
Independent Submission J. Kunze
Request for Comments: 8493 California Digital Library
Category: Informational J. Littman
ISSN: 2070-1721 Stanford Libraries
 E. Madden
 Library of Congress
 J. Scancella

 C. Adams
 Library of Congress
 October 2018

 The BagIt File Packaging Format (V1.0)

Abstract

 This document describes BagIt, a set of hierarchical file layout
 conventions for storage and transfer of arbitrary digital content. A
 "bag" has just enough structure to enclose descriptive metadata
 "tags" and a file "payload" but does not require knowledge of the
 payload’s internal semantics. This BagIt format is suitable for
 reliable storage and transfer.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not candidates for any level of Internet Standard;
 see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8493.

Kunze, et al. Informational [Page 1]

RFC 8493 BagIt October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Kunze, et al. Informational [Page 2]

RFC 8493 BagIt October 2018

Table of Contents

 1. Introduction . 4
 1.1. Purpose . 4
 1.2. Requirements . 4
 1.3. Terminology . 5
 2. Structure . 6
 2.1. Required Elements . 6
 2.1.1. Bag Declaration: bagit.txt 6
 2.1.2. Payload Directory: data/ 7
 2.1.3. Payload Manifest: manifest-algorithm.txt 7
 2.2. Optional Elements . 8
 2.2.1. Tag Manifest: tagmanifest-algorithm.txt 8
 2.2.2. Bag Metadata: bag-info.txt 9
 2.2.3. Fetch File: fetch.txt 12
 2.2.4. Other Tag Files 12
 2.3. Text Tag File Format 13
 2.4. Bag Checksum Algorithms 13
 3. Complete and Valid Bags 14
 4. Examples . 15
 4.1. Example of a Basic Bag 15
 4.2. Example Bag Using fetch.txt 16
 5. Security Considerations 16
 5.1. Special Directory Characters 16
 5.2. Control of URLs in fetch.txt 17
 5.3. File Sizes in fetch.txt 17
 5.4. Attacks on Payload File Content 17
 6. Practical Considerations (Non-normative) 17
 6.1. Interoperability . 17
 6.1.1. Filename Normalization 18
 6.1.2. Windows and Unix File Naming 18
 6.1.3. Legacy Checksum Tools 18
 7. Augmented Backus-Naur Form (Non-normative) 21
 7.1. Bag Declaration: bagit.txt 21
 7.2. Payload Manifest: manifest-algorithm.txt 21
 7.3. Bag Metadata: bag-info.txt 22
 7.4. Fetch File: fetch.txt 22
 8. IANA Considerations . 22
 9. References . 22
 9.1. Normative References 22
 9.2. Informative References 23
 Acknowledgements . 24
 Contributors . 24
 Authors’ Addresses . 25

Kunze, et al. Informational [Page 3]

RFC 8493 BagIt October 2018

1. Introduction

1.1. Purpose

 BagIt is a set of hierarchical file layout conventions designed to
 support storage and transfer of arbitrary digital content. A "bag"
 consists of a directory containing the payload files and other
 accompanying metadata files known as "tag" files. The "tags" are
 metadata files intended to facilitate and document the storage and
 transfer of the bag. Processing a bag does not require any
 understanding of the payload file contents, and the payload files can
 be accessed without processing the BagIt metadata.

 The name, BagIt, is inspired by the "enclose and deposit" method
 [ENCDEP], sometimes referred to as "bag it and tag it". BagIt
 differs from serialized archival formats such as MIME, TAR, or ZIP in
 two general areas:

 1. Strong integrity assurances. The format supports cryptographic-
 quality hash algorithms (see Section 2.4) and allows for in-place
 upgrades to add additional manifests using stronger algorithms
 without breaking backwards compatibility. This provides high
 levels of confidence against data corruption, but it is not
 designed to be secure against active attacks.

 2. Direct file access. Because BagIt specifies an actual filesystem
 hierarchy rather than a serialized representation of one, files
 can be accessed using standard operating system utilities,
 implementations do not need to process a potentially large
 archival file to extract a subset of data, and the format imposes
 no size limits for either individual files or a bag.

 BagIt is widely used for preserving digital assets originating from
 different domains. Organizations involved in digital preservation
 with BagIt include the Library of Congress, Dryad Data Repository,
 NSF DataONE, and the Rockefeller Archive Center. Software
 implementations are available for many languages, including Python,
 Ruby, Java, Perl, and PHP. It is also used in the libraries of many
 universities, such as Cornell, Purdue, Stanford, Ghent University,
 New York University, and the University of California.

1.2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Kunze, et al. Informational [Page 4]

RFC 8493 BagIt October 2018

 Implementers are strongly encouraged to review the interoperability
 considerations described in Section 6.1.

1.3. Terminology

 The following terms have precise definitions as used in this
 document:

 bag: A set of opaque files contained within the structure defined by
 this document.

 bag declaration: The file required to be in all bags conforming to
 this document. Contains values necessary to process the rest of a
 bag. See Section 2.1.1.

 bag checksum algorithm: The name of a cryptographic checksum
 algorithm that has been normalized for use in a manifest or tag
 manifest file name (e.g., "sha512") as described in Section 2.4.

 manifest: A tag file that maps filepaths to checksums. A manifest
 can be a payload manifest (see Section 2.1.3) or a tag manifest
 (see Section 2.2.1).

 payload: The data encapsulated by the bag as a set of named files,
 which may be organized in subdirectories. The contents of the
 payload files are opaque to this document, and, with respect to
 BagIt processing, are always considered as sequences of
 uninterpreted octets. See Section 2.1.2.

 tag directory: A directory that contains one or more tag files.

 tag file: A file that contains metadata about the bag or its
 payload. This document defines the standard BagIt tag files: the
 bag declaration in "bagit.txt" (see Section 2.1.1), payload
 manifests (see Section 2.1.3), tag manifests (see Section 2.2.1),
 bag metadata in "bag-info.txt" (see Section 2.2.2), and remote
 payload in "fetch.txt" (see Section 2.2.3). This document also
 allows other arbitrary tag files as described in Section 2.2.4.

 complete: A bag that contains every element required by this
 document, every payload file listed in a manifest, and any
 optional files that are listed in a tag manifest. See Section 3.

 valid: A complete bag where every checksum in every manifest has
 been successfully verified against the corresponding file.

Kunze, et al. Informational [Page 5]

RFC 8493 BagIt October 2018

2. Structure

 A bag MUST consist of a base directory containing the following:

 1. a set of required and optional tag files (see Section 2.2);

 2. a subdirectory named "data", called the payload directory (see
 Section 2.1.2); and

 3. a set of optional tag directories.

 The tag files in the base directory consist of one or more files
 named "manifest-_algorithm_.txt" (see Sections 2.1.3 and 2.4), a file
 named "bagit.txt" (see Section 2.1.1), and zero or more additional
 tag files (see Section 2.2). The tag files and directories are in
 arbitrary file hierarchies and MAY have any name that is not reserved
 for a file or directory in this document.

 The base directory can have any name, as illustrated by the figure
 below.

 <base directory>/
 |
 +-- bagit.txt
 |
 +-- manifest-<algorithm>.txt
 |
 +-- [additional tag files]
 |
 +-- data/
 | |
 | +-- [payload files]
 |
 +-- [tag directories]/
 |
 +-- [tag files]

2.1. Required Elements

2.1.1. Bag Declaration: bagit.txt

 The "bagit.txt" tag file MUST consist of exactly two lines in this
 order:

 BagIt-Version: M.N
 Tag-File-Character-Encoding: ENCODING

Kunze, et al. Informational [Page 6]

RFC 8493 BagIt October 2018

 M.N identifies the BagIt major (M) and minor (N) version numbers.
 ENCODING identifies the character set encoding used by the
 remaining tag files. _ENCODING_ SHOULD be "UTF-8", but for backwards
 compatibility it MAY be any other encoding registered in
 [cs-registry]. The bag declaration itself MUST be encoded in UTF-8
 and MUST NOT contain a Byte Order Mark (BOM) [RFC3629].

 The number for this version of BagIt is "1.0".

2.1.2. Payload Directory: data/

 The base directory MUST contain a subdirectory named "data".

 The payload directory contains the arbitrary digital content within
 the bag. The files under the payload directory are called payload
 files, or the payload. Each payload file is treated as an opaque
 octet stream when verifying file correctness. Payload files MAY be
 organized in arbitrary subdirectory structures within the payload
 directory; however, for the purpose of this document, such
 subdirectory structures and filenames have no given meaning.

2.1.3. Payload Manifest: manifest-algorithm.txt

 A payload manifest file provides a complete listing of each payload
 file name along with a corresponding checksum to permit data
 integrity checking. A bag can have more than one payload manifest,
 with each using a different checksum algorithm. Manifest entries
 MUST satisfy the following constraints:

 o Every bag MUST contain at least one payload manifest file and MAY
 contain more than one.

 o Every payload manifest MUST list every payload file name exactly
 once.

 o A payload manifest file MUST have a name of the form "manifest-
 algorithm.txt", where _algorithm_ is a string specifying the
 checksum algorithm used by that manifest as described in
 Section 2.4.

 Example payload manifest filenames:

 manifest-sha256.txt
 manifest-sha512.txt

Kunze, et al. Informational [Page 7]

RFC 8493 BagIt October 2018

 Each line of a payload manifest file MUST be of the form

 checksum filepath

 where _filepath_ is the pathname of a file relative to the base
 directory, and _checksum_ is a hex-encoded checksum calculated by
 applying _algorithm_ over the file.

 o The hex-encoded checksum MAY use uppercase and/or lowercase
 letters.

 o The slash character (’/’) MUST be used as a path separator in
 filepath.

 o One or more linear whitespace characters (spaces or tabs) MUST
 separate _checksum_ from _filepath_.

 o There is no limitation on the length of a pathname.

 o The payload manifest MUST NOT reference files outside the payload
 directory.

 o If a _filepath_ includes a Line Feed (LF), a Carriage Return (CR),
 a Carriage-Return Line Feed (CRLF), or a percent sign (%), those
 characters (and only those) MUST be percent-encoded following
 [RFC3986].

 A manifest MUST NOT reference directories. Bag creators who wish to
 create an otherwise empty directory have typically done so by
 creating an empty placeholder file with a name such as ".keep".

2.2. Optional Elements

2.2.1. Tag Manifest: tagmanifest-algorithm.txt

 A tag manifest is a tag file that lists other tag files and checksums
 for those tag files generated using a particular bag checksum
 algorithm.

 A bag MAY contain one or more tag manifests, in which case each tag
 manifest SHOULD list the same set of tag files.

 Each tag manifest MUST list every payload manifest. Each tag
 manifest MUST NOT list any tag manifests but SHOULD list the
 remaining tag files present in the bag.

Kunze, et al. Informational [Page 8]

RFC 8493 BagIt October 2018

 A tag manifest file MUST have a name of the form "tagmanifest-
 algorithm.txt", where _algorithm_ is a string following the format
 described in Section 2.4 that specifies the bag checksum algorithm
 used in that manifest.

 Tag manifests SHOULD use the same algorithms as the payload manifests
 that are present in the bag.

 Example tag manifest filenames:

 tagmanifest-sha256.txt
 tagmanifest-sha512.txt

 A tag manifest file has the same form as the payload manifest file
 described in Section 2.1.3 but MUST NOT list any payload files. As a
 result, no _filepath_ listed in a tag manifest begins "data/".

2.2.2. Bag Metadata: bag-info.txt

 The "bag-info.txt" file is a tag file that contains metadata elements
 describing the bag and the payload. The metadata elements contained
 in the "bag-info.txt" file are intended primarily for human use. All
 metadata elements are OPTIONAL and MAY be repeated. Because "bag-
 info.txt" is intended for human reading and editing, ordering MAY be
 significant and the ordering of metadata elements MUST be preserved.

 A metadata element MUST consist of a label, a colon ":", a single
 linear whitespace character (space or tab), and a value that is
 terminated with an LF, a CR, or a CRLF.

 The label MUST NOT contain a colon (:), LF, or CR. The label MAY
 contain linear whitespace characters but MUST NOT start or end with
 whitespace.

 It is RECOMMENDED that lines not exceed 79 characters in length.
 Long values MAY be continued onto the next line by inserting a LF,
 CR, or CRLF, and then indenting the next line with one or more linear
 white space characters (spaces or tabs). Except for linebreaks, such
 padding does not form part of the value.

 Implementations wishing to support previous BagIt versions MUST
 accept multiple linear whitespace characters before and after the
 colon when the bag version is earlier than 1.0; such whitespace does
 not form part of the label or value.

Kunze, et al. Informational [Page 9]

RFC 8493 BagIt October 2018

 The following are reserved metadata elements. The use of these
 reserved metadata elements is OPTIONAL but encouraged. Reserved
 metadata element names are case insensitive. Except where indicated
 otherwise, these metadata element names MAY be repeated to capture
 multiple values.

 Source-Organization: Organization transferring the content.

 Organization-Address: Mailing address of the source organization.

 Contact-Name: Person at the source organization who is responsible
 for the content transfer.

 Contact-Phone: International format telephone number of person or
 position responsible.

 Contact-Email: Fully qualified email address of person or position
 responsible.

 External-Description: A brief explanation of the contents and
 provenance.

 Bagging-Date: Date (YYYY-MM-DD) that the content was prepared for
 transfer. This metadata element SHOULD NOT be repeated.

 External-Identifier: A sender-supplied identifier for the bag.

 Bag-Size: The size or approximate size of the bag being transferred,
 followed by an abbreviation such as MB (megabytes), GB
 (gigabytes), or TB (terabytes): for example, 42600 MB, 42.6 GB, or
 .043 TB. Compared to Payload-Oxum (described next), Bag-Size is
 intended for human consumption. This metadata element SHOULD NOT
 be repeated.

 Payload-Oxum: The "octetstream sum" of the payload, which is
 intended for the purpose of quickly detecting incomplete bags
 before performing checksum validation. This is strictly an
 optimization, and implementations MUST perform the standard
 checksum validation process before proclaiming a bag to be valid.
 This element MUST NOT be present more than once and, if present,
 MUST be in the form "_OctetCount_._StreamCount_", where
 OctetCount is the total number of octets (8-bit bytes) across
 all payload file content and _StreamCount_ is the total number of
 payload files. This metadata element MUST NOT be repeated.

Kunze, et al. Informational [Page 10]

RFC 8493 BagIt October 2018

 Bag-Group-Identifier: A sender-supplied identifier for the set, if
 any, of bags to which it logically belongs. This identifier
 SHOULD be unique across the sender’s content, and if it is
 recognizable as belonging to a globally unique scheme, the
 receiver SHOULD make an effort to honor the reference to it. This
 metadata element SHOULD NOT be repeated.

 Bag-Count: Two numbers separated by "of", in particular, "N of T",
 where T is the total number of bags in a group of bags and N is
 the ordinal number within the group. If T is not known, specify
 it as "?" (question mark): for example, 1 of 2, 4 of 4, 3 of ?, 89
 of 145. This metadata element SHOULD NOT be repeated. If this
 metadata element is present, it is RECOMMENDED to also include the
 Bag-Group-Identifier element.

 Internal-Sender-Identifier: An alternate sender-specific identifier
 for the content and/or bag.

 Internal-Sender-Description: A sender-local explanation of the
 contents and provenance.

 In addition to these metadata elements, other arbitrary metadata
 elements MAY also be present.

 An example of "bag-info.txt" file is as follows:

 Source-Organization: FOO University
 Organization-Address: 1 Main St., Cupertino, California, 11111
 Contact-Name: Jane Doe
 Contact-Phone: +1 111-111-1111
 Contact-Email: example@example.com
 External-Description: Uncompressed greyscale TIFF images from the
 FOO papers colle...
 Bagging-Date: 2008-01-15
 External-Identifier: university_foo_001
 Payload-Oxum: 279164409832.1198
 Bag-Group-Identifier: university_foo
 Bag-Count: 1 of 15
 Internal-Sender-Identifier: /storage/images/foo
 Internal-Sender-Description: Uncompressed greyscale TIFFs created
 from microfilm and are...

Kunze, et al. Informational [Page 11]

RFC 8493 BagIt October 2018

2.2.3. Fetch File: fetch.txt

 For reasons of efficiency, a bag MAY be sent with a list of files to
 be fetched and added to the payload before it can meaningfully be
 checked for completeness. The fetch file allows a bag to be
 transmitted with "holes" in it, which can be practical for several
 reasons. For example, it obviates the need for the sender to stage a
 large serialized copy of the content while the bag is transferred to
 the receiver. Also, this method allows a sender to construct a bag
 from components that are either a subset of logically related
 components (e.g., the localized logical object could be much larger
 than what is intended for export) or assembled from logically
 distributed sources (e.g., the object components for export are not
 stored locally under one filesystem tree). An OPTIONAL tag file,
 called the fetch file, contains such a list.

 The fetch file MUST be named "fetch.txt". Every file listed in the
 fetch file MUST be listed in every payload manifest. A fetch file
 MUST NOT list any tag files.

 Each line of a fetch file MUST be of the form

 url length filepath

 where _url_ identifies the file to be fetched and MUST be an absolute
 URI as defined in [RFC3986], _length_ is the number of octets in the
 file (or "-", to leave it unspecified), and _filepath_ identifies the
 corresponding payload file, relative to the base directory.

 The slash character (’/’) MUST be used as a path separator in
 filepath. One or more linear whitespace characters (spaces or tabs)
 MUST separate these three values, and any such characters in the
 url MUST be percent-encoded [RFC3986]. If _filename_ includes an
 LF, a CR, a CRLF, or a percent sign (%), those characters (and only
 those) MUST be percent-encoded as described in [RFC3986]. There is
 no limitation on the length of any of the fields in the fetch file.

2.2.4. Other Tag Files

 A bag MAY contain other tag files that are not defined by this
 document. Implementations MUST perform standard checksum validation
 on any tag file that is listed in a tag manifest but MUST otherwise
 ignore their contents.

Kunze, et al. Informational [Page 12]

RFC 8493 BagIt October 2018

2.3. Text Tag File Format

 All tag files specifically described in this document MUST adhere to
 the text tag file format described below. Other tag files MAY adhere
 to the text tag file format described below.

 Text tag files are line oriented, and each line MUST be terminated by
 an LF, a CR, or a CRLF. It is RECOMMENDED that the last line in a
 tag file also end with LF, CR, or CRLF. Text tag file names MUST end
 in the extension ".txt".

 In all text tag files except for the bag declaration file, text MUST
 use the character encoding specified in the "bagit.txt" bag
 declaration file. Text tag files except for the bag declaration file
 MAY include a Byte Order Mark (BOM) only if the specified encoding
 requires it for proper decoding. In accordance with [RFC3629], when
 "bagit.txt" specifies UTF-8, the tag files MUST NOT begin with a BOM.
 See Section 2.1.1.

 The use of UTF-8 for text tag files is strongly RECOMMENDED. A
 future version of BagIt may disallow encodings other than UTF-8.

2.4. Bag Checksum Algorithms

 The payload manifest and tag manifest permit validating the integrity
 of the payload and tag files in a bag produced by the checksum
 algorithms. Checksum values MUST be encoded so as to conform to the
 manifest format specified in Section 2.1.3. However, the internal
 details of a checksum are outside the scope of this document.

 To avoid future ambiguity, the checksum algorithm SHOULD be
 registered in IANA’s "Named Information Hash Algorithm Registry"
 [ni-registry] according to [RFC6920] but MAY, for backwards
 compatibility, also be MD5 [RFC1321] or SHA-1 [RFC3174].

 The name of the checksum algorithm MUST be normalized for use in the
 manifest’s filename by lowercasing the common name of the algorithm
 and removing all non-alphanumeric characters. Following is a partial
 list that maps common algorithm names to normalized names:

 o MD5: md5

 o SHA-1: sha1

 o sha-256: sha256

 o sha-512: sha512

Kunze, et al. Informational [Page 13]

RFC 8493 BagIt October 2018

 Starting with BagIt 1.0, bag creation and validation tools MUST
 support the SHA-256 and SHA-512 algorithms [RFC6234] and SHOULD
 enable SHA-512 by default when creating new bags. For backwards
 compatibility, implementers SHOULD support MD5 [RFC1321] and SHA-1
 [RFC3174]. Implementers are encouraged to simplify the process of
 adding additional manifests using new algorithms to streamline the
 process of in-place upgrades.

3. Complete and Valid Bags

 A _complete_ bag MUST meet the following requirements:

 1. Every required element MUST be present (see Section 2.1).

 2. Every file listed in every tag manifest MUST be present.

 3. Every file listed in every payload manifest MUST be present.

 4. For BagIt 1.0, every payload file MUST be listed in every payload
 manifest. Note that older versions of BagIt allowed payload
 files to be listed in just one of the manifests.

 5. Every element present MUST conform to BagIt 1.0.

 A _valid_ bag MUST meet the following requirements:

 1. The bag MUST be _complete_.

 2. Every checksum in every payload manifest and tag manifest has
 been successfully verified against the contents of the
 corresponding file.

Kunze, et al. Informational [Page 14]

RFC 8493 BagIt October 2018

4. Examples

4.1. Example of a Basic Bag

 This is the layout of a basic bag containing an image and a companion
 Optical Character Recognition (OCR) file. Lines of file content are
 shown with added parentheses to indicate each complete line. For
 brevity, this example uses MD5 rather than the recommended SHA-512.

 myfirstbag/
 |
 | manifest-md5.txt
 | (49afbd86a1ca9f34b677a3f09655eae9 data/27613-h/images/q172.png)
 | (408ad21d50cef31da4df6d9ed81b01a7 data/27613-h/images/q172.txt)
 |
 | bagit.txt
 | (BagIt-version: 1.0)
 | (Tag-File-Character-Encoding: UTF-8)
 |
 \--- data/
 |
 | 27613-h/images/q172.png
 | (... image bytes ...)
 |
 | 27613-h/images/q172.txt
 | (... OCR text ...)

Kunze, et al. Informational [Page 15]

RFC 8493 BagIt October 2018

4.2. Example Bag Using fetch.txt

 This is the layout of a bag that expects the receiver to download the
 files listed in the payload manifests prior to validation. Lines of
 file content are shown with added parentheses to indicate each
 complete line. For brevity, this example uses MD5 rather than the
 recommended SHA-512.

 highsmith-tahoe/
 |
 | manifest-md5.txt
 | (102b0e6effe208ef9b29864946de9e22 data/23364a.tif)
 |
 | fetch.txt
 | (https://cdn.loc.gov/master/pnp/highsm/23300/23364a.tif
 | 216951362 data/23364a.tif)
 |
 | bagit.txt
 | (BagIt-version: 1.0)
 | (Tag-File-Character-Encoding: UTF-8)
 |
 | bag-info.txt
 | (Internal-Sender-Description: Download link found at)
 | (https://www.loc.gov/resource/highsm.23364/)

5. Security Considerations

5.1. Special Directory Characters

 The paths specified in the payload manifests, tag manifests, and
 fetch files do not prohibit special directory characters that have
 special meaning on some operating systems. Implementers MUST ensure
 that files outside the bag directory structure are not accessed when
 reading or writing files based on paths specified in a bag.

 All implementations SHOULD have a test suite to guard against special
 directory characters.

 For example, a maliciously crafted "tagmanifest-sha512.txt" file
 might contain entries that begin with a path character such as "/",
 "..", or a "˜username" home directory reference in an attempt to
 cause a naive implementation to leak or overwrite targeted files on a
 POSIX operating system.

 Windows implementations SHOULD test their implementations to ensure
 that safety checks prevent use of drive letters and the less commonly
 used namespace sequences (e.g., "\\?\C:\...") described in [MSFNAM].

Kunze, et al. Informational [Page 16]

RFC 8493 BagIt October 2018

 To assist implementers, the Library of Congress conformance suite
 [LC-CONFORMANCE-SUITE] has some tests for invalid bags that are
 expected to fail on POSIX or Windows clients.

5.2. Control of URLs in fetch.txt

 Implementers of tools that complete bags by retrieving URLs listed in
 a fetch file need to be aware that some of those URLs might point to
 hosts, intentionally or unintentionally, that are not under control
 of the bag’s sender. Moreover, older checksum algorithms, even if
 reasonable for detecting corruption during transit, may not offer
 strong cryptographic protection against intentional spoofing.

5.3. File Sizes in fetch.txt

 The size of files, as optionally reported in the fetch file, cannot
 be guaranteed to match the actual file size to be downloaded.
 Implementers SHOULD take steps to monitor and abort transfer when the
 received file size exceeds the file size reported in the fetch file.
 Implementers SHOULD NOT use the file size in the fetch file for
 critical resource allocation, such as buffer sizing or storage
 requisitioning.

5.4. Attacks on Payload File Content

 The integrity assurance provided by manifests is designed to provide
 high levels of confidence against data corruption but is not designed
 to be secure against active attacks. Organizations that need to
 secure bags against such threats SHOULD agree on additional measures,
 such as digital signatures, that are out of scope for this
 specification.

6. Practical Considerations (Non-normative)

6.1. Interoperability

 This section lists practical considerations for implementers and
 users. None of the points below are required, but they are
 recommended for general-purpose usage.

 Upon discovering errors in bags, an implementation is free to take
 action (for example, logging or reporting) in an application-specific
 manner. This document does not mandate any particular action.

 The Library of Congress conformance suite [LC-CONFORMANCE-SUITE] is
 provided as a public resource to test new implementations for
 compatibility and error handling.

Kunze, et al. Informational [Page 17]

RFC 8493 BagIt October 2018

6.1.1. Filename Normalization

 This section provides background information on various challenges
 caused by differences in how operating systems, filesystems, and
 common tools handle filenames. This section is followed by a list of
 recommendations for implementers in Section 6.1.1.3.

6.1.1.1. Case Sensitivity

 There are three challenges for interoperability related to filename
 case:

 o Filesystems such as File Allocation Table (FAT) or Extended File
 Allocation Table (EXFAT) always convert filenames to uppercase:
 "example.txt" will be stored as "EXAMPLE.TXT".

 o Many Unix filesystems save filenames exactly as provided, which
 allows multiple files that differ only in case: "example.txt" and
 "Example.txt" are separate files.

 o New Technology File System (NTFS) and Apple’s Hierarchical File
 System (HFS) Plus usually preserve case when storing files but are
 case insensitive when retrieving them. A file saved as
 "Example.txt" will be retrieved by that name but will also be
 retrieved as "EXAMPLE.TXT", "example.txt", etc.

6.1.1.2. Unicode Normalization

 The Unicode specification has common cases where different character
 sequences produce the same human-meaningful text. These are referred
 to as "canonically equivalent" and the Unicode specification defines
 different normalization forms - see [UNICODE-TR15] for the full
 details.

 The example below shows the common surname "Nunez" normalized in
 different forms.

 Normalization Form D (Decomposition)

 Char UTF8 Hex Name
 --
 N 4e LATIN CAPITAL LETTER N
 u 75 LATIN SMALL LETTER U
 \u0301 cc81 COMBINING ACUTE ACCENT
 n 6e LATIN SMALL LETTER N
 \u0303 cc83 COMBINING TILDE
 e 65 LATIN SMALL LETTER E
 z 7a LATIN SMALL LETTER Z

Kunze, et al. Informational [Page 18]

RFC 8493 BagIt October 2018

 Normalization Form C (Canonical Composition)

 Char UTF8 Hex Name
 --
 N 4e LATIN CAPITAL LETTER N
 u c3ba LATIN SMALL LETTER U WITH ACUTE
 n c3b1 LATIN SMALL LETTER N WITH TILDE
 e 65 LATIN SMALL LETTER E
 z 7a LATIN SMALL LETTER Z

 Unicode normalization is relevant to BagIt implementors because
 different systems have different standards for normalization:

 o Apple’s HFS Plus filesystem always normalizes filenames to a fully
 decomposed form based on the Unicode 2.0 specification (see
 [TN1150]).

 o Windows treats filenames as opaque character sequences (see
 [MSFNAM]) and will store and return the encoded bytes exactly as
 provided.

 o Linux and other common Unix systems are generally similar to
 Windows in storing and returning opaque byte streams, but this
 behavior is technically dependent on the filesystem.

 o Utilities used for file management, transfer, and archiving may
 ignore this issue, apply an arbitrary normalization form, or allow
 the user to control how normalization is applied.

 In practice, this means that the encoded filename stored in a
 manifest may fail a simple file existence check because the
 filename’s normalization was changed at some point after the manifest
 was written. This situation is very confusing for users because the
 filenames are visually indistinguishable, and the "missing" file is
 obviously present in the payload directory.

6.1.1.3. Recommendations

 o Implementations SHOULD discourage the creation of bags containing
 files that differ only in case.

 o Implementations SHOULD prevent the creation of bags containing
 files that differ only in normalization form.

 o BagIt implementations SHOULD tolerate differences in normalization
 form by comparing both the list of filesystem and manifest names
 after applying the same normalization form to both.

Kunze, et al. Informational [Page 19]

RFC 8493 BagIt October 2018

 o Implementations SHOULD issue a warning when multiple manifests are
 present that differ only in case or normalization form.

6.1.2. Windows and Unix File Naming

 As specified above, only the Unix-based path separator (’/’) may be
 used inside filenames listed in BagIt manifest and fetch.txt files.
 When bags are exchanged between Windows and Unix platforms, the path
 separator SHOULD be translated as needed. Receivers of bags on
 physical media SHOULD be prepared for filesystems created under
 either Windows or Unix. Besides the fundamental difference between
 path separators (’\’ and ’/’), generally, Windows filesystems have
 more limitations than Unix filesystems.

 Windows path names have a maximum of 255 characters, and none of
 these characters may be used in a path component:

 < > : " / | ? *

 Windows also reserves the following names, with or without a file
 extension:

 CON, PRN, AUX, NUL
 COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9
 LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9

 See [MSFNAM] for more information and possible alternatives.

6.1.3. Legacy Checksum Tools

 Some bags have been manually assembled using checksum utilities such
 as those contained in the GNU Coreutils package (md5sum, sha1sum,
 etc.), collectively referred to here as "md5sum". Implementers who
 desire wide support of legacy content should be aware of some known
 quirks of these tools.

 md5sum can be run in "text mode", which causes it to normalize line
 endings on some operating systems. On Unix-like systems, both modes
 will usually produce the same results; on systems like Windows, they
 can produce different results based on the file contents. The md5sum
 output format has two characters between the checksum and the
 filepath: the first is always a space, and the second is an asterisk
 ("*") for binary mode and a space for text mode.

 A final note about md5sum-generated manifests is that, for a
 filepath containing a backslash (’\’), the manifest line will have
 a backslash inserted in front of the _checksum_ and, under Windows,
 the backslashes inside _filepath_ can be doubled.

Kunze, et al. Informational [Page 20]

RFC 8493 BagIt October 2018

 Implementers MAY wish to accept this format by ignoring a leading
 asterisk or handling differences in line termination gracefully but,
 if so, implementations MUST warn the user that the bag in question
 will fail strict validation. In such cases, it is RECOMMENDED that
 tools provide an easy option to update the bag with valid manifests.

7. Augmented Backus-Naur Form (Non-normative)

 The Augmented Backus-Naur Form (ABNF) rules provided below are non-
 normative. If there is a discrepancy between requirements in the
 normative sections and the ABNF, the requirements in the normative
 sections prevail. Some definitions use the core rules (e.g., DIGIT,
 HEXDIG, etc) as defined in [RFC5234].

7.1. Bag Declaration: bagit.txt

 bagit.txt ABNF rules:

 bagit-txt = "BagIt-Version: " 1*DIGIT "." 1*DIGIT ending
 "Tag-File-Character-Encoding: " encoding ending
 encoding = 1*CHAR
 ending = CR / LF / CRLF

7.2. Payload Manifest: manifest-algorithm.txt

 Payload Manifest ABNF rules:

 payload-manifest = 1*payload-manifest-line
 payload-manifest-line = checksum 1*WSP filepath ending
 checksum = 1*case-hexdig
 case-hexdig = DIGIT / "A" / "a" / "B" / "b" / "C" / "c" /
 "D" / "d" / "E"/ "e"/ "F" / "f"
 filepath = "data/"
 1*(unreserved / pct-encoded / sub-delims)
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 sub-delims = "!" / "$" / "&" / DQUOTE / "’" / "(" / ")" /
 "*" / "+" / "," / ";" / "=" / "/"
 pct-encoded = "%0D" / "%0d" / "%0A" / "%0a" / "%25"
 ending = CR / LF / CRLF

Kunze, et al. Informational [Page 21]

RFC 8493 BagIt October 2018

7.3. Bag Metadata: bag-info.txt

 bag-info.txt ABNF rules:

 metadata = 1*metadata-line
 metadata-line = key ":" WSP value ending *(continuation ending)
 key = 1*non-reserved
 value = 1*non-reserved
 continuation = WSP 1*non-reserved
 non-reserved = VCHAR / WSP
 ; any valid character for the specific encoding
 ; except those that match "ending"
 ending = CR / LF / CRLF

7.4. Fetch File: fetch.txt

 fetch.txt ABNF rules:

 fetch = 1*fetch-line
 fetch-line = url 1*WSP length 1*WSP filepath ending
 url = <absolute-URI, see [RFC3986], Section 4.3>
 length = 1*DIGIT / "-"
 filepath = ("data/"
 1*(unreserved / pct-encoded / sub-delims))
 ending = CR / LF / CRLF

8. IANA Considerations

 This document has no IANA actions.

9. References

9.1. Normative References

 [cs-registry]
 IANA, "Character Set",
 <https://www.iana.org/assignments/character-sets>.

 [ni-registry]
 IANA, "Named Information Hash Algorithm",
 <https://www.iana.org/assignments/named-information>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/info/rfc1321>.

Kunze, et al. Informational [Page 22]

RFC 8493 BagIt October 2018

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3174] Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001,
 <https://www.rfc-editor.org/info/rfc3174>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keranen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,
 <https://www.rfc-editor.org/info/rfc6920>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [ENCDEP] Tabata, K., Okada, T., Nagamori, M., Sakaguchi, T., and S.
 Sugimoto, "A Collaboration Model between Archival Systems
 to Enhance the Reliability of Preservation by an Enclose-
 and-Deposit Method", 2005,
 <https://web.archive.org/web/20060508015635/
 http://www.iwaw.net/05/papers/iwaw05-tabata.pdf>.

 [LC-CONFORMANCE-SUITE]
 The Library of Congress, "Test cases for validating Bagit
 Implementations", commit 43bcbdf, November 2017,
 <https://github.com/LibraryOfCongress/
 bagit-conformance-suite/>.

Kunze, et al. Informational [Page 23]

RFC 8493 BagIt October 2018

 [MSFNAM] Microsoft, Inc., "Naming Files, Paths, and Namespaces",
 May 2018,
 <http://msdn2.microsoft.com/en-us/library/aa365247.aspx>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [TN1150] Apple Inc., "Technical Note TN1150: HFS Plus Volume
 Format", March 2004, <https://developer.apple.com/legacy/
 library/technotes/tn/tn1150.html>.

 [UNICODE-TR15]
 Unicode Consortium, "Unicode Standard Annex #15: Unicode
 Normalization Forms", Technical Report, Unicode 11.0.0,
 May 2018, <http://www.unicode.org/reports/tr15/>.

Acknowledgements

 BagIt benefitted from the thoughtful assistance of Stephen Abrams,
 Mike Ashenfelder, Dan Chudnov, Dave Crocker, Scott Fisher, Brad
 Hards, Erik Hetzner, Keith Johnson, Leslie Johnston, David Loy, Mark
 Phillips, Tracy Seneca, Stian Soiland-Reyes, Brian Tingle, Adam
 Turoff, and Jim Tuttle.

Contributors

 Additional contributors to the authoring of BagIt are Andy Boyko,
 David Brunton, Rosie Storey, Ed Summers, Brian Vargas, and Kate
 Zwaard.

Kunze, et al. Informational [Page 24]

RFC 8493 BagIt October 2018

Authors’ Addresses

 John A. Kunze
 California Digital Library
 415 20th St, 4th Floor
 Oakland, CA 94612
 United States of America

 Email: jak@ucop.edu

 Justin Littman
 Stanford Libraries
 518 Memorial Way
 Stanford, CA 94305
 United States of America

 Email: justinlittman@stanford.edu

 Liz Madden
 Library of Congress
 101 Independence Avenue SE
 Washington, DC 20540
 United States of America

 Email: emad@loc.gov

 John Scancella

 Email: john.scancella@gmail.com

 Chris Adams
 Library of Congress
 101 Independence Avenue SE
 Washington, DC 20540
 United States of America

 Email: cadams@loc.gov

Kunze, et al. Informational [Page 25]

