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1. Introduction 
WebRTC is a protocol suite aimed at real-time multimedia exchange between browsers, and
between browsers and other entities.

WebRTC is described in the WebRTC overview document , which also defines
terminology used in this document, including the terms "WebRTC endpoint" and "WebRTC
browser".

Terminology for RTP sources is taken from .
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This document focuses on the data transport protocols that are used by conforming
implementations, including the protocols used for interaction with intermediate boxes such as
firewalls, relays, and NAT boxes.

This protocol suite is intended to satisfy the security considerations described in the WebRTC
security documents,  and .

This document describes requirements that apply to all WebRTC endpoints. When there are
requirements that apply only to WebRTC browsers, this is called out explicitly.

2. Requirements Language 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

[RFC8826] [RFC8827]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

UDP :

TCP :

TURN:

STUN:

3. Transport and Middlebox Specification 

3.1. System-Provided Interfaces 
The protocol specifications used here assume that the following protocols are available to the
implementations of the WebRTC protocols:

This is the protocol assumed by most protocol elements described. 

This is used for HTTP/WebSockets, as well as TURN/TLS and ICE-TCP. 

For both protocols, IPv4 and IPv6 support is assumed.

For UDP, this specification assumes the ability to set the Differentiated Services Code Point (DSCP)
of the sockets opened on a per-packet basis, in order to achieve the prioritizations described in 

 (see Section 4.2 of this document) when multiple media types are multiplexed. It does
not assume that the DSCPs will be honored and does assume that they may be zeroed or changed,
since this is a local configuration issue.

Platforms that do not give access to these interfaces will not be able to support a conforming
WebRTC endpoint.

This specification does not assume that the implementation will have access to ICMP or raw IP.

The following protocols may be used, but they can be implemented by a WebRTC endpoint and
are therefore not defined as "system-provided interfaces":

Traversal Using Relays Around NAT  

Session Traversal Utilities for NAT  

[RFC0768]

[RFC0793]

[RFC8837]

[RFC8656]

[RFC5389]
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ICE:

TLS:

DTLS:

Interactive Connectivity Establishment  

Transport Layer Security  

Datagram Transport Layer Security  

3.2. Ability to Use IPv4 and IPv6 
Web applications running in a WebRTC browser  be able to utilize both IPv4 and IPv6
where available -- that is, when two peers have only IPv4 connectivity to each other, or they have
only IPv6 connectivity to each other, applications running in the WebRTC browser  be able
to communicate.

When TURN is used, and the TURN server has IPv4 or IPv6 connectivity to the peer or the peer's
TURN server, candidates of the appropriate types  be supported. The "Happy Eyeballs"
specification for ICE   be supported.

3.3. Usage of Temporary IPv6 Addresses 
The IPv6 default address selection specification  specifies that temporary addresses 

 are to be preferred over permanent addresses. This is a change from the rules
specified by . For applications that select a single address, this is usually done by the
IPV6_PREFER_SRC_TMP preference flag specified in . However, this rule, which is
intended to ensure that privacy-enhanced addresses are used in preference to static addresses,
doesn't have the right effect in ICE, where all addresses are gathered and therefore revealed to
the application. Therefore, the following rule is applied instead:

When a WebRTC endpoint gathers all IPv6 addresses on its host, and both nondeprecated
temporary addresses and permanent addresses of the same scope are present, the WebRTC
endpoint  discard the permanent addresses before exposing addresses to the
application or using them in ICE. This is consistent with the default policy described in 

.

If some, but not all, of the temporary IPv6 addresses are marked deprecated, the WebRTC
endpoint  discard the deprecated addresses, unless they are used by an ongoing
connection. In an ICE restart, deprecated addresses that are currently in use  be retained.

[RFC8445]

[RFC8446]

[RFC6347]

MUST

MUST

MUST
[RFC8421] SHOULD

[RFC6724]
[RFC4941]

[RFC3484]
[RFC5014]

SHOULD

[RFC6724]

SHOULD
MAY

3.4. Middlebox-Related Functions 
The primary mechanism for dealing with middleboxes is ICE, which is an appropriate way to
deal with NAT boxes and firewalls that accept traffic from the inside, but only from the outside if
it is in response to inside traffic (simple stateful firewalls).

ICE   be supported. The implementation  be a full ICE implementation, not
ICE-Lite. A full ICE implementation allows interworking with both ICE and ICE-Lite
implementations when they are deployed appropriately.

[RFC8445] MUST MUST
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In order to deal with situations where both parties are behind NATs of the type that perform
endpoint-dependent mapping (as defined in ), TURN   be
supported.

WebRTC browsers  support configuration of STUN and TURN servers, from both browser
configuration and an application.

Note that other work exists around STUN and TURN server discovery and management,
including  for server discovery, as well as .

In order to deal with firewalls that block all UDP traffic, the mode of TURN that uses TCP between
the WebRTC endpoint and the TURN server  be supported, and the mode of TURN that uses
TLS over TCP between the WebRTC endpoint and the TURN server  be supported. See 

, for details.

In order to deal with situations where one party is on an IPv4 network and the other party is on
an IPv6 network, TURN extensions for IPv6  be supported.

TURN TCP candidates, where the connection from the WebRTC endpoint's TURN server to the
peer is a TCP connection,   be supported.

However, such candidates are not seen as providing any significant benefit, for the following
reasons.

First, use of TURN TCP candidates would only be relevant in cases where both peers are required
to use TCP to establish a connection.

Second, that use case is supported in a different way by both sides establishing UDP relay
candidates using TURN over TCP to connect to their respective relay servers.

Third, using TCP between the WebRTC endpoint's TURN server and the peer may result in more
performance problems than using UDP, e.g., due to head of line blocking.

ICE-TCP candidates  be supported; this may allow applications to communicate
to peers with public IP addresses across UDP-blocking firewalls without using a TURN server.

If TCP connections are used, RTP framing according to   be used for all packets.
This includes the RTP packets, DTLS packets used to carry data channels, and STUN connectivity
check packets.

The ALTERNATE-SERVER mechanism specified in  (300 Try Alternate) 
 be supported.

The WebRTC endpoint  support accessing the Internet through an HTTP proxy. If it does so, it
 include the "ALPN" header as specified in , and proxy authentication as

described in  and   also be supported.

[RFC5128], Section 2.4 [RFC8656] MUST

MUST

[RFC8155] [RETURN]

MUST
MUST

Section 3.1 of [RFC8656]

MUST

[RFC6062] MAY

[RFC6544] MUST

[RFC4571] MUST

Section 11 of [RFC5389]
MUST

MAY
MUST [RFC7639]

Section 4.3.6 of [RFC7231] [RFC7235] MUST
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4. Media Prioritization 
In the WebRTC prioritization model, the application tells the WebRTC endpoint about the priority
of media and data that is controlled from the API.

In this context, a "flow" is used for the units that are given a specific priority through the WebRTC
API.

For media, a "media flow", which can be an "audio flow" or a "video flow", is what 
calls a "media source", which results in a "source RTP stream" and one or more "redundancy RTP
streams". This specification does not describe prioritization between the RTP streams that come
from a single media source.

All media flows in WebRTC are assumed to be interactive, as defined in ; there is no
browser API support for indicating whether media is interactive or noninteractive.

A "data flow" is the outgoing data on a single WebRTC data channel.

3.5. Transport Protocols Implemented 
For transport of media, secure RTP is used. The details of the RTP profile used are described in
"Media Transport and Use of RTP in WebRTC" , which mandates the use of a circuit
breaker  and congestion control (see  for further guidance).

Key exchange  be done using DTLS-SRTP, as described in .

For data transport over the WebRTC data channel , WebRTC endpoints  support
SCTP over DTLS over ICE. This encapsulation is specified in . Negotiation of this
transport in the Session Description Protocol (SDP) is defined in . The SCTP extension
for I-DATA   be supported.

The setup protocol for WebRTC data channels described in   be supported.

Note: The interaction between DTLS-SRTP as defined in  and ICE as
defined in  is described in . The effect of this
specification is that all ICE candidate pairs associated with a single component are
part of the same DTLS association. Thus, there will only be one DTLS handshake,
even if there are multiple valid candidate pairs.

WebRTC endpoints  support multiplexing of DTLS and RTP over the same port pair, as
described in the DTLS-SRTP specification , with clarifications in 

. All application-layer protocol payloads over this DTLS connection are SCTP packets.

Protocol identification  be supplied as part of the DTLS handshake, as specified in 
.

[RFC8834]
[RFC8083] [RFC8836]

MUST [RFC8827]

[RFC8831] MUST
[RFC8261]

[RFC8841]
[RFC8260] MUST

[RFC8832] MUST

[RFC5764]
[RFC8445] Section 6 of [RFC8842]

MUST
[RFC5764], Section 5.1.2

[RFC7983]

MUST
[RFC8833]

[RFC7656]

[RFC4594]
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The priority associated with a media flow or data flow is classified as "very-low", "low",
"medium", or "high". There are only four priority levels in the API.

The priority settings affect two pieces of behavior: packet send sequence decisions and packet
markings. Each is described in its own section below.

4.1. Local Prioritization 
Local prioritization is applied at the local node, before the packet is sent. This means that the
prioritization has full access to the data about the individual packets and can choose differing
treatment based on the stream a packet belongs to.

When a WebRTC endpoint has packets to send on multiple streams that are congestion controlled
under the same congestion control regime, the WebRTC endpoint  cause data to be
emitted in such a way that each stream at each level of priority is being given approximately
twice the transmission capacity (measured in payload bytes) of the level below.

Thus, when congestion occurs, a high-priority flow will have the ability to send 8 times as much
data as a very-low-priority flow if both have data to send. This prioritization is independent of
the media type. The details of which packet to send first are implementation defined.

For example, if there is a high-priority audio flow sending 100-byte packets and a low-priority
video flow sending 1000-byte packets, and outgoing capacity exists for sending > 5000 payload
bytes, it would be appropriate to send 4000 bytes (40 packets) of audio and 1000 bytes (one
packet) of video as the result of a single pass of sending decisions.

Conversely, if the audio flow is marked low priority and the video flow is marked high priority,
the scheduler may decide to send 2 video packets (2000 bytes) and 5 audio packets (500 bytes)
when outgoing capacity exists for sending > 2500 payload bytes.

If there are two high-priority audio flows, each will be able to send 4000 bytes in the same period
where a low-priority video flow is able to send 1000 bytes.

Two example implementation strategies are:

When the available bandwidth is known from the congestion control algorithm, configure
each codec and each data channel with a target send rate that is appropriate to its share of
the available bandwidth. 
When congestion control indicates that a specified number of packets can be sent, send
packets that are available to send using a weighted round-robin scheme across the
connections. 

Any combination of these, or other schemes that have the same effect, is valid, as long as the
distribution of transmission capacity is approximately correct.

For media, it is usually inappropriate to use deep queues for sending; it is more useful to, for
instance, skip intermediate frames that have no dependencies on them in order to achieve a
lower bitrate. For reliable data, queues are useful.

SHOULD

• 

• 
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Note that this specification doesn't dictate when disparate streams are to be "congestion
controlled under the same congestion control regime". The issue of coupling congestion
controllers is explored further in .[RFC8699]

4.2. Usage of Quality of Service -- DSCP and Multiplexing 
When the packet is sent, the network will make decisions about queueing and/or discarding the
packet that can affect the quality of the communication. The sender can attempt to set the DSCP
field of the packet to influence these decisions.

Implementations  attempt to set QoS on the packets sent, according to the guidelines in 
. It is appropriate to depart from this recommendation when running on platforms

where QoS marking is not implemented.

The implementation  turn off use of DSCP markings if it detects symptoms of unexpected
behavior such as priority inversion or blocking of packets with certain DSCP markings. Some
examples of such behaviors are described in . The detection of these conditions is
implementation dependent.

A particularly hard problem is when one media transport uses multiple DSCPs, where one may
be blocked and another may be allowed. This is allowed even within a single media flow for
video in . Implementations need to diagnose this scenario; one possible
implementation is to send initial ICE probes with DSCP 0, and send ICE probes on all the DSCPs
that are intended to be used once a candidate pair has been selected. If one or more of the DSCP-
marked probes fail, the sender will switch the media type to using DSCP 0. This can be carried
out simultaneously with the initial media traffic; on failure, the initial data may need to be
resent. This switch will, of course, invalidate any congestion information gathered up to that
point.

Failures can also start happening during the lifetime of the call; this case is expected to be rarer
and can be handled by the normal mechanisms for transport failure, which may involve an ICE
restart.

Note that when a DSCP causes nondelivery, one has to switch the whole media flow to DSCP 0,
since all traffic for a single media flow needs to be on the same queue for congestion control
purposes. Other flows on the same transport, using different DSCPs, don't need to change.

All packets carrying data from the SCTP association supporting the data channels  use a
single DSCP. The code point used  be that recommended by  for the highest-
priority data channel carried. Note that this means that all data packets, no matter what their
relative priority is, will be treated the same by the network.

All packets on one TCP connection, no matter what it carries,  use a single DSCP.

More advice on the use of DSCPs with RTP, as well as the relationship between DSCP and
congestion control, is given in .

SHOULD
[RFC8837]

MAY

[ANRW16]

[RFC8837]

MUST
SHOULD [RFC8837]

MUST

[RFC7657]
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[RFC0768]

7. References 

7.1. Normative References 

There exist a number of schemes for achieving quality of service that do not depend solely on
DSCPs. Some of these schemes depend on classifying the traffic into flows based on 5-tuple
(source address, source port, protocol, destination address, destination port) or 6-tuple (5-tuple +
DSCP). Under differing conditions, it may therefore make sense for a sending application to
choose any of the following configurations:

Each media stream carried on its own 5-tuple 
Media streams grouped by media type into 5-tuples (such as carrying all audio on one 5-
tuple) 
All media sent over a single 5-tuple, with or without differentiation into 6-tuples based on
DSCPs 

In each of the configurations mentioned, data channels may be carried in their own 5-tuple or
multiplexed together with one of the media flows.

More complex configurations, such as sending a high-priority video stream on one 5-tuple and
sending all other video streams multiplexed together over another 5-tuple, can also be
envisioned. More information on mapping media flows to 5-tuples can be found in .

A sending implementation  be able to support the following configurations:

Multiplex all media and data on a single 5-tuple (fully bundled) 
Send each media stream on its own 5-tuple and data on its own 5-tuple (fully unbundled) 

The sending implementation  choose to support other configurations, such as bundling each
media type (audio, video, or data) into its own 5-tuple (bundling by media type).

Sending data channel data over multiple 5-tuples is not supported.

A receiving implementation  be able to receive media and data in all these configurations.

• 
• 

• 

[RFC8834]

MUST

• 
• 

MAY

MUST

5. IANA Considerations 
This document has no IANA actions.

6. Security Considerations 
WebRTC security considerations are enumerated in .

Security considerations pertaining to the use of DSCP are enumerated in .

[RFC8826]

[RFC8837]
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       Introduction
       WebRTC is a protocol suite aimed at real-time multimedia exchange
      between browsers, and between browsers and other entities.
       WebRTC is described in the WebRTC overview document  , which also defines terminology used
      in this document, including the terms "WebRTC endpoint" and "WebRTC
      browser".
       Terminology for RTP sources is taken from  .
       This document focuses on the data transport protocols that are used
      by conforming implementations, including the protocols used for
      interaction with intermediate boxes such as firewalls, relays, and NAT
      boxes.
       This protocol suite is intended to satisfy the security considerations
      described in the WebRTC security documents,   and  .
       This document describes requirements that apply to all WebRTC
      endpoints. When there are requirements that apply only to WebRTC
      browsers, this is called out explicitly.
    
     
       Requirements Language
       
    The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
    " MAY", and " OPTIONAL" in this document are to be interpreted as
    described in BCP 14     
    when, and only when, they appear in all capitals, as shown here.
      
    
     
       Transport and Middlebox Specification
       
       
         System-Provided Interfaces
         The protocol specifications used here assume that the following
        protocols are available to the implementations of the WebRTC
        protocols:
         
           UDP  :
           This is the protocol assumed by
            most protocol elements described.
           TCP  :
           This is used for HTTP/WebSockets,
            as well as TURN/TLS and
            ICE-TCP.
        
         For both protocols, IPv4 and IPv6 support is assumed.
         For UDP, this specification assumes the ability to set the
        Differentiated Services Code Point (DSCP) of the sockets opened on a per-packet basis, in order to
        achieve the prioritizations described in   (see   of this document) when
        multiple media types are multiplexed. It does not assume that the DSCPs
        will be honored and does assume that they may be zeroed or
        changed, since this is a local configuration issue.
         Platforms that do not give access to these interfaces will not be
        able to support a conforming WebRTC endpoint.
         This specification does not assume that the implementation will
        have access to ICMP or raw IP.
         The following protocols may be used, but they can be implemented by a
        WebRTC endpoint and are therefore not defined as "system-provided
        interfaces":
         
           TURN:
           Traversal Using Relays Around NAT  
           STUN:
           Session Traversal Utilities for NAT  
           ICE:
           Interactive Connectivity Establishment  
           TLS:
           Transport Layer Security  
           DTLS:
           Datagram Transport Layer Security  
        
      
       
         Ability to Use IPv4 and IPv6
         Web applications running in a WebRTC browser  MUST be able to
        utilize both IPv4 and IPv6 where available -- that is, when two peers
        have only IPv4 connectivity to each other, or they have only IPv6
        connectivity to each other, applications running in the WebRTC browser
         MUST be able to communicate.
         When TURN is used, and the TURN server has IPv4 or IPv6
        connectivity to the peer or the peer's TURN server, candidates of the
        appropriate types  MUST be supported. The "Happy Eyeballs"
        specification for ICE    SHOULD be
        supported.
      
       
         Usage of Temporary IPv6 Addresses
         The IPv6 default address selection specification   specifies that temporary addresses
          are to be preferred over
        permanent addresses. This
        is a change from the rules specified by  . For
        applications that select a single address, this is usually done by the
        IPV6_PREFER_SRC_TMP preference flag specified in  . However, this rule, which is intended to ensure
        that privacy-enhanced addresses are used in preference to static
        addresses, doesn't have the right effect in ICE, where all addresses
        are gathered and therefore revealed to the application. Therefore, the
        following rule is applied instead:
         When a WebRTC endpoint gathers all IPv6 addresses on its host, and
        both nondeprecated temporary addresses and permanent addresses of the
        same scope are present, the WebRTC endpoint  SHOULD discard the
        permanent addresses before exposing addresses to the application or
        using them in ICE. This is consistent with the default policy
        described in  .
         If some, but not all, of the temporary IPv6 addresses are marked
        deprecated, the WebRTC endpoint  SHOULD discard the deprecated
        addresses, unless they are used by an ongoing connection. In an ICE
        restart, deprecated addresses that are currently in use  MAY be
        retained.
      
       
         Middlebox-Related Functions
         The primary mechanism for dealing with middleboxes is ICE, which is an
        appropriate way to deal with NAT boxes and firewalls that accept
        traffic from the inside, but only from the outside if it is in
        response to inside traffic (simple stateful firewalls).
         ICE    MUST be supported. The
        implementation  MUST be a full ICE implementation, not ICE-Lite. A full
        ICE implementation allows interworking with both ICE and ICE-Lite
        implementations when they are deployed appropriately.
         In order to deal with situations where both parties are behind NATs
        of the type that perform endpoint-dependent mapping (as defined in
         ), TURN  
           MUST be supported.
         WebRTC browsers  MUST support configuration of STUN and TURN
        servers, from both browser configuration and an application.
         Note that other work exists around STUN and TURN server discovery
        and management, including   for server discovery,
        as well as  .
         In order to deal with firewalls that block all UDP traffic, the
        mode of TURN that uses TCP between the WebRTC endpoint and the TURN
        server  MUST be supported, and the mode of TURN that uses TLS over TCP
        between the WebRTC endpoint and the TURN server  MUST be supported. See
         , for details.
         In order to deal with situations where one party is on an IPv4
        network and the other party is on an IPv6 network, TURN extensions for
        IPv6  MUST be supported.
         TURN TCP candidates, where the connection from the WebRTC
        endpoint's TURN server to the peer is a TCP connection,    MAY be supported.
         However, such candidates are not seen as providing any significant
        benefit, for the following reasons.
         First, use of TURN TCP candidates would only be relevant in cases
        where both peers are required to use TCP to establish a
        connection.
         Second, that use case is supported in a different way by both sides
        establishing UDP relay candidates using TURN over TCP to connect to
        their respective relay servers.
         Third, using TCP between the WebRTC endpoint's TURN server and the
        peer may result in more performance problems than using UDP, e.g., due
        to head of line blocking.
         ICE-TCP candidates    MUST be supported; this
        may allow applications to communicate to peers with public IP
        addresses across UDP-blocking firewalls without using a TURN
        server.
         If TCP connections are used, RTP framing according to    MUST be used for all packets. This includes the RTP
        packets, DTLS packets used to carry data channels, and STUN
        connectivity check packets.
         The ALTERNATE-SERVER mechanism specified in   (300 Try Alternate)  MUST be
        supported.
         The WebRTC endpoint  MAY support accessing the Internet through an
        HTTP proxy. If it does so, it  MUST include the "ALPN" header as
        specified in  , and proxy authentication as
        described in   and    MUST also be supported.
      
       
         Transport Protocols Implemented
         For transport of media, secure RTP is used. The details of the
        RTP profile used are described in "Media Transport and Use of RTP in WebRTC"  , which mandates the use of a
        circuit breaker  
        and congestion control (see   for further guidance).
         Key exchange  MUST be done using DTLS-SRTP, as described in  .
         For data transport over the WebRTC data channel  , WebRTC endpoints  MUST support
        SCTP over DTLS over ICE. This encapsulation is specified in  . Negotiation of this
        transport in the Session Description Protocol (SDP) is defined in  . The SCTP extension for I-DATA
           MUST be supported.
         The setup protocol for WebRTC data channels described in    MUST be supported.
         
           Note: The interaction between DTLS-SRTP as defined in   and ICE as defined in   is described in  . The effect of this specification
        is that all ICE candidate pairs associated with a single component are
        part of the same DTLS association. Thus, there will only be one DTLS
        handshake, even if there are multiple valid candidate pairs.
        
         WebRTC endpoints  MUST support multiplexing of DTLS and RTP over the
        same port pair, as described in the DTLS-SRTP specification  , with clarifications in  . All application-layer
        protocol payloads over this DTLS connection are SCTP packets.
         Protocol identification  MUST be supplied as part of the DTLS
        handshake, as specified in  .
      
    
     
       Media Prioritization
       In the WebRTC prioritization model, the application tells the
      WebRTC endpoint about the priority of media and data that is controlled
      from the API.
       In this context, a "flow" is used for the units that are given a
      specific priority through the WebRTC API.
       For media, a "media flow", which can be an "audio flow" or a "video
      flow", is what   calls a "media source", which
      results in a "source RTP stream" and one or more "redundancy RTP
      streams". This specification does not describe prioritization between
      the RTP streams that come from a single media source.
       All media flows in WebRTC are assumed to be interactive, as defined
      in  ; there is no browser API support for
      indicating whether media is interactive or noninteractive.
       A "data flow" is the outgoing data on a single WebRTC data
      channel.
       The priority associated with a media flow or data flow is classified
      as "very-low", "low", "medium", or "high". There are only four priority
      levels in the API.
       The priority settings affect two pieces of behavior: packet send
      sequence decisions and packet markings. Each is described in its own
      section below.
       
         Local Prioritization
         Local prioritization is applied at the local node, before the
        packet is sent. This means that the prioritization has full access to
        the data about the individual packets and can choose differing
        treatment based on the stream a packet belongs to.
         When a WebRTC endpoint has packets to send on multiple streams
        that are congestion controlled under the same congestion control
        regime, the WebRTC endpoint  SHOULD cause data to be emitted in such a
        way that each stream at each level of priority is being given
        approximately twice the transmission capacity (measured in payload
        bytes) of the level below.
         Thus, when congestion occurs, a high-priority flow will have the
        ability to send 8 times as much data as a very-low-priority flow if
        both have data to send. This prioritization is independent of the
        media type. The details of which packet to send first are
        implementation defined.
         For example, if there is a high-priority audio flow sending
        100-byte packets and a low-priority video flow sending 1000-byte
        packets, and outgoing capacity exists for sending > 5000 payload bytes, it
        would be appropriate to send 4000 bytes (40 packets) of audio and 1000
        bytes (one packet) of video as the result of a single pass of sending
        decisions.
         Conversely, if the audio flow is marked low priority and the video
        flow is marked high priority, the scheduler may decide to send 2 video
        packets (2000 bytes) and 5 audio packets (500 bytes) when outgoing
        capacity exists for sending > 2500 payload bytes.
         If there are two high-priority audio flows, each will be able to
        send 4000 bytes in the same period where a low-priority video flow is
        able to send 1000 bytes.
         Two example implementation strategies are:
         
           When the available bandwidth is known from the congestion
            control algorithm, configure each codec and each data channel with
            a target send rate that is appropriate to its share of the
            available bandwidth.
           When congestion control indicates that a specified number of
            packets can be sent, send packets that are available to send using
            a weighted round-robin scheme across the connections.
        
         Any combination of these, or other schemes that have the same
        effect, is valid, as long as the distribution of transmission capacity
        is approximately correct.
         For media, it is usually inappropriate to use deep queues for
        sending; it is more useful to, for instance, skip intermediate frames
        that have no dependencies on them in order to achieve a lower bitrate.
        For reliable data, queues are useful.
         Note that this specification doesn't dictate when disparate streams
        are to be "congestion controlled under the same congestion control
        regime". The issue of coupling congestion controllers is explored
        further in  .
      
       
         Usage of Quality of Service -- DSCP and Multiplexing
         When the packet is sent, the network will make decisions about
        queueing and/or discarding the packet that can affect the quality of
        the communication. The sender can attempt to set the DSCP field of the
        packet to influence these decisions.
         Implementations  SHOULD attempt to set QoS on the packets sent,
        according to the guidelines in  . It is appropriate to depart from
        this recommendation when running on platforms where QoS marking is not
        implemented.
         The implementation  MAY turn off use of DSCP markings if it detects
        symptoms of unexpected behavior such as priority inversion or blocking
        of packets with certain DSCP markings. Some examples of such behaviors
        are described in  . The detection of these
        conditions is implementation dependent.
         A particularly hard problem is when one media transport uses
        multiple DSCPs, where one may be blocked and another may be
        allowed. This is allowed even within a single media flow for video in
         . Implementations need to
        diagnose this scenario; one possible implementation is to send initial
        ICE probes with DSCP 0, and send ICE probes on all the DSCPs
        that are intended to be used once a candidate pair has been
        selected. If one or more of the DSCP-marked probes fail, the sender
        will switch the media type to using DSCP 0. This can be carried out
        simultaneously with the initial media traffic; on failure, the initial
        data may need to be resent. This switch will, of course, invalidate any
        congestion information gathered up to that point.
         Failures can also start happening during the lifetime of the call;
        this case is expected to be rarer and can be handled by the normal
        mechanisms for transport failure, which may involve an ICE
        restart.
         Note that when a DSCP causes nondelivery, one has to
        switch the whole media flow to DSCP 0, since all traffic for a single
        media flow needs to be on the same queue for congestion control
        purposes. Other flows on the same transport, using different DSCPs, don't need to change.
         All packets carrying data from the SCTP association supporting the
        data channels  MUST use a single DSCP. The code point used
         SHOULD be that recommended by   for the highest-priority data
        channel carried. Note that this means that all data packets, no matter
        what their relative priority is, will be treated the same by the
        network.
         All packets on one TCP connection, no matter what it carries,  MUST
        use a single DSCP.
         More advice on the use of DSCPs with RTP, as well as the
        relationship between DSCP and congestion control, is given in  .
         There exist a number of schemes for achieving quality of service
        that do not depend solely on DSCPs. Some of these schemes
        depend on classifying the traffic into flows based on 5-tuple (source
        address, source port, protocol, destination address, destination port)
        or 6-tuple (5-tuple + DSCP). Under differing conditions, it
        may therefore make sense for a sending application to choose any of
        the following configurations:
         
           Each media stream carried on its own 5-tuple
           Media streams grouped by media type into 5-tuples (such as
            carrying all audio on one 5-tuple)
           All media sent over a single 5-tuple, with or without
            differentiation into 6-tuples based on DSCPs
        
         In each of the configurations mentioned, data channels may be
        carried in their own 5-tuple or multiplexed together with one of the
        media flows.
         More complex configurations, such as sending a high-priority video
        stream on one 5-tuple and sending all other video streams multiplexed
        together over another 5-tuple, can also be envisioned. More
        information on mapping media flows to 5-tuples can be found in  .
         A sending implementation  MUST be able to support the following
        configurations:
         
           Multiplex all media and data on a single 5-tuple (fully
            bundled)
           Send each media stream on its own 5-tuple and data on its own
            5-tuple (fully unbundled)
        
         The sending implementation  MAY choose to support other
          configurations, such as
        bundling each media type (audio, video, or data) into its own 5-tuple
        (bundling by media type).
         Sending data channel data over multiple 5-tuples is not
        supported.
         A receiving implementation  MUST be able to receive media and data
        in all these configurations.
      
    
     
       IANA Considerations
       This document has no IANA actions.
    
     
       Security Considerations
       WebRTC security considerations are enumerated in  .
       Security considerations pertaining to the use of DSCP are enumerated
      in  .
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