
propertyupdate, set, and remove XML elements. Execution of the
directives iIn this method is, of course, subject to access control
constraints. DAV-compliant resources SHOULD support the setting of
arbitrary dead properties.

The request message body of a PROPPATCH method MUST contain the
propertyupdate XML element.

Servers MUST process PROPPATCH instructions in document order (an
exception to the normal rule that ordering is irrelevant).
Instructions MUST either all be executed or none executed. Thus, if
any error occurs during processing, all executed instructions MUST be
undone and a proper error result returned. Instruction processing
details can be found in the definition of the set and remove
instructions in Sections 14.23 and 14.26.

IT a server attempts to make any of the property changes in a
PROPPATCH request (i.e., the request is not rejected for high-level
errors before processing the body), the response MUST be a Multi-
Status response as described in Section 9.2.1.

This method is idempotent, but not safe (see Section 9.1 of
[RFC2616]). Responses to this method MUST NOT be cached.

9.2.1. Status Codes for Use in ’propstat’ Element

In PROPPATCH responses, information about individual properties is
returned inside ’propstat’ elements (see Section 14.22), each
containing an individual “status’ element containing information
about the properties appearing in it. The list below summarizes the
most common status codes used inside ’propstat’; however, clients
should be prepared to handle other 2/3/4/5xx series status codes as
well.

Dusseault Standards Track [Page 44]

RFC 4918 WebDAV June 2007

200 (OK) - The property set or change succeeded. Note that if this
appears for one property, it appears for every property in the
response, due to the atomicity of PROPPATCH.

403 (Forbidden) - The client, for reasons the server chooses not to
specify, cannot alter one of the properties.

403 (Forbidden): The client has attempted to set a protected
property, such as DAV:getetag. |If returning this error, the server
SHOULD use the precondition code ’cannot-modify-protected-property”
inside the response body.

409 (Conflict) - The client has provided a value whose semantics are
not appropriate for the property.

424 (Failed Dependency) - The property change could not be made
because of another property change that failed.

507 (Insufficient Storage) - The server did not have sufficient space
to record the property.

9.2.2. Example - PROPPATCH
>>Request

PROPPATCH /bar.html HTTP/1.1

Host: www.example.com

Content-Type: application/xml; charset="utf-8"
Content-Length: XXxX

<?xml version="1.0" encoding="utf-8" ?>
<D:propertyupdate xmIns:D="DAV:"
xmIns:Z="http://ns.example.com/standards/z39.50/"">
<D:set>
<D:prop>
<Z:Authors>
<Z:Author>Jim Whitehead</Z:Author>
<Z:Author>Roy Fielding</Z:Author>
</Z:Authors>
</D:prop>
</D:set>
<D:remove>
<D:prop><Z:Copyright-Owner/></D:prop>
</D:remove>
</D:propertyupdate>

Dusseault Standards Track [Page 45]

RFC 4918 WebDAV June 2007

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: application/xml; charset="utf-8"
Content-Length: XxXxx

<?xml version="1.0" encoding="utf-8" ?>
<D:multistatus xmlns:D="DAV:"
xmIns:Z="http://ns.example.com/standards/z39.50/"">
<D:response>
<D:href>http://www.example._com/bar._html</D:href>
<D:propstat>
<D:prop><Z:Authors/></D:prop>
<D:status>HTTP/1.1 424 Failed Dependency</D:status>
</D:propstat>
<D:propstat>
<D:prop><Z:Copyright-Owner/></D:prop>
<D:status>HTTP/1.1 409 Conflict</D:status>
</D:propstat>
<D:responsedescription> Copyright Owner cannot be deleted or
altered.</D:responsedescription>
</D:response>
</D:multistatus>

In this example, the client requests the server to set the value of
the "Authors"™ property in the
"http://ns.example.com/standards/z39.50/" namespace, and to remove
the property "Copyright-Owner'™ in the same namespace. Since the
Copyright-Owner property could not be removed, no property
modifications occur. The 424 (Failed Dependency) status code for the
Authors property indicates this action would have succeeded if it
were not for the conflict with removing the Copyright-Owner property.

9.3. MKCOL Method

MKCOL creates a new collection resource at the location specified by
the Request-URI. IFf the Request-URI is already mapped to a resource,
then the MKCOL MUST fail. During MKCOL processing, a server MUST
make the Request-URI an internal member of its parent collection,
unless the Request-URI is "/". If no such ancestor exists, the
method MUST fail. When the MKCOL operation creates a new collection
resource, all ancestors MUST already exist, or the method MUST fail
with a 409 (Conflict) status code. For example, if a request to
create collection /a/b/c/d/ is made, and /a/b/c/ does not exist, the
request must fail.

When MKCOL is invoked without a request body, the newly created
collection SHOULD have no members.

Dusseault Standards Track [Page 46]

RFC 4918 WebDAV June 2007

A MKCOL request message may contain a message body. The precise
behavior of a MKCOL request when the body is present is undefined,
but limited to creating collections, members of a collection, bodies
of members, and properties on the collections or members. |If the
server receives a MKCOL request entity type it does not support or
understand, it MUST respond with a 415 (Unsupported Media Type)
status code. |If the server decides to reject the request based on
the presence of an entity or the type of an entity, it should use the
415 (Unsupported Media Type) status code.

This method is idempotent, but not safe (see Section 9.1 of
[RFC2616]). Responses to this method MUST NOT be cached.

9.3.1. MKCOL Status Codes

In addition to the general status codes possible, the following
status codes have specific applicability to MKCOL:

201 (Created) - The collection was created.

403 (Forbidden) - This indicates at least one of two conditions: 1)
the server does not allow the creation of collections at the given
location in its URL namespace, or 2) the parent collection of the
Request-URI exists but cannot accept members.

405 (Method Not Allowed) - MKCOL can only be executed on an unmapped
URL.

409 (Conflict) - A collection cannot be made at the Request-URI until
one or more intermediate collections have been created. The server
MUST NOT create those intermediate collections automatically.

415 (Unsupported Media Type) - The server does not support the
request body type (although bodies are legal on MKCOL requests, since
this specification doesn’t define any, the server is likely not to
support any given body type).

507 (Insufficient Storage) - The resource does not have sufficient
space to record the state of the resource after the execution of this
method.

9.3.2. Example - MKCOL

This example creates a collection called /webdisc/xfiles/ on the
server www.example.com.

Dusseault Standards Track [Page 47]

RFC 4918 WebDAV June 2007

>>Request

MKCOL /webdisc/xfiles/ HTTP/1.1
Host: www.example.com

>>Response
HTTP/1.1 201 Created
9.4. GET, HEAD for Collections

The semantics of GET are unchanged when applied to a collection,
since GET is defined as, '"retrieve whatever information (in the form
of an entity) is identified by the Request-URI"™ [RFC2616]. GET, when
applied to a collection, may return the contents of an "index_html"
resource, a human-readable view of the contents of the collection, or
something else altogether. Hence, it is possible that the result of
a GET on a collection will bear no correlation to the membership of
the collection.

Similarly, since the definition of HEAD is a GET without a response
message body, the semantics of HEAD are unmodified when applied to
collection resources.

9.5. POST for Collections
Since by definition the actual function performed by POST is
determined by the server and often depends on the particular
resource, the behavior of POST when applied to collections cannot be
meaningfully modified because it is largely undefined. Thus, the
semantics of POST are unmodified when applied to a collection.

9.6. DELETE Requirements

DELETE is defined in [RFC2616], Section 9.7, to "delete the resource
identified by the Request-URI". However, WebDAV changes some DELETE
handling requirements.
A server processing a successful DELETE request:

MUST destroy locks rooted on the deleted resource

MUST remove the mapping from the Request-URI to any resource.
Thus, after a successful DELETE operation (and in the absence of

other actions), a subsequent GET/HEAD/PROPFIND request to the target
Request-URI MUST return 404 (Not Found).

Dusseault Standards Track [Page 48]

RFC 4918 WebDAV June 2007

9.6.1. DELETE for Collections

The DELETE method on a collection MUST act as if a "Depth: infinity"
header was used on it. A client MUST NOT submit a Depth header with
a DELETE on a collection with any value but infinity.

DELETE instructs that the collection specified in the Request-URI and
all resources identified by its internal member URLs are to be
deleted.

IT any resource identified by a member URL cannot be deleted, then
all of the member’s ancestors MUST NOT be deleted, so as to maintain
URL namespace consistency.

Any headers included with DELETE MUST be applied in processing every
resource to be deleted.

When the DELETE method has completed processing, it MUST result in a
consistent URL namespace.

IT an error occurs deleting a member resource (a resource other than
the resource identified In the Request-URIl), then the response can be
a 207 (Multi-Status). Multi-Status is used here to indicate which
internal resources could NOT be deleted, including an error code,
which should help the client understand which resources caused the
failure. For example, the Multi-Status body could include a response
with status 423 (Locked) if an internal resource was locked.

The server MAY return a 4xx status response, rather than a 207, if
the request failed completely.

424 (Failed Dependency) status codes SHOULD NOT be in the 207 (Multi-
Status) response for DELETE. They can be safely left out because the
client will know that the ancestors of a resource could not be
deleted when the client receives an error for the ancestor’s progeny.
Additionally, 204 (No Content) errors SHOULD NOT be returned in the
207 (Multi-Status). The reason for this prohibition is that 204 (No
Content) is the default success code.

9.6.2. Example - DELETE
>>Request

DELETE /container/ HTTP/1.1
Host: www.example.com

Dusseault Standards Track [Page 49]

RFC 4918 WebDAV June 2007

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: application/xml; charset="utf-8"
Content-Length: XxXxx

<?xml version="1.0" encoding="utf-8" ?>
<d:multistatus xmlns:d="DAV:">
<d:response>
<d:href>http://www.example.com/container/resource3</d:href>
<d:status>HTTP/1.1 423 Locked</d:status>
<d:error><d: lock-token-submitted/></d:error>
</d:response>
</d:multistatus>

In this example, the attempt to delete
http://www.example.com/container/resource3 failed because it is
locked, and no lock token was submitted with the request.
Consequently, the attempt to delete http://www.example.com/container/
also failed. Thus, the client knows that the attempt to delete
http://www.example.com/container/ must have also failed since the
parent cannot be deleted unless its child has also been deleted.

Even though a Depth header has not been included, a depth of infinity
is assumed because the method is on a collection.

9.7. PUT Requirements
9.7.1. PUT for Non-Collection Resources

A PUT performed on an existing resource replaces the GET response
entity of the resource. Properties defined on the resource may be
recomputed during PUT processing but are not otherwise affected. For
example, if a server recognizes the content type of the request body,
it may be able to automatically extract information that could be
profitably exposed as properties.

A PUT that would result in the creation of a resource without an
appropriately scoped parent collection MUST fail with a 409
(Conflict).

A PUT request allows a client to indicate what media type an entity
body has, and whether it should change if overwritten. Thus, a
client SHOULD provide a Content-Type for a new resource if any is
known. If the client does not provide a Content-Type for a new
resource, the server MAY create a resource with no Content-Type
assigned, or it MAY attempt to assign a Content-Type.

Dusseault Standards Track [Page 50]

RFC 4918 WebDAV June 2007

Note that although a recipient ought generally to treat metadata
supplied with an HTTP request as authoritative, in practice there’s
no guarantee that a server will accept client-supplied metadata
(e.g-., any request header beginning with "Content-"). Many servers
do not allow configuring the Content-Type on a per-resource basis 1In
the first place. Thus, clients can’t always rely on the ability to
directly influence the content type by including a Content-Type
request header.

9.7.2. PUT for Collections

This specification does not define the behavior of the PUT method for
existing collections. A PUT request to an existing collection MAY be
treated as an error (405 Method Not Allowed).

The MKCOL method is defined to create collections.
9.8. COPY Method

The COPY method creates a duplicate of the source resource identified
by the Request-URI, in the destination resource identified by the URI
in the Destination header. The Destination header MUST be present.
The exact behavior of the COPY method depends on the type of the
source resource.

All WebDAV-compliant resources MUST support the COPY method.

However, support for the COPY method does not guarantee the ability
to copy a resource. For example, separate programs may control
resources on the same server. As a result, it may not be possible to
copy a resource to a location that appears to be on the same server.

This method is idempotent, but not safe (see Section 9.1 of
[RFC2616]). Responses to this method MUST NOT be cached.

9.8.1. COPY for Non-collection Resources

When the source resource is not a collection, the result of the COPY
method is the creation of a new resource at the destination whose
state and behavior match that of the source resource as closely as
possible. Since the environment at the destination may be different
than at the source due to factors outside the scope of control of the
server, such as the absence of resources required for correct
operation, It may not be possible to completely duplicate the
behavior of the resource at the destination. Subsequent alterations
to the destination resource will not modify the source resource.
Subsequent alterations to the source resource will not modify the
destination resource.

Dusseault Standards Track [Page 51]

RFC 4918 WebDAV June 2007

9.8.2. COPY for Properties

After a successful COPY invocation, all dead properties on the source
resource SHOULD be duplicated on the destination resource. Live
properties described in this document SHOULD be duplicated as
identically behaving live properties at the destination resource, but
not necessarily with the same values. Servers SHOULD NOT convert
live properties into dead properties on the destination resource,
because clients may then draw incorrect conclusions about the state
or functionality of a resource. Note that some live properties are
defined such that the absence of the property has a specific meaning
(e.g., a flag with one meaning If present, and the opposite if
absent), and in these cases, a successful COPY might result in the
property being reported as "Not Found" in subsequent requests.

When the destination is an unmapped URL, a COPY operation creates a
new resource much like a PUT operation does. Live properties that

are related to resource creation (such as DAV:creationdate) should

have their values set accordingly.

9.8.3. COPY for Collections

The COPY method on a collection without a Depth header MUST act as if
a Depth header with value "infinity" was included. A client may
submit a Depth header on a COPY on a collection with a value of "0"
or "infinity". Servers MUST support the 0" and "infinity" Depth
header behaviors on WebDAV-compliant resources.

An infinite-depth COPY instructs that the collection resource
identified by the Request-URI is to be copied to the location
identified by the URI in the Destination header, and all its internal
member resources are to be copied to a location relative to it,
recursively through all levels of the collection hierarchy. Note
that an infinite-depth COPY of /A/ into /A/B/ could lead to infinite
recursion if not handled correctly.

A COPY of "Depth: 0" only instructs that the collection and its
properties, but not resources identified by its internal member URLs,
are to be copied.

Any headers included with a COPY MUST be applied in processing every
resource to be copied with the exception of the Destination header.

The Destination header only specifies the destination URI for the
Request-URI. When applied to members of the collection identified by
the Request-URI, the value of Destination is to be modified to
reflect the current location in the hierarchy. So, If the Request-
URI is /Za/ with Host header value http://example.com/ and the

Dusseault Standards Track [Page 52]

RFC 4918 WebDAV June 2007

Destination is http://example.com/b/, then when
http://example.com/a/c/d is processed, it must use a Destination of
http://example.com/b/c/d.

When the COPY method has completed processing, it MUST have created a
consistent URL namespace at the destination (see Section 5.1 for the
definition of namespace consistency). However, if an error occurs
while copying an internal collection, the server MUST NOT copy any
resources identified by members of this collection (i.e., the server
must skip this subtree), as this would create an inconsistent
namespace. After detecting an error, the COPY operation SHOULD try
to finish as much of the original copy operation as possible (i.e.,
the server should still attempt to copy other subtrees and their
members that are not descendants of an error-causing collection).

So, for example, if an infinite-depth copy operation is performed on
collection /a/, which contains collections /a/b/ and /a/c/, and an
error occurs copying Za/b/, an attempt should still be made to copy
/a/c/. Similarly, after encountering an error copying a non-
collection resource as part of an infinite-depth copy, the server
SHOULD try to finish as much of the original copy operation as
possible.

IT an error in executing the COPY method occurs with a resource other
than the resource identified in the Request-URI, then the response
MUST be a 207 (Multi-Status), and the URL of the resource causing the
failure MUST appear with the specific error.

The 424 (Failed Dependency) status code SHOULD NOT be returned in the
207 (Multi-Status) response from a COPY method. These responses can
be safely omitted because the client will know that the progeny of a
resource could not be copied when the client receives an error for
the parent. Additionally, 201 (Created)/204 (No Content) status
codes SHOULD NOT be returned as values in 207 (Multi-Status)
responses from COPY methods. They, too, can be safely omitted
because they are the default success codes.

9.8.4. COPY and Overwriting Destination Resources
IT a COPY request has an Overwrite header with a value of "F", and a
resource exists at the Destination URL, the server MUST fail the
request.
When a server executes a COPY request and overwrites a destination

resource, the exact behavior MAY depend on many factors, including
WebDAV extension capabilities (see particularly [RFC3253]). For

Dusseault Standards Track [Page 53]

RFC 4918 WebDAV June 2007

example, when an ordinary resource is overwritten, the server could
delete the target resource before doing the copy, or could do an in-
place overwrite to preserve live properties.

When a collection is overwritten, the membership of the destination
collection after the successful COPY request MUST be the same
membership as the source collection immediately before the COPY.
Thus, merging the membership of the source and destination
collections together in the destination is not a compliant behavior.

In general, if clients require the state of the destination URL to be
wiped out prior to a COPY (e.g., to force live properties to be
reset), then the client could send a DELETE to the destination before
the COPY request to ensure this reset.

9.8.5. Status Codes

In addition to the general status codes possible, the following
status codes have specific applicability to COPY:

201 (Created) - The source resource was successfully copied. The
COPY operation resulted in the creation of a new resource.

204 (No Content) - The source resource was successfully copied to a
preexisting destination resource.

207 (Multi-Status) - Multiple resources were to be affected by the
COPY, but errors on some of them prevented the operation from taking
place. Specific error messages, together with the most appropriate
of the source and destination URLs, appear in the body of the multi-
status response. For example, if a destination resource was locked
and could not be overwritten, then the destination resource URL
appears with the 423 (Locked) status.

403 (Forbidden) - The operation is forbidden. A special case for
COPY could be that the source and destination resources are the same
resource.

409 (Conflict) - A resource cannot be created at the destination
until one or more intermediate collections have been created. The
server MUST NOT create those intermediate collections automatically.

412 (Precondition Failed) - A precondition header check failed, e.g.,

the Overwrite header is "F" and the destination URL is already mapped
to a resource.

Dusseault Standards Track [Page 54]

RFC 4918 WebDAV June 2007

423 (Locked) - The destination resource, or resource within the
destination collection, was locked. This response SHOULD contain the
> lock-token-submitted” precondition element.

502 (Bad Gateway) - This may occur when the destination is on another
server, repository, or URL namespace. Either the source namespace
does not support copying to the destination namespace, or the
destination namespace refuses to accept the resource. The client may
wish to try GET/PUT and PROPFIND/PROPPATCH instead.

507 (Insufficient Storage) - The destination resource does not have
sufficient space to record the state of the resource after the
execution of this method.

9.8.6. Example - COPY with Overwrite

This example shows resource
http://www.example.com/~fielding/index.html being copied to the
location http://www.example.com/users/f/fielding/Zindex.html. The 204
(No Content) status code indicates that the existing resource at the
destination was overwritten.

>>Request

COPY /~fielding/index.html HTTP/1.1

Host: www.example.com

Destination: http://www.example.com/users/f/fielding/index.html
>>Response

HTTP/1.1 204 No Content

9.8.7. Example - COPY with No Overwrite

The following example shows the same copy operation being performed,
but with the Overwrite header set to "F." A response of 412
(Precondition Failed) is returned because the destination URL is
already mapped to a resource.
>>Request

COPY /~fielding/index.html HTTP/1.1

Host: www.example.com

Destination: http://www.example.com/users/f/fielding/index.html
Overwrite: F

Dusseault Standards Track [Page 55]

RFC 4918 WebDAV June 2007

>>Response
HTTP/1.1 412 Precondition Failed
9.8.8. Example - COPY of a Collection

>>Request

COPY /container/ HTTP/1.1

Host: www.example.com

Destination: http://www.example.com/othercontainer/
Depth: infinity

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: application/xml; charset="utf-8"
Content-Length: Xxxx

<?xml version="1.0" encoding="utf-8" ?>

<d:multistatus xmIns:d="DAV:"'>
<d:response>
<d:href>http://www.example.com/othercontainer/R2/</d:href>
<d:status>HTTP/1.1 423 Locked</d:status>
<d:error><d: lock-token-submitted/></d:error>
</d:response>
</d:multistatus>

The Depth header is unnecessary as the default behavior of COPY on
collection is to act as if a "Depth: infinity" header had been
submitted. In this example, most of the resources, along with the
collection, were copied successfully. However, the collection R2
failed because the destination R2 is locked. Because there was a