
Internet Engineering Task Force (IETF) P. Wouters, Ed.
Request for Comments: 7250 Red Hat
Category: Standards Track H. Tschofenig, Ed.
ISSN: 2070-1721 ARM Ltd.
 J. Gilmore
 Electronic Frontier Foundation
 S. Weiler
 Parsons
 T. Kivinen
 INSIDE Secure
 June 2014

 Using Raw Public Keys in Transport Layer Security (TLS)
 and Datagram Transport Layer Security (DTLS)

Abstract

 This document specifies a new certificate type and two TLS extensions
 for exchanging raw public keys in Transport Layer Security (TLS) and
 Datagram Transport Layer Security (DTLS). The new certificate type
 allows raw public keys to be used for authentication.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7250.

Wouters, et al. Standards Track [Page 1]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Structure of the Raw Public Key Extension 4
 4. TLS Client and Server Handshake Behavior 7
 4.1. Client Hello . 7
 4.2. Server Hello . 8
 4.3. Client Authentication 9
 4.4. Server Authentication 9
 5. Examples . 10
 5.1. TLS Server Uses a Raw Public Key 10
 5.2. TLS Client and Server Use Raw Public Keys 11
 5.3. Combined Usage of Raw Public Keys and X.509 Certificates 12
 6. Security Considerations 13
 7. IANA Considerations . 14
 8. Acknowledgements . 14
 9. References . 15
 9.1. Normative References 15
 9.2. Informative References 15
 Appendix A. Example Encoding 17

Wouters, et al. Standards Track [Page 2]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

1. Introduction

 Traditionally, TLS client and server public keys are obtained in PKIX
 containers in-band as part of the TLS handshake procedure and are
 validated using trust anchors based on a [PKIX] certification
 authority (CA). This method can add a complicated trust relationship
 that is difficult to validate. Examples of such complexity can be
 seen in [Defeating-SSL]. TLS is, however, also commonly used with
 self-signed certificates in smaller deployments where the self-signed
 certificates are distributed to all involved protocol endpoints out-
 of-band. This practice does, however, still require the overhead of
 the certificate generation even though none of the information found
 in the certificate is actually used.

 Alternative methods are available that allow a TLS client/server to
 obtain the TLS server/client public key:

 o The TLS client can obtain the TLS server public key from a DNSSEC-
 secured resource record using DNS-Based Authentication of Named
 Entities (DANE) [RFC6698].

 o The TLS client or server public key is obtained from a [PKIX]
 certificate chain from a Lightweight Directory Access Protocol
 [LDAP] server or web page.

 o The TLS client and server public key is provisioned into the
 operating system firmware image and updated via software updates.
 For example:

 Some smart objects use the UDP-based Constrained Application
 Protocol [CoAP] to interact with a Web server to upload sensor
 data at regular intervals, such as temperature readings. CoAP can
 utilize DTLS for securing the client-to-server communication. As
 part of the manufacturing process, the embedded device may be
 configured with the address and the public key of a dedicated CoAP
 server, as well as a public/private key pair for the client
 itself.

 This document introduces the use of raw public keys in TLS/DTLS.
 With raw public keys, only a subset of the information found in
 typical certificates is utilized: namely, the SubjectPublicKeyInfo
 structure of a PKIX certificate that carries the parameters necessary
 to describe the public key. Other parameters found in PKIX
 certificates are omitted. By omitting various certificate-related
 structures, the resulting raw public key is kept fairly small in
 comparison to the original certificate, and the code to process the
 keys can be simpler. Only a minimalistic ASN.1 parser is needed;
 code for certificate path validation and other PKIX-related

Wouters, et al. Standards Track [Page 3]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

 processing is not required. Note, however, the SubjectPublicKeyInfo
 structure is still in an ASN.1 format. To further reduce the size of
 the exchanged information, this specification can be combined with
 the TLS Cached Info extension [CACHED-INFO], which enables TLS peers
 to exchange just fingerprints of their public keys.

 The mechanism defined herein only provides authentication when an
 out-of-band mechanism is also used to bind the public key to the
 entity presenting the key.

 Section 3 defines the structure of the two new TLS extensions,
 client_certificate_type and server_certificate_type, which can be
 used as part of an extended TLS handshake when raw public keys are to
 be used. Section 4 defines the behavior of the TLS client and the
 TLS server. Example exchanges are described in Section 5. Section 6
 describes security considerations with this approach. Finally, in
 Section 7 this document registers a new value to the IANA "TLS
 Certificate Types" subregistry for the support of raw public keys.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 We use the terms "TLS server" and "server" as well as "TLS client"
 and "client" interchangeably.

3. Structure of the Raw Public Key Extension

 This section defines the two TLS extensions client_certificate_type
 and server_certificate_type, which can be used as part of an extended
 TLS handshake when raw public keys are used. Section 4 defines the
 behavior of the TLS client and the TLS server using these extensions.

 This specification uses raw public keys whereby the already available
 encoding used in a PKIX certificate in the form of a
 SubjectPublicKeyInfo structure is reused. To carry the raw public
 key within the TLS handshake, the Certificate payload is used as a
 container, as shown in Figure 1. The shown Certificate structure is
 an adaptation of its original form [RFC5246].

Wouters, et al. Standards Track [Page 4]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

 opaque ASN.1Cert<1..2^24-1>;

 struct {
 select(certificate_type){

 // certificate type defined in this document.
 case RawPublicKey:
 opaque ASN.1_subjectPublicKeyInfo<1..2^24-1>;

 // X.509 certificate defined in RFC 5246
 case X.509:
 ASN.1Cert certificate_list<0..2^24-1>;

 // Additional certificate type based on
 // "TLS Certificate Types" subregistry
 };
 } Certificate;

 Figure 1: Certificate Payload as a Container for the Raw Public Key

 The SubjectPublicKeyInfo structure is defined in Section 4.1 of RFC
 5280 [PKIX] and not only contains the raw keys, such as the public
 exponent and the modulus of an RSA public key, but also an algorithm
 identifier. The algorithm identifier can also include parameters.
 The SubjectPublicKeyInfo value in the Certificate payload MUST
 contain the DER encoding [X.690] of the SubjectPublicKeyInfo. The
 structure, as shown in Figure 2, therefore also contains length
 information. An example is provided in Appendix A.

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

 Figure 2: SubjectPublicKeyInfo ASN.1 Structure

 The algorithm identifiers are Object Identifiers (OIDs). RFC 3279
 [RFC3279] and RFC 5480 [RFC5480], for example, define the OIDs shown
 in Figure 3. Note that this list is not exhaustive, and more OIDs
 may be defined in future RFCs.

Wouters, et al. Standards Track [Page 5]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

 Key Type | Document | OID
 --------------------+----------------------------+-------------------
 RSA | Section 2.3.1 of RFC 3279 | 1.2.840.113549.1.1
 |............................|...................
 Digital Signature | |
 Algorithm (DSA) | Section 2.3.2 of RFC 3279 | 1.2.840.10040.4.1
 |............................|...................
 Elliptic Curve | |
 Digital Signature | |
 Algorithm (ECDSA) | Section 2 of RFC 5480 | 1.2.840.10045.2.1
 --------------------+----------------------------+-------------------

 Figure 3: Example Algorithm Object Identifiers

 The extension format for extended client and server hellos, which
 uses the "extension_data" field, is used to carry the
 ClientCertTypeExtension and the ServerCertTypeExtension structures.
 These two structures are shown in Figure 4. The CertificateType
 structure is an enum with values taken from the "TLS Certificate
 Types" subregistry of the "Transport Layer Security (TLS) Extensions"
 registry [TLS-Ext-Registry].

 struct {
 select(ClientOrServerExtension) {
 case client:
 CertificateType client_certificate_types<1..2^8-1>;
 case server:
 CertificateType client_certificate_type;
 }
 } ClientCertTypeExtension;

 struct {
 select(ClientOrServerExtension) {
 case client:
 CertificateType server_certificate_types<1..2^8-1>;
 case server:
 CertificateType server_certificate_type;
 }
 } ServerCertTypeExtension;

 Figure 4: CertTypeExtension Structure

Wouters, et al. Standards Track [Page 6]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

4. TLS Client and Server Handshake Behavior

 This specification extends the ClientHello and the ServerHello
 messages, according to the extension procedures defined in [RFC5246].
 It does not extend or modify any other TLS message.

 Note: No new cipher suites are required to use raw public keys. All
 existing cipher suites that support a key exchange method compatible
 with the defined extension can be used.

 The high-level message exchange in Figure 5 shows the
 client_certificate_type and server_certificate_type extensions added
 to the client and server hello messages.

 client_hello,
 client_certificate_type,
 server_certificate_type ->

 <- server_hello,
 client_certificate_type,
 server_certificate_type,
 certificate,
 server_key_exchange,
 certificate_request,
 server_hello_done
 certificate,
 client_key_exchange,
 certificate_verify,
 change_cipher_spec,
 finished ->

 <- change_cipher_spec,
 finished

 Application Data <-------> Application Data

 Figure 5: Basic Raw Public Key TLS Exchange

4.1. Client Hello

 In order to indicate the support of raw public keys, clients include
 the client_certificate_type and/or the server_certificate_type
 extensions in an extended client hello message. The hello extension
 mechanism is described in Section 7.4.1.4 of TLS 1.2 [RFC5246].

 The client_certificate_type extension in the client hello indicates
 the certificate types the client is able to provide to the server,
 when requested using a certificate_request message.

Wouters, et al. Standards Track [Page 7]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

 The server_certificate_type extension in the client hello indicates
 the types of certificates the client is able to process when provided
 by the server in a subsequent certificate payload.

 The client_certificate_type and server_certificate_type extensions
 sent in the client hello each carry a list of supported certificate
 types, sorted by client preference. When the client supports only
 one certificate type, it is a list containing a single element.

 The TLS client MUST omit certificate types from the
 client_certificate_type extension in the client hello if it does not
 possess the corresponding raw public key or certificate that it can
 provide to the server when requested using a certificate_request
 message, or if it is not configured to use one with the given TLS
 server. If the client has no remaining certificate types to send in
 the client hello, other than the default X.509 type, it MUST omit the
 client_certificate_type extension in the client hello.

 The TLS client MUST omit certificate types from the
 server_certificate_type extension in the client hello if it is unable
 to process the corresponding raw public key or other certificate
 type. If the client has no remaining certificate types to send in
 the client hello, other than the default X.509 certificate type, it
 MUST omit the entire server_certificate_type extension from the
 client hello.

4.2. Server Hello

 If the server receives a client hello that contains the
 client_certificate_type extension and/or the server_certificate_type
 extension, then three outcomes are possible:

 1. The server does not support the extension defined in this
 document. In this case, the server returns the server hello
 without the extensions defined in this document.

 2. The server supports the extension defined in this document, but
 it does not have any certificate type in common with the client.
 Then, the server terminates the session with a fatal alert of
 type "unsupported_certificate".

 3. The server supports the extensions defined in this document and
 has at least one certificate type in common with the client. In
 this case, the processing rules described below are followed.

 The client_certificate_type extension in the client hello indicates
 the certificate types the client is able to provide to the server,
 when requested using a certificate_request message. If the TLS

Wouters, et al. Standards Track [Page 8]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

 server wants to request a certificate from the client (via the
 certificate_request message), it MUST include the
 client_certificate_type extension in the server hello. This
 client_certificate_type extension in the server hello then indicates
 the type of certificates the client is requested to provide in a
 subsequent certificate payload. The value conveyed in the
 client_certificate_type extension MUST be selected from one of the
 values provided in the client_certificate_type extension sent in the
 client hello. The server MUST also include a certificate_request
 payload in the server hello message.

 If the server does not send a certificate_request payload (for
 example, because client authentication happens at the application
 layer or no client authentication is required) or none of the
 certificates supported by the client (as indicated in the
 client_certificate_type extension in the client hello) match the
 server-supported certificate types, then the client_certificate_type
 payload in the server hello MUST be omitted.

 The server_certificate_type extension in the client hello indicates
 the types of certificates the client is able to process when provided
 by the server in a subsequent certificate payload. If the client
 hello indicates support of raw public keys in the
 server_certificate_type extension and the server chooses to use raw
 public keys, then the TLS server MUST place the SubjectPublicKeyInfo
 structure into the Certificate payload. With the
 server_certificate_type extension in the server hello, the TLS server
 indicates the certificate type carried in the Certificate payload.
 This additional indication enables avoiding parsing ambiguities since
 the Certificate payload may contain either the X.509 certificate or a
 SubjectPublicKeyInfo structure. Note that only a single value is
 permitted in the server_certificate_type extension when carried in
 the server hello.

4.3. Client Authentication

 When the TLS server has specified RawPublicKey as the
 client_certificate_type, authentication of the TLS client to the TLS
 server is supported only through authentication of the received
 client SubjectPublicKeyInfo via an out-of-band method.

4.4. Server Authentication

 When the TLS server has specified RawPublicKey as the
 server_certificate_type, authentication of the TLS server to the TLS
 client is supported only through authentication of the received
 client SubjectPublicKeyInfo via an out-of-band method.

Wouters, et al. Standards Track [Page 9]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

5. Examples

 Figures 6, 7, and 8 illustrate example exchanges. Note that TLS
 ciphersuites using a Diffie-Hellman exchange offering forward secrecy
 can be used with a raw public key, although this document does not
 show the information exchange at that level with the subsequent
 message flows.

5.1. TLS Server Uses a Raw Public Key

 This section shows an example where the TLS client indicates its
 ability to receive and validate a raw public key from the server. In
 this example, the client is quite restricted since it is unable to
 process other certificate types sent by the server. It also does not
 have credentials at the TLS layer it could send to the server and
 therefore omits the client_certificate_type extension. Hence, the
 client only populates the server_certificate_type extension with the
 raw public key type, as shown in (1).

 When the TLS server receives the client hello, it processes the
 extension. Since it has a raw public key, it indicates in (2) that
 it had chosen to place the SubjectPublicKeyInfo structure into the
 Certificate payload (3).

 The client uses this raw public key in the TLS handshake together
 with an out-of-band validation technique, such as DANE, to verify it.

 client_hello,
 server_certificate_type=(RawPublicKey) // (1)
 ->
 <- server_hello,
 server_certificate_type=RawPublicKey, // (2)
 certificate, // (3)
 server_key_exchange,
 server_hello_done

 client_key_exchange,
 change_cipher_spec,
 finished ->

 <- change_cipher_spec,
 finished

 Application Data <-------> Application Data

 Figure 6: Example with Raw Public Key Provided by the TLS Server

Wouters, et al. Standards Track [Page 10]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

5.2. TLS Client and Server Use Raw Public Keys

 This section shows an example where the TLS client as well as the TLS
 server use raw public keys. This is one of the use cases envisioned
 for smart object networking. The TLS client in this case is an
 embedded device that is configured with a raw public key for use with
 TLS and is also able to process a raw public key sent by the server.
 Therefore, it indicates these capabilities in (1). As in the
 previously shown example, the server fulfills the client’s request,
 indicates this via the RawPublicKey value in the
 server_certificate_type payload (2), and provides a raw public key in
 the Certificate payload back to the client (see (3)). The TLS server
 demands client authentication, and therefore includes a
 certificate_request (4). The client_certificate_type payload in (5)
 indicates that the TLS server accepts a raw public key. The TLS
 client, which has a raw public key pre-provisioned, returns it in the
 Certificate payload (6) to the server.

client_hello,
client_certificate_type=(RawPublicKey) // (1)
server_certificate_type=(RawPublicKey) // (1)
 ->
 <- server_hello,
 server_certificate_type=RawPublicKey // (2)
 certificate, // (3)
 client_certificate_type=RawPublicKey // (5)
 certificate_request, // (4)
 server_key_exchange,
 server_hello_done

certificate, // (6)
client_key_exchange,
change_cipher_spec,
finished ->

 <- change_cipher_spec,
 finished

Application Data <-------> Application Data

 Figure 7: Example with Raw Public Key provided by the TLS Server and
 the Client

Wouters, et al. Standards Track [Page 11]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

5.3. Combined Usage of Raw Public Keys and X.509 Certificates

 This section shows an example combining a raw public key and an X.509
 certificate. The client uses a raw public key for client
 authentication, and the server provides an X.509 certificate. This
 exchange starts with the client indicating its ability to process an
 X.509 certificate, OpenPGP certificate, or a raw public key, if
 provided by the server. It prefers a raw public key, since the
 RawPublicKey value precedes the other values in the
 server_certificate_type vector. Additionally, the client indicates
 that it has a raw public key for client-side authentication (see
 (1)). The server chooses to provide its X.509 certificate in (3) and
 indicates that choice in (2). For client authentication, the server
 indicates in (4) that it has selected the raw public key format and
 requests a certificate from the client in (5). The TLS client
 provides a raw public key in (6) after receiving and processing the
 TLS server hello message.

client_hello,
server_certificate_type=(RawPublicKey, X.509, OpenPGP)
client_certificate_type=(RawPublicKey) // (1)
 ->
 <- server_hello,
 server_certificate_type=X.509 // (2)
 certificate, // (3)
 client_certificate_type=RawPublicKey // (4)
 certificate_request, // (5)
 server_key_exchange,
 server_hello_done
certificate, // (6)
client_key_exchange,
change_cipher_spec,
finished ->

 <- change_cipher_spec,
 finished

Application Data <-------> Application Data

 Figure 8: Hybrid Certificate Example

Wouters, et al. Standards Track [Page 12]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

6. Security Considerations

 The transmission of raw public keys, as described in this document,
 provides benefits by lowering the over-the-air transmission overhead
 since raw public keys are naturally smaller than an entire
 certificate. There are also advantages from a code-size point of
 view for parsing and processing these keys. The cryptographic
 procedures for associating the public key with the possession of a
 private key also follows standard procedures.

 However, the main security challenge is how to associate the public
 key with a specific entity. Without a secure binding between
 identifier and key, the protocol will be vulnerable to man-in-the-
 middle attacks. This document assumes that such binding can be made
 out-of-band, and we list a few examples in Section 1. DANE [RFC6698]
 offers one such approach. In order to address these vulnerabilities,
 specifications that make use of the extension need to specify how the
 identifier and public key are bound. In addition to ensuring the
 binding is done out-of-band, an implementation also needs to check
 the status of that binding.

 If public keys are obtained using DANE, these public keys are
 authenticated via DNSSEC. Using pre-configured keys is another out-
 of-band method for authenticating raw public keys. While pre-
 configured keys are not suitable for a generic Web-based e-commerce
 environment, such keys are a reasonable approach for many smart
 object deployments where there is a close relationship between the
 software running on the device and the server-side communication
 endpoint. Regardless of the chosen mechanism for out-of-band public
 key validation, an assessment of the most suitable approach has to be
 made prior to the start of a deployment to ensure the security of the
 system.

 An attacker might try to influence the handshake exchange to make the
 parties select different certificate types than they would normally
 choose.

 For this attack, an attacker must actively change one or more
 handshake messages. If this occurs, the client and server will
 compute different values for the handshake message hashes. As a
 result, the parties will not accept each others’ Finished messages.
 Without the master_secret, the attacker cannot repair the Finished
 messages, so the attack will be discovered.

Wouters, et al. Standards Track [Page 13]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

7. IANA Considerations

 IANA has registered a new value in the "TLS Certificate Types"
 subregistry of the "Transport Layer Security (TLS) Extensions"
 registry [TLS-Ext-Registry], as follows:

 Value: 2
 Description: Raw Public Key
 Reference: RFC 7250

 IANA has allocated two new TLS extensions, client_certificate_type
 and server_certificate_type, from the "TLS ExtensionType Values"
 subregistry defined in [RFC5246]. These extensions are used in both
 the client hello message and the server hello message. The new
 extension types are used for certificate type negotiation. The
 values carried in these extensions are taken from the "TLS
 Certificate Types" subregistry of the "Transport Layer Security (TLS)
 Extensions" registry [TLS-Ext-Registry].

8. Acknowledgements

 The feedback from the TLS working group meeting at IETF 81 has
 substantially shaped the document, and we would like to thank the
 meeting participants for their input. The support for hashes of
 public keys has been moved to [CACHED-INFO] after the discussions at
 the IETF 82 meeting.

 We would like to thank the following persons for their review
 comments: Martin Rex, Bill Frantz, Zach Shelby, Carsten Bormann,
 Cullen Jennings, Rene Struik, Alper Yegin, Jim Schaad, Barry Leiba,
 Paul Hoffman, Robert Cragie, Nikos Mavrogiannopoulos, Phil Hunt, John
 Bradley, Klaus Hartke, Stefan Jucker, Kovatsch Matthias, Daniel Kahn
 Gillmor, Peter Sylvester, Hauke Mehrtens, Alexey Melnikov, Stephen
 Farrell, Richard Barnes, and James Manger. Nikos Mavrogiannopoulos
 contributed the design for reusing the certificate type registry.
 Barry Leiba contributed guidance for the IANA Considerations text.
 Stefan Jucker, Kovatsch Matthias, and Klaus Hartke provided
 implementation feedback regarding the SubjectPublicKeyInfo structure.

 Christer Holmberg provided the General Area (Gen-Art) review, Yaron
 Sheffer provided the Security Directorate (SecDir) review, Bert
 Greevenbosch provided the Applications Area Directorate review, and
 Linda Dunbar provided the Operations Directorate review.

 We would like to thank our TLS working group chairs, Eric Rescorla
 and Joe Salowey, for their guidance and support. Finally, we would
 like to thank Sean Turner, who is the responsible Security Area
 Director for this work, for his review comments and suggestions.

Wouters, et al. Standards Track [Page 14]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

9. References

9.1. Normative References

 [PKIX] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 3279, April 2002.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

 [TLS-Ext-Registry]
 IANA, "Transport Layer Security (TLS) Extensions",
 <http://www.iana.org/assignments/
 tls-extensiontype-values>.

 [X.690] ITU-T, "Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2002,
 2002.

9.2. Informative References

 [ASN.1-Dump]
 Gutmann, P., "ASN.1 Object Dump Program", February 2013,
 <http://www.cs.auckland.ac.nz/˜pgut001/>.

 [CACHED-INFO]
 Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", Work in Progress,
 February 2014.

 [CoAP] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014.

Wouters, et al. Standards Track [Page 15]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

 [Defeating-SSL]
 Marlinspike, M., "New Tricks for Defeating SSL in
 Practice", February 2009, <http://www.blackhat.com/
 presentations/bh-dc-09/Marlinspike/
 BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf>.

 [LDAP] Sermersheim, J., "Lightweight Directory Access Protocol
 (LDAP): The Protocol", RFC 4511, June 2006.

 [RFC6698] Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, August 2012.

Wouters, et al. Standards Track [Page 16]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

Appendix A. Example Encoding

 For example, the hex sequence shown in Figure 9 describes a
 SubjectPublicKeyInfo structure inside the certificate payload.

 0 1 2 3 4 5 6 7 8 9
 +------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1 | 0x30, 0x81, 0x9f, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48,
 2 | 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x03, 0x81,
 3 | 0x8d, 0x00, 0x30, 0x81, 0x89, 0x02, 0x81, 0x81, 0x00, 0xcd,
 4 | 0xfd, 0x89, 0x48, 0xbe, 0x36, 0xb9, 0x95, 0x76, 0xd4, 0x13,
 5 | 0x30, 0x0e, 0xbf, 0xb2, 0xed, 0x67, 0x0a, 0xc0, 0x16, 0x3f,
 6 | 0x51, 0x09, 0x9d, 0x29, 0x2f, 0xb2, 0x6d, 0x3f, 0x3e, 0x6c,
 7 | 0x2f, 0x90, 0x80, 0xa1, 0x71, 0xdf, 0xbe, 0x38, 0xc5, 0xcb,
 8 | 0xa9, 0x9a, 0x40, 0x14, 0x90, 0x0a, 0xf9, 0xb7, 0x07, 0x0b,
 9 | 0xe1, 0xda, 0xe7, 0x09, 0xbf, 0x0d, 0x57, 0x41, 0x86, 0x60,
 10 | 0xa1, 0xc1, 0x27, 0x91, 0x5b, 0x0a, 0x98, 0x46, 0x1b, 0xf6,
 11 | 0xa2, 0x84, 0xf8, 0x65, 0xc7, 0xce, 0x2d, 0x96, 0x17, 0xaa,
 12 | 0x91, 0xf8, 0x61, 0x04, 0x50, 0x70, 0xeb, 0xb4, 0x43, 0xb7,
 13 | 0xdc, 0x9a, 0xcc, 0x31, 0x01, 0x14, 0xd4, 0xcd, 0xcc, 0xc2,
 14 | 0x37, 0x6d, 0x69, 0x82, 0xd6, 0xc6, 0xc4, 0xbe, 0xf2, 0x34,
 15 | 0xa5, 0xc9, 0xa6, 0x19, 0x53, 0x32, 0x7a, 0x86, 0x0e, 0x91,
 16 | 0x82, 0x0f, 0xa1, 0x42, 0x54, 0xaa, 0x01, 0x02, 0x03, 0x01,
 17 | 0x00, 0x01

 Figure 9: Example SubjectPublicKeyInfo Structure Byte Sequence

 The decoded byte sequence shown in Figure 9 (for example, using Peter
 Gutmann’s ASN.1 decoder [ASN.1-Dump]) illustrates the structure, as
 shown in Figure 10.

 Offset Length Description

 0 3+159: SEQUENCE {
 3 2+13: SEQUENCE {
 5 2+9: OBJECT IDENTIFIER Value (1 2 840 113549 1 1 1)
 : PKCS #1, rsaEncryption
 16 2+0: NULL
 : }
 18 3+141: BIT STRING, encapsulates {
 22 3+137: SEQUENCE {
 25 3+129: INTEGER Value (1024 bit)
 157 2+3: INTEGER Value (65537)
 : }
 : }
 : }

 Figure 10: Decoding of Example SubjectPublicKeyInfo Structure

Wouters, et al. Standards Track [Page 17]

RFC 7250 Using Raw Public Keys in TLS/DTLS June 2014

Authors’ Addresses

 Paul Wouters (editor)
 Red Hat

 EMail: pwouters@redhat.com

 Hannes Tschofenig (editor)
 ARM Ltd.
 6060 Hall in Tirol
 Austria

 EMail: Hannes.tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 John Gilmore
 Electronic Frontier Foundation
 PO Box 170608
 San Francisco, California 94117
 USA

 Phone: +1 415 221 6524
 EMail: gnu@toad.com
 URI: https://www.toad.com/

 Samuel Weiler
 Parsons
 7110 Samuel Morse Drive
 Columbia, Maryland 21046
 US

 EMail: weiler@tislabs.com

 Tero Kivinen
 INSIDE Secure
 Eerikinkatu 28
 Helsinki FI-00180
 FI

 EMail: kivinen@iki.fi

Wouters, et al. Standards Track [Page 18]

