
RFC 8835
Transports for WebRTC

Abstract
This document describes the data transport protocols used by Web Real-Time Communication
(WebRTC), including the protocols used for interaction with intermediate boxes such as firewalls,
relays, and NAT boxes.

Stream: Internet Engineering Task Force (IETF)
RFC: 8835
Category: Standards Track
Published: January 2021 
ISSN: 2070-1721
Author:  H. Alvestrand

Google

Status of This Memo 
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8835

Copyright Notice 
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents ( ) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Alvestrand Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8835
https://www.rfc-editor.org/info/rfc8835
https://trustee.ietf.org/license-info


1. Introduction 
WebRTC is a protocol suite aimed at real-time multimedia exchange between browsers, and
between browsers and other entities.

WebRTC is described in the WebRTC overview document , which also defines
terminology used in this document, including the terms "WebRTC endpoint" and "WebRTC
browser".

Terminology for RTP sources is taken from .

Table of Contents 
1.  Introduction

2.  Requirements Language

3.  Transport and Middlebox Specification

3.1.  System-Provided Interfaces

3.2.  Ability to Use IPv4 and IPv6

3.3.  Usage of Temporary IPv6 Addresses

3.4.  Middlebox-Related Functions

3.5.  Transport Protocols Implemented

4.  Media Prioritization

4.1.  Local Prioritization

4.2.  Usage of Quality of Service -- DSCP and Multiplexing

5.  IANA Considerations

6.  Security Considerations

7.  References

7.1.  Normative References

7.2.  Informative References

Acknowledgements

Author's Address

[RFC8825]

[RFC7656]

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 2



This document focuses on the data transport protocols that are used by conforming
implementations, including the protocols used for interaction with intermediate boxes such as
firewalls, relays, and NAT boxes.

This protocol suite is intended to satisfy the security considerations described in the WebRTC
security documents,  and .

This document describes requirements that apply to all WebRTC endpoints. When there are
requirements that apply only to WebRTC browsers, this is called out explicitly.

2. Requirements Language 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

[RFC8826] [RFC8827]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

UDP :

TCP :

TURN:

STUN:

3. Transport and Middlebox Specification 

3.1. System-Provided Interfaces 
The protocol specifications used here assume that the following protocols are available to the
implementations of the WebRTC protocols:

This is the protocol assumed by most protocol elements described. 

This is used for HTTP/WebSockets, as well as TURN/TLS and ICE-TCP. 

For both protocols, IPv4 and IPv6 support is assumed.

For UDP, this specification assumes the ability to set the Differentiated Services Code Point (DSCP)
of the sockets opened on a per-packet basis, in order to achieve the prioritizations described in 

 (see Section 4.2 of this document) when multiple media types are multiplexed. It does
not assume that the DSCPs will be honored and does assume that they may be zeroed or changed,
since this is a local configuration issue.

Platforms that do not give access to these interfaces will not be able to support a conforming
WebRTC endpoint.

This specification does not assume that the implementation will have access to ICMP or raw IP.

The following protocols may be used, but they can be implemented by a WebRTC endpoint and
are therefore not defined as "system-provided interfaces":

Traversal Using Relays Around NAT  

Session Traversal Utilities for NAT  

[RFC0768]

[RFC0793]

[RFC8837]

[RFC8656]

[RFC5389]

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 3



ICE:

TLS:

DTLS:

Interactive Connectivity Establishment  

Transport Layer Security  

Datagram Transport Layer Security  

3.2. Ability to Use IPv4 and IPv6 
Web applications running in a WebRTC browser  be able to utilize both IPv4 and IPv6
where available -- that is, when two peers have only IPv4 connectivity to each other, or they have
only IPv6 connectivity to each other, applications running in the WebRTC browser  be able
to communicate.

When TURN is used, and the TURN server has IPv4 or IPv6 connectivity to the peer or the peer's
TURN server, candidates of the appropriate types  be supported. The "Happy Eyeballs"
specification for ICE   be supported.

3.3. Usage of Temporary IPv6 Addresses 
The IPv6 default address selection specification  specifies that temporary addresses 

 are to be preferred over permanent addresses. This is a change from the rules
specified by . For applications that select a single address, this is usually done by the
IPV6_PREFER_SRC_TMP preference flag specified in . However, this rule, which is
intended to ensure that privacy-enhanced addresses are used in preference to static addresses,
doesn't have the right effect in ICE, where all addresses are gathered and therefore revealed to
the application. Therefore, the following rule is applied instead:

When a WebRTC endpoint gathers all IPv6 addresses on its host, and both nondeprecated
temporary addresses and permanent addresses of the same scope are present, the WebRTC
endpoint  discard the permanent addresses before exposing addresses to the
application or using them in ICE. This is consistent with the default policy described in 

.

If some, but not all, of the temporary IPv6 addresses are marked deprecated, the WebRTC
endpoint  discard the deprecated addresses, unless they are used by an ongoing
connection. In an ICE restart, deprecated addresses that are currently in use  be retained.

[RFC8445]

[RFC8446]

[RFC6347]

MUST

MUST

MUST
[RFC8421] SHOULD

[RFC6724]
[RFC4941]

[RFC3484]
[RFC5014]

SHOULD

[RFC6724]

SHOULD
MAY

3.4. Middlebox-Related Functions 
The primary mechanism for dealing with middleboxes is ICE, which is an appropriate way to
deal with NAT boxes and firewalls that accept traffic from the inside, but only from the outside if
it is in response to inside traffic (simple stateful firewalls).

ICE   be supported. The implementation  be a full ICE implementation, not
ICE-Lite. A full ICE implementation allows interworking with both ICE and ICE-Lite
implementations when they are deployed appropriately.

[RFC8445] MUST MUST

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 4



In order to deal with situations where both parties are behind NATs of the type that perform
endpoint-dependent mapping (as defined in ), TURN   be
supported.

WebRTC browsers  support configuration of STUN and TURN servers, from both browser
configuration and an application.

Note that other work exists around STUN and TURN server discovery and management,
including  for server discovery, as well as .

In order to deal with firewalls that block all UDP traffic, the mode of TURN that uses TCP between
the WebRTC endpoint and the TURN server  be supported, and the mode of TURN that uses
TLS over TCP between the WebRTC endpoint and the TURN server  be supported. See 

, for details.

In order to deal with situations where one party is on an IPv4 network and the other party is on
an IPv6 network, TURN extensions for IPv6  be supported.

TURN TCP candidates, where the connection from the WebRTC endpoint's TURN server to the
peer is a TCP connection,   be supported.

However, such candidates are not seen as providing any significant benefit, for the following
reasons.

First, use of TURN TCP candidates would only be relevant in cases where both peers are required
to use TCP to establish a connection.

Second, that use case is supported in a different way by both sides establishing UDP relay
candidates using TURN over TCP to connect to their respective relay servers.

Third, using TCP between the WebRTC endpoint's TURN server and the peer may result in more
performance problems than using UDP, e.g., due to head of line blocking.

ICE-TCP candidates  be supported; this may allow applications to communicate
to peers with public IP addresses across UDP-blocking firewalls without using a TURN server.

If TCP connections are used, RTP framing according to   be used for all packets.
This includes the RTP packets, DTLS packets used to carry data channels, and STUN connectivity
check packets.

The ALTERNATE-SERVER mechanism specified in  (300 Try Alternate) 
 be supported.

The WebRTC endpoint  support accessing the Internet through an HTTP proxy. If it does so, it
 include the "ALPN" header as specified in , and proxy authentication as

described in  and   also be supported.

[RFC5128], Section 2.4 [RFC8656] MUST

MUST

[RFC8155] [RETURN]

MUST
MUST

Section 3.1 of [RFC8656]

MUST

[RFC6062] MAY

[RFC6544] MUST

[RFC4571] MUST

Section 11 of [RFC5389]
MUST

MAY
MUST [RFC7639]

Section 4.3.6 of [RFC7231] [RFC7235] MUST

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc5128#section-2.4
https://www.rfc-editor.org/rfc/rfc8656#section-3.1
https://www.rfc-editor.org/rfc/rfc5389#section-11
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.6


4. Media Prioritization 
In the WebRTC prioritization model, the application tells the WebRTC endpoint about the priority
of media and data that is controlled from the API.

In this context, a "flow" is used for the units that are given a specific priority through the WebRTC
API.

For media, a "media flow", which can be an "audio flow" or a "video flow", is what 
calls a "media source", which results in a "source RTP stream" and one or more "redundancy RTP
streams". This specification does not describe prioritization between the RTP streams that come
from a single media source.

All media flows in WebRTC are assumed to be interactive, as defined in ; there is no
browser API support for indicating whether media is interactive or noninteractive.

A "data flow" is the outgoing data on a single WebRTC data channel.

3.5. Transport Protocols Implemented 
For transport of media, secure RTP is used. The details of the RTP profile used are described in
"Media Transport and Use of RTP in WebRTC" , which mandates the use of a circuit
breaker  and congestion control (see  for further guidance).

Key exchange  be done using DTLS-SRTP, as described in .

For data transport over the WebRTC data channel , WebRTC endpoints  support
SCTP over DTLS over ICE. This encapsulation is specified in . Negotiation of this
transport in the Session Description Protocol (SDP) is defined in . The SCTP extension
for I-DATA   be supported.

The setup protocol for WebRTC data channels described in   be supported.

Note: The interaction between DTLS-SRTP as defined in  and ICE as
defined in  is described in . The effect of this
specification is that all ICE candidate pairs associated with a single component are
part of the same DTLS association. Thus, there will only be one DTLS handshake,
even if there are multiple valid candidate pairs.

WebRTC endpoints  support multiplexing of DTLS and RTP over the same port pair, as
described in the DTLS-SRTP specification , with clarifications in 

. All application-layer protocol payloads over this DTLS connection are SCTP packets.

Protocol identification  be supplied as part of the DTLS handshake, as specified in 
.

[RFC8834]
[RFC8083] [RFC8836]

MUST [RFC8827]

[RFC8831] MUST
[RFC8261]

[RFC8841]
[RFC8260] MUST

[RFC8832] MUST

[RFC5764]
[RFC8445] Section 6 of [RFC8842]

MUST
[RFC5764], Section 5.1.2

[RFC7983]

MUST
[RFC8833]

[RFC7656]

[RFC4594]

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8842#section-6
https://www.rfc-editor.org/rfc/rfc5764#section-5.1.2


The priority associated with a media flow or data flow is classified as "very-low", "low",
"medium", or "high". There are only four priority levels in the API.

The priority settings affect two pieces of behavior: packet send sequence decisions and packet
markings. Each is described in its own section below.

4.1. Local Prioritization 
Local prioritization is applied at the local node, before the packet is sent. This means that the
prioritization has full access to the data about the individual packets and can choose differing
treatment based on the stream a packet belongs to.

When a WebRTC endpoint has packets to send on multiple streams that are congestion controlled
under the same congestion control regime, the WebRTC endpoint  cause data to be
emitted in such a way that each stream at each level of priority is being given approximately
twice the transmission capacity (measured in payload bytes) of the level below.

Thus, when congestion occurs, a high-priority flow will have the ability to send 8 times as much
data as a very-low-priority flow if both have data to send. This prioritization is independent of
the media type. The details of which packet to send first are implementation defined.

For example, if there is a high-priority audio flow sending 100-byte packets and a low-priority
video flow sending 1000-byte packets, and outgoing capacity exists for sending > 5000 payload
bytes, it would be appropriate to send 4000 bytes (40 packets) of audio and 1000 bytes (one
packet) of video as the result of a single pass of sending decisions.

Conversely, if the audio flow is marked low priority and the video flow is marked high priority,
the scheduler may decide to send 2 video packets (2000 bytes) and 5 audio packets (500 bytes)
when outgoing capacity exists for sending > 2500 payload bytes.

If there are two high-priority audio flows, each will be able to send 4000 bytes in the same period
where a low-priority video flow is able to send 1000 bytes.

Two example implementation strategies are:

When the available bandwidth is known from the congestion control algorithm, configure
each codec and each data channel with a target send rate that is appropriate to its share of
the available bandwidth. 
When congestion control indicates that a specified number of packets can be sent, send
packets that are available to send using a weighted round-robin scheme across the
connections. 

Any combination of these, or other schemes that have the same effect, is valid, as long as the
distribution of transmission capacity is approximately correct.

For media, it is usually inappropriate to use deep queues for sending; it is more useful to, for
instance, skip intermediate frames that have no dependencies on them in order to achieve a
lower bitrate. For reliable data, queues are useful.

SHOULD

• 

• 

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 7



Note that this specification doesn't dictate when disparate streams are to be "congestion
controlled under the same congestion control regime". The issue of coupling congestion
controllers is explored further in .[RFC8699]

4.2. Usage of Quality of Service -- DSCP and Multiplexing 
When the packet is sent, the network will make decisions about queueing and/or discarding the
packet that can affect the quality of the communication. The sender can attempt to set the DSCP
field of the packet to influence these decisions.

Implementations  attempt to set QoS on the packets sent, according to the guidelines in 
. It is appropriate to depart from this recommendation when running on platforms

where QoS marking is not implemented.

The implementation  turn off use of DSCP markings if it detects symptoms of unexpected
behavior such as priority inversion or blocking of packets with certain DSCP markings. Some
examples of such behaviors are described in . The detection of these conditions is
implementation dependent.

A particularly hard problem is when one media transport uses multiple DSCPs, where one may
be blocked and another may be allowed. This is allowed even within a single media flow for
video in . Implementations need to diagnose this scenario; one possible
implementation is to send initial ICE probes with DSCP 0, and send ICE probes on all the DSCPs
that are intended to be used once a candidate pair has been selected. If one or more of the DSCP-
marked probes fail, the sender will switch the media type to using DSCP 0. This can be carried
out simultaneously with the initial media traffic; on failure, the initial data may need to be
resent. This switch will, of course, invalidate any congestion information gathered up to that
point.

Failures can also start happening during the lifetime of the call; this case is expected to be rarer
and can be handled by the normal mechanisms for transport failure, which may involve an ICE
restart.

Note that when a DSCP causes nondelivery, one has to switch the whole media flow to DSCP 0,
since all traffic for a single media flow needs to be on the same queue for congestion control
purposes. Other flows on the same transport, using different DSCPs, don't need to change.

All packets carrying data from the SCTP association supporting the data channels  use a
single DSCP. The code point used  be that recommended by  for the highest-
priority data channel carried. Note that this means that all data packets, no matter what their
relative priority is, will be treated the same by the network.

All packets on one TCP connection, no matter what it carries,  use a single DSCP.

More advice on the use of DSCPs with RTP, as well as the relationship between DSCP and
congestion control, is given in .

SHOULD
[RFC8837]

MAY

[ANRW16]

[RFC8837]

MUST
SHOULD [RFC8837]

MUST

[RFC7657]

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 8



[RFC0768]

7. References 

7.1. Normative References 

There exist a number of schemes for achieving quality of service that do not depend solely on
DSCPs. Some of these schemes depend on classifying the traffic into flows based on 5-tuple
(source address, source port, protocol, destination address, destination port) or 6-tuple (5-tuple +
DSCP). Under differing conditions, it may therefore make sense for a sending application to
choose any of the following configurations:

Each media stream carried on its own 5-tuple 
Media streams grouped by media type into 5-tuples (such as carrying all audio on one 5-
tuple) 
All media sent over a single 5-tuple, with or without differentiation into 6-tuples based on
DSCPs 

In each of the configurations mentioned, data channels may be carried in their own 5-tuple or
multiplexed together with one of the media flows.

More complex configurations, such as sending a high-priority video stream on one 5-tuple and
sending all other video streams multiplexed together over another 5-tuple, can also be
envisioned. More information on mapping media flows to 5-tuples can be found in .

A sending implementation  be able to support the following configurations:

Multiplex all media and data on a single 5-tuple (fully bundled) 
Send each media stream on its own 5-tuple and data on its own 5-tuple (fully unbundled) 

The sending implementation  choose to support other configurations, such as bundling each
media type (audio, video, or data) into its own 5-tuple (bundling by media type).

Sending data channel data over multiple 5-tuples is not supported.

A receiving implementation  be able to receive media and data in all these configurations.

• 
• 

• 

[RFC8834]

MUST

• 
• 

MAY

MUST

5. IANA Considerations 
This document has no IANA actions.

6. Security Considerations 
WebRTC security considerations are enumerated in .

Security considerations pertaining to the use of DSCP are enumerated in .

[RFC8826]

[RFC8837]

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 9



[RFC0793]

[RFC2119]

[RFC4571]

[RFC4594]

[RFC4941]

[RFC5389]

[RFC5764]

[RFC6062]

[RFC6347]

[RFC6544]

[RFC6724]

[RFC7231]

, , , , , 
August 1980, . 

, , , , 
, September 1981, . 

, , , 
, , March 1997, 
. 

, 
, , 

, July 2006, . 

, 
, , , August 2006, 

. 

, 
, , , September 2007, 

. 

, 
, , , October 2008, 

. 

, 
, 

, , May 2010, 
. 

, 
, , , November

2010, . 

, ,
, , January 2012, 
. 

, 
, , 

, March 2012, . 

, 
, , 

, September 2012, . 

, 
, , , June 2014, 

. 

Postel, J. "User Datagram Protocol" STD 6 RFC 768 DOI 10.17487/RFC0768
<https://www.rfc-editor.org/info/rfc768>

Postel, J. "Transmission Control Protocol" STD 7 RFC 793 DOI 10.17487/
RFC0793 <https://www.rfc-editor.org/info/rfc793>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Lazzaro, J. "Framing Real-time Transport Protocol (RTP) and RTP Control
Protocol (RTCP) Packets over Connection-Oriented Transport" RFC 4571 DOI
10.17487/RFC4571 <https://www.rfc-editor.org/info/rfc4571>

Babiarz, J., Chan, K., and F. Baker "Configuration Guidelines for DiffServ Service
Classes" RFC 4594 DOI 10.17487/RFC4594 <https://www.rfc-
editor.org/info/rfc4594>

Narten, T., Draves, R., and S. Krishnan "Privacy Extensions for Stateless Address
Autoconfiguration in IPv6" RFC 4941 DOI 10.17487/RFC4941
<https://www.rfc-editor.org/info/rfc4941>

Rosenberg, J., Mahy, R., Matthews, P., and D. Wing "Session Traversal Utilities for
NAT (STUN)" RFC 5389 DOI 10.17487/RFC5389 <https://www.rfc-
editor.org/info/rfc5389>

McGrew, D. and E. Rescorla "Datagram Transport Layer Security (DTLS)
Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"
RFC 5764 DOI 10.17487/RFC5764 <https://www.rfc-editor.org/info/
rfc5764>

Perreault, S., Ed. and J. Rosenberg "Traversal Using Relays around NAT (TURN)
Extensions for TCP Allocations" RFC 6062 DOI 10.17487/RFC6062

<https://www.rfc-editor.org/info/rfc6062>

Rescorla, E. and N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Rosenberg, J., Keranen, A., Lowekamp, B. B., and A. B. Roach "TCP Candidates
with Interactive Connectivity Establishment (ICE)" RFC 6544 DOI 10.17487/
RFC6544 <https://www.rfc-editor.org/info/rfc6544>

Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown "Default Address
Selection for Internet Protocol Version 6 (IPv6)" RFC 6724 DOI 10.17487/
RFC6724 <https://www.rfc-editor.org/info/rfc6724>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content" RFC 7231 DOI 10.17487/RFC7231 <https://
www.rfc-editor.org/info/rfc7231>

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 10

https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4571
https://www.rfc-editor.org/info/rfc4594
https://www.rfc-editor.org/info/rfc4594
https://www.rfc-editor.org/info/rfc4941
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc6062
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6544
https://www.rfc-editor.org/info/rfc6724
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231


[RFC7235]

[RFC7639]

[RFC7656]

[RFC7983]

[RFC8083]

[RFC8174]

[RFC8260]

[RFC8261]

[RFC8421]

[RFC8445]

[RFC8446]

, 
, , , June 2014, 

. 

, , 
, , August 2015, 

. 

, 

, , , November 2015, 
. 

, 

, , , September 2016, 
. 

, 
, , , March 2017, 

. 

, , 
, , , May 2017, 

. 

, 
, 

, , November 2017, 
. 

, 
, , 

, November 2017, . 

, 
, , , 

, July 2018, . 

, 

, , , July 2018, 
. 

, , ,
, August 2018, . 

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Authentication" RFC 7235 DOI 10.17487/RFC7235 <https://www.rfc-
editor.org/info/rfc7235>

Hutton, A., Uberti, J., and M. Thomson "The ALPN HTTP Header Field" RFC
7639 DOI 10.17487/RFC7639 <https://www.rfc-editor.org/info/
rfc7639>

Lennox, J., Gross, K., Nandakumar, S., Salgueiro, G., and B. Burman, Ed. "A
Taxonomy of Semantics and Mechanisms for Real-Time Transport Protocol
(RTP) Sources" RFC 7656 DOI 10.17487/RFC7656 <https://
www.rfc-editor.org/info/rfc7656>

Petit-Huguenin, M. and G. Salgueiro "Multiplexing Scheme Updates for Secure
Real-time Transport Protocol (SRTP) Extension for Datagram Transport Layer
Security (DTLS)" RFC 7983 DOI 10.17487/RFC7983 <https://
www.rfc-editor.org/info/rfc7983>

Perkins, C. and V. Singh "Multimedia Congestion Control: Circuit Breakers for
Unicast RTP Sessions" RFC 8083 DOI 10.17487/RFC8083 <https://
www.rfc-editor.org/info/rfc8083>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann "Stream Schedulers and
User Message Interleaving for the Stream Control Transmission Protocol" RFC
8260 DOI 10.17487/RFC8260 <https://www.rfc-editor.org/info/
rfc8260>

Tuexen, M., Stewart, R., Jesup, R., and S. Loreto "Datagram Transport Layer
Security (DTLS) Encapsulation of SCTP Packets" RFC 8261 DOI 10.17487/
RFC8261 <https://www.rfc-editor.org/info/rfc8261>

Martinsen, P., Reddy, T., and P. Patil "Guidelines for Multihomed and IPv4/IPv6
Dual-Stack Interactive Connectivity Establishment (ICE)" BCP 217 RFC 8421 DOI
10.17487/RFC8421 <https://www.rfc-editor.org/info/rfc8421>

Keranen, A., Holmberg, C., and J. Rosenberg "Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal" RFC 8445 DOI 10.17487/RFC8445 <https://www.rfc-
editor.org/info/rfc8445>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 11

https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7639
https://www.rfc-editor.org/info/rfc7639
https://www.rfc-editor.org/info/rfc7656
https://www.rfc-editor.org/info/rfc7656
https://www.rfc-editor.org/info/rfc7983
https://www.rfc-editor.org/info/rfc7983
https://www.rfc-editor.org/info/rfc8083
https://www.rfc-editor.org/info/rfc8083
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8261
https://www.rfc-editor.org/info/rfc8421
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8446


[RFC8656]

[RFC8825]

[RFC8826]

[RFC8827]

[RFC8831]

[RFC8832]

[RFC8833]

[RFC8834]

[RFC8836]

[RFC8837]

[RFC8841]

[RFC8842]

, 

, , , February 2020, 
. 

, ,
, , January 2021, 
. 

, , , 
, January 2021, . 

, , , , 
January 2021, . 

, , , 
, January 2021, . 

, 
, , , January 2021, 

. 

, , 
, , January 2021, 

. 

, 
, , , January 2021, 

. 

, 
, , , January 2021, 

. 

, 
, , 

, January 2021, . 

, 

, 
, , January 2021, 

. 

, 

, , , January 2021, 
. 

7.2. Informative References 

Reddy, T., Ed., Johnston, A., Ed., Matthews, P., and J. Rosenberg "Traversal Using
Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for
NAT (STUN)" RFC 8656 DOI 10.17487/RFC8656 <https://www.rfc-
editor.org/info/rfc8656>

Alvestrand, H. "Overview: Real-Time Protocols for Browser-Based Applications"
RFC 8825 DOI 10.17487/RFC8825 <https://www.rfc-editor.org/info/
rfc8825>

Rescorla, E. "Security Considerations for WebRTC" RFC 8826 DOI 10.17487/
RFC8826 <https://www.rfc-editor.org/info/rfc8826>

Rescorla, E. "WebRTC Security Architecture" RFC 8827 DOI 10.17487/RFC8827
<https://www.rfc-editor.org/info/rfc8827>

Jesup, R., Loreto, S., and M. Tüxen "WebRTC Data Channels" RFC 8831 DOI
10.17487/RFC8831 <https://www.rfc-editor.org/info/rfc8831>

Jesup, R., Loreto, S., and M. Tüxen "WebRTC Data Channel Establishment
Protocol" RFC 8832 DOI 10.17487/RFC8832 <https://www.rfc-
editor.org/info/rfc8832>

Thomson, M. "Application-Layer Protocol Negotiation (ALPN) for WebRTC" RFC
8833 DOI 10.17487/RFC8833 <https://www.rfc-editor.org/info/
rfc8833>

Perkins, C., Westerlund, M., and J. Ott "Media Transport and Use of RTP in
WebRTC" RFC 8834 DOI 10.17487/RFC8834 <https://www.rfc-
editor.org/info/rfc8834>

Jesup, R. and Z. Sarker, Ed. "Congestion Control Requirements for Interactive
Real-Time Media" RFC 8836 DOI 10.17487/RFC8836 <https://
www.rfc-editor.org/info/rfc8836>

Jones, P., Dhesikan, S., Jennings, C., and D. Druta "Differentiated Services Code
Point (DSCP) Packet Markings for WebRTC QoS" RFC 8837 DOI 10.17487/
RFC8837 <https://www.rfc-editor.org/info/rfc8837>

Holmberg, C., Shpount, R., Loreto, S., and G. Camarillo "Session Description
Protocol (SDP) Offer/Answer Procedures for Stream Control Transmission
Protocol (SCTP) over Datagram Transport Layer Security (DTLS) Transport" RFC
8841 DOI 10.17487/RFC8841 <https://www.rfc-editor.org/info/
rfc8841>

Holmberg, C. and R. Shpount "Session Description Protocol (SDP) Offer/Answer
Considerations for Datagram Transport Layer Security (DTLS) and Transport
Layer Security (TLS)" RFC 8842 DOI 10.17487/RFC8842 <https://
www.rfc-editor.org/info/rfc8842>

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 12

https://www.rfc-editor.org/info/rfc8656
https://www.rfc-editor.org/info/rfc8656
https://www.rfc-editor.org/info/rfc8825
https://www.rfc-editor.org/info/rfc8825
https://www.rfc-editor.org/info/rfc8826
https://www.rfc-editor.org/info/rfc8827
https://www.rfc-editor.org/info/rfc8831
https://www.rfc-editor.org/info/rfc8832
https://www.rfc-editor.org/info/rfc8832
https://www.rfc-editor.org/info/rfc8833
https://www.rfc-editor.org/info/rfc8833
https://www.rfc-editor.org/info/rfc8834
https://www.rfc-editor.org/info/rfc8834
https://www.rfc-editor.org/info/rfc8836
https://www.rfc-editor.org/info/rfc8836
https://www.rfc-editor.org/info/rfc8837
https://www.rfc-editor.org/info/rfc8841
https://www.rfc-editor.org/info/rfc8841
https://www.rfc-editor.org/info/rfc8842
https://www.rfc-editor.org/info/rfc8842


[ANRW16]

[RETURN]

[RFC3484]

[RFC5014]

[RFC5128]

[RFC7657]

[RFC8155]

[RFC8699]

, 
, 

, , 
July 2016, . 

, 
, , 

, 27 March 2017, 
. 

, , 
, , February 2003, 

. 

, 
, , , September 2007, 

. 

, 
, , , 

March 2008, . 

, 
, , , November 2015, 

. 

, 
, , , April 2017, 

. 

, ,
, , January 2020, 
. 

Barik, R., Welzl, M., and A. Elmokashfi "How to say that you're special: Can we
use bits in the IPv4 header?" ANRW '16: Proceedings of the 2016 Applied
Networking Research Workshop, pages 68-70 DOI 10.1145/2959424.2959442

<https://irtf.org/anrw/2016/anrw16-final17.pdf>

Schwartz, B. and J. Uberti "Recursively Encapsulated TURN (RETURN) for
Connectivity and Privacy in WebRTC" Work in Progress Internet-Draft, draft-
ietf-rtcweb-return-02 <https://tools.ietf.org/html/draft-ietf-
rtcweb-return-02>

Draves, R. "Default Address Selection for Internet Protocol version 6 (IPv6)" RFC
3484 DOI 10.17487/RFC3484 <https://www.rfc-editor.org/info/
rfc3484>

Nordmark, E., Chakrabarti, S., and J. Laganier "IPv6 Socket API for Source
Address Selection" RFC 5014 DOI 10.17487/RFC5014 <https://
www.rfc-editor.org/info/rfc5014>

Srisuresh, P., Ford, B., and D. Kegel "State of Peer-to-Peer (P2P) Communication
across Network Address Translators (NATs)" RFC 5128 DOI 10.17487/RFC5128

<https://www.rfc-editor.org/info/rfc5128>

Black, D., Ed. and P. Jones "Differentiated Services (Diffserv) and Real-Time
Communication" RFC 7657 DOI 10.17487/RFC7657 <https://
www.rfc-editor.org/info/rfc7657>

Patil, P., Reddy, T., and D. Wing "Traversal Using Relays around NAT (TURN)
Server Auto Discovery" RFC 8155 DOI 10.17487/RFC8155 <https://
www.rfc-editor.org/info/rfc8155>

Islam, S., Welzl, M., and S. Gjessing "Coupled Congestion Control for RTP Media"
RFC 8699 DOI 10.17487/RFC8699 <https://www.rfc-editor.org/info/
rfc8699>

Acknowledgements 
This document is based on earlier draft versions embedded in , which were the result
of contributions from many RTCWEB Working Group members.

Special thanks for reviews of earlier draft versions of this document go to , 
, , and ; the contributions from 

also deserve special mention.

[RFC8825]

Eduardo Gueiros
Magnus Westerlund Markus Isomaki Dan Wing Andrew Hutton

Author's Address 
Harald Alvestrand
Google

 harald@alvestrand.no Email:

RFC 8835 WebRTC Transports January 2021

Alvestrand Standards Track Page 13

https://irtf.org/anrw/2016/anrw16-final17.pdf
https://tools.ietf.org/html/draft-ietf-rtcweb-return-02
https://tools.ietf.org/html/draft-ietf-rtcweb-return-02
https://www.rfc-editor.org/info/rfc3484
https://www.rfc-editor.org/info/rfc3484
https://www.rfc-editor.org/info/rfc5014
https://www.rfc-editor.org/info/rfc5014
https://www.rfc-editor.org/info/rfc5128
https://www.rfc-editor.org/info/rfc7657
https://www.rfc-editor.org/info/rfc7657
https://www.rfc-editor.org/info/rfc8155
https://www.rfc-editor.org/info/rfc8155
https://www.rfc-editor.org/info/rfc8699
https://www.rfc-editor.org/info/rfc8699
mailto:harald@alvestrand.no

	RFC 8835
	Transports for WebRTC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. Transport and Middlebox Specification
	3.1. System-Provided Interfaces
	3.2. Ability to Use IPv4 and IPv6
	3.3. Usage of Temporary IPv6 Addresses
	3.4. Middlebox-Related Functions
	3.5. Transport Protocols Implemented

	4. Media Prioritization
	4.1. Local Prioritization
	4.2. Usage of Quality of Service -- DSCP and Multiplexing

	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Author's Address



 
   
   
   
   
     Transports for WebRTC
     
     
       Google
       
         harald@alvestrand.no
      
    
     
     
       This document describes the data transport protocols used by Web
      Real-Time Communication (WebRTC),
      including the protocols used for interaction with intermediate boxes
      such as firewalls, relays, and NAT boxes.
    
     
       
         Status of This Memo
         
            This is an Internet Standards Track document.
        
         
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further
            information on Internet Standards is available in Section 2 of 
            RFC 7841.
        
         
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
             .
        
      
       
         Copyright Notice
         
            Copyright (c) 2021 IETF Trust and the persons identified as the
            document authors. All rights reserved.
        
         
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            ( ) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.
        
      
    
     
       
         Table of Contents
         
           
              .   Introduction
          
           
              .   Requirements Language
          
           
              .   Transport and Middlebox Specification
             
               
                  .   System-Provided Interfaces
              
               
                  .   Ability to Use IPv4 and IPv6
              
               
                  .   Usage of Temporary IPv6 Addresses
              
               
                  .   Middlebox-Related Functions
              
               
                  .   Transport Protocols Implemented
              
            
          
           
              .   Media Prioritization
             
               
                  .   Local Prioritization
              
               
                  .   Usage of Quality of Service -- DSCP and Multiplexing
              
            
          
           
              .   IANA Considerations
          
           
              .   Security Considerations
          
           
              .   References
             
               
                  .   Normative References
              
               
                  .   Informative References
              
            
          
           
               Acknowledgements
          
           
               Author's Address
          
        
      
    
  
   
     
       Introduction
       WebRTC is a protocol suite aimed at real-time multimedia exchange
      between browsers, and between browsers and other entities.
       WebRTC is described in the WebRTC overview document  , which also defines terminology used
      in this document, including the terms "WebRTC endpoint" and "WebRTC
      browser".
       Terminology for RTP sources is taken from  .
       This document focuses on the data transport protocols that are used
      by conforming implementations, including the protocols used for
      interaction with intermediate boxes such as firewalls, relays, and NAT
      boxes.
       This protocol suite is intended to satisfy the security considerations
      described in the WebRTC security documents,   and  .
       This document describes requirements that apply to all WebRTC
      endpoints. When there are requirements that apply only to WebRTC
      browsers, this is called out explicitly.
    
     
       Requirements Language
       
    The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
    " MAY", and " OPTIONAL" in this document are to be interpreted as
    described in BCP 14     
    when, and only when, they appear in all capitals, as shown here.
      
    
     
       Transport and Middlebox Specification
       
       
         System-Provided Interfaces
         The protocol specifications used here assume that the following
        protocols are available to the implementations of the WebRTC
        protocols:
         
           UDP  :
           This is the protocol assumed by
            most protocol elements described.
           TCP  :
           This is used for HTTP/WebSockets,
            as well as TURN/TLS and
            ICE-TCP.
        
         For both protocols, IPv4 and IPv6 support is assumed.
         For UDP, this specification assumes the ability to set the
        Differentiated Services Code Point (DSCP) of the sockets opened on a per-packet basis, in order to
        achieve the prioritizations described in   (see   of this document) when
        multiple media types are multiplexed. It does not assume that the DSCPs
        will be honored and does assume that they may be zeroed or
        changed, since this is a local configuration issue.
         Platforms that do not give access to these interfaces will not be
        able to support a conforming WebRTC endpoint.
         This specification does not assume that the implementation will
        have access to ICMP or raw IP.
         The following protocols may be used, but they can be implemented by a
        WebRTC endpoint and are therefore not defined as "system-provided
        interfaces":
         
           TURN:
           Traversal Using Relays Around NAT  
           STUN:
           Session Traversal Utilities for NAT  
           ICE:
           Interactive Connectivity Establishment  
           TLS:
           Transport Layer Security  
           DTLS:
           Datagram Transport Layer Security  
        
      
       
         Ability to Use IPv4 and IPv6
         Web applications running in a WebRTC browser  MUST be able to
        utilize both IPv4 and IPv6 where available -- that is, when two peers
        have only IPv4 connectivity to each other, or they have only IPv6
        connectivity to each other, applications running in the WebRTC browser
         MUST be able to communicate.
         When TURN is used, and the TURN server has IPv4 or IPv6
        connectivity to the peer or the peer's TURN server, candidates of the
        appropriate types  MUST be supported. The "Happy Eyeballs"
        specification for ICE    SHOULD be
        supported.
      
       
         Usage of Temporary IPv6 Addresses
         The IPv6 default address selection specification   specifies that temporary addresses
          are to be preferred over
        permanent addresses. This
        is a change from the rules specified by  . For
        applications that select a single address, this is usually done by the
        IPV6_PREFER_SRC_TMP preference flag specified in  . However, this rule, which is intended to ensure
        that privacy-enhanced addresses are used in preference to static
        addresses, doesn't have the right effect in ICE, where all addresses
        are gathered and therefore revealed to the application. Therefore, the
        following rule is applied instead:
         When a WebRTC endpoint gathers all IPv6 addresses on its host, and
        both nondeprecated temporary addresses and permanent addresses of the
        same scope are present, the WebRTC endpoint  SHOULD discard the
        permanent addresses before exposing addresses to the application or
        using them in ICE. This is consistent with the default policy
        described in  .
         If some, but not all, of the temporary IPv6 addresses are marked
        deprecated, the WebRTC endpoint  SHOULD discard the deprecated
        addresses, unless they are used by an ongoing connection. In an ICE
        restart, deprecated addresses that are currently in use  MAY be
        retained.
      
       
         Middlebox-Related Functions
         The primary mechanism for dealing with middleboxes is ICE, which is an
        appropriate way to deal with NAT boxes and firewalls that accept
        traffic from the inside, but only from the outside if it is in
        response to inside traffic (simple stateful firewalls).
         ICE    MUST be supported. The
        implementation  MUST be a full ICE implementation, not ICE-Lite. A full
        ICE implementation allows interworking with both ICE and ICE-Lite
        implementations when they are deployed appropriately.
         In order to deal with situations where both parties are behind NATs
        of the type that perform endpoint-dependent mapping (as defined in
         ), TURN  
           MUST be supported.
         WebRTC browsers  MUST support configuration of STUN and TURN
        servers, from both browser configuration and an application.
         Note that other work exists around STUN and TURN server discovery
        and management, including   for server discovery,
        as well as  .
         In order to deal with firewalls that block all UDP traffic, the
        mode of TURN that uses TCP between the WebRTC endpoint and the TURN
        server  MUST be supported, and the mode of TURN that uses TLS over TCP
        between the WebRTC endpoint and the TURN server  MUST be supported. See
         , for details.
         In order to deal with situations where one party is on an IPv4
        network and the other party is on an IPv6 network, TURN extensions for
        IPv6  MUST be supported.
         TURN TCP candidates, where the connection from the WebRTC
        endpoint's TURN server to the peer is a TCP connection,    MAY be supported.
         However, such candidates are not seen as providing any significant
        benefit, for the following reasons.
         First, use of TURN TCP candidates would only be relevant in cases
        where both peers are required to use TCP to establish a
        connection.
         Second, that use case is supported in a different way by both sides
        establishing UDP relay candidates using TURN over TCP to connect to
        their respective relay servers.
         Third, using TCP between the WebRTC endpoint's TURN server and the
        peer may result in more performance problems than using UDP, e.g., due
        to head of line blocking.
         ICE-TCP candidates    MUST be supported; this
        may allow applications to communicate to peers with public IP
        addresses across UDP-blocking firewalls without using a TURN
        server.
         If TCP connections are used, RTP framing according to    MUST be used for all packets. This includes the RTP
        packets, DTLS packets used to carry data channels, and STUN
        connectivity check packets.
         The ALTERNATE-SERVER mechanism specified in   (300 Try Alternate)  MUST be
        supported.
         The WebRTC endpoint  MAY support accessing the Internet through an
        HTTP proxy. If it does so, it  MUST include the "ALPN" header as
        specified in  , and proxy authentication as
        described in   and    MUST also be supported.
      
       
         Transport Protocols Implemented
         For transport of media, secure RTP is used. The details of the
        RTP profile used are described in "Media Transport and Use of RTP in WebRTC"  , which mandates the use of a
        circuit breaker  
        and congestion control (see   for further guidance).
         Key exchange  MUST be done using DTLS-SRTP, as described in  .
         For data transport over the WebRTC data channel  , WebRTC endpoints  MUST support
        SCTP over DTLS over ICE. This encapsulation is specified in  . Negotiation of this
        transport in the Session Description Protocol (SDP) is defined in  . The SCTP extension for I-DATA
           MUST be supported.
         The setup protocol for WebRTC data channels described in    MUST be supported.
         
           Note: The interaction between DTLS-SRTP as defined in   and ICE as defined in   is described in  . The effect of this specification
        is that all ICE candidate pairs associated with a single component are
        part of the same DTLS association. Thus, there will only be one DTLS
        handshake, even if there are multiple valid candidate pairs.
        
         WebRTC endpoints  MUST support multiplexing of DTLS and RTP over the
        same port pair, as described in the DTLS-SRTP specification  , with clarifications in  . All application-layer
        protocol payloads over this DTLS connection are SCTP packets.
         Protocol identification  MUST be supplied as part of the DTLS
        handshake, as specified in  .
      
    
     
       Media Prioritization
       In the WebRTC prioritization model, the application tells the
      WebRTC endpoint about the priority of media and data that is controlled
      from the API.
       In this context, a "flow" is used for the units that are given a
      specific priority through the WebRTC API.
       For media, a "media flow", which can be an "audio flow" or a "video
      flow", is what   calls a "media source", which
      results in a "source RTP stream" and one or more "redundancy RTP
      streams". This specification does not describe prioritization between
      the RTP streams that come from a single media source.
       All media flows in WebRTC are assumed to be interactive, as defined
      in  ; there is no browser API support for
      indicating whether media is interactive or noninteractive.
       A "data flow" is the outgoing data on a single WebRTC data
      channel.
       The priority associated with a media flow or data flow is classified
      as "very-low", "low", "medium", or "high". There are only four priority
      levels in the API.
       The priority settings affect two pieces of behavior: packet send
      sequence decisions and packet markings. Each is described in its own
      section below.
       
         Local Prioritization
         Local prioritization is applied at the local node, before the
        packet is sent. This means that the prioritization has full access to
        the data about the individual packets and can choose differing
        treatment based on the stream a packet belongs to.
         When a WebRTC endpoint has packets to send on multiple streams
        that are congestion controlled under the same congestion control
        regime, the WebRTC endpoint  SHOULD cause data to be emitted in such a
        way that each stream at each level of priority is being given
        approximately twice the transmission capacity (measured in payload
        bytes) of the level below.
         Thus, when congestion occurs, a high-priority flow will have the
        ability to send 8 times as much data as a very-low-priority flow if
        both have data to send. This prioritization is independent of the
        media type. The details of which packet to send first are
        implementation defined.
         For example, if there is a high-priority audio flow sending
        100-byte packets and a low-priority video flow sending 1000-byte
        packets, and outgoing capacity exists for sending > 5000 payload bytes, it
        would be appropriate to send 4000 bytes (40 packets) of audio and 1000
        bytes (one packet) of video as the result of a single pass of sending
        decisions.
         Conversely, if the audio flow is marked low priority and the video
        flow is marked high priority, the scheduler may decide to send 2 video
        packets (2000 bytes) and 5 audio packets (500 bytes) when outgoing
        capacity exists for sending > 2500 payload bytes.
         If there are two high-priority audio flows, each will be able to
        send 4000 bytes in the same period where a low-priority video flow is
        able to send 1000 bytes.
         Two example implementation strategies are:
         
           When the available bandwidth is known from the congestion
            control algorithm, configure each codec and each data channel with
            a target send rate that is appropriate to its share of the
            available bandwidth.
           When congestion control indicates that a specified number of
            packets can be sent, send packets that are available to send using
            a weighted round-robin scheme across the connections.
        
         Any combination of these, or other schemes that have the same
        effect, is valid, as long as the distribution of transmission capacity
        is approximately correct.
         For media, it is usually inappropriate to use deep queues for
        sending; it is more useful to, for instance, skip intermediate frames
        that have no dependencies on them in order to achieve a lower bitrate.
        For reliable data, queues are useful.
         Note that this specification doesn't dictate when disparate streams
        are to be "congestion controlled under the same congestion control
        regime". The issue of coupling congestion controllers is explored
        further in  .
      
       
         Usage of Quality of Service -- DSCP and Multiplexing
         When the packet is sent, the network will make decisions about
        queueing and/or discarding the packet that can affect the quality of
        the communication. The sender can attempt to set the DSCP field of the
        packet to influence these decisions.
         Implementations  SHOULD attempt to set QoS on the packets sent,
        according to the guidelines in  . It is appropriate to depart from
        this recommendation when running on platforms where QoS marking is not
        implemented.
         The implementation  MAY turn off use of DSCP markings if it detects
        symptoms of unexpected behavior such as priority inversion or blocking
        of packets with certain DSCP markings. Some examples of such behaviors
        are described in  . The detection of these
        conditions is implementation dependent.
         A particularly hard problem is when one media transport uses
        multiple DSCPs, where one may be blocked and another may be
        allowed. This is allowed even within a single media flow for video in
         . Implementations need to
        diagnose this scenario; one possible implementation is to send initial
        ICE probes with DSCP 0, and send ICE probes on all the DSCPs
        that are intended to be used once a candidate pair has been
        selected. If one or more of the DSCP-marked probes fail, the sender
        will switch the media type to using DSCP 0. This can be carried out
        simultaneously with the initial media traffic; on failure, the initial
        data may need to be resent. This switch will, of course, invalidate any
        congestion information gathered up to that point.
         Failures can also start happening during the lifetime of the call;
        this case is expected to be rarer and can be handled by the normal
        mechanisms for transport failure, which may involve an ICE
        restart.
         Note that when a DSCP causes nondelivery, one has to
        switch the whole media flow to DSCP 0, since all traffic for a single
        media flow needs to be on the same queue for congestion control
        purposes. Other flows on the same transport, using different DSCPs, don't need to change.
         All packets carrying data from the SCTP association supporting the
        data channels  MUST use a single DSCP. The code point used
         SHOULD be that recommended by   for the highest-priority data
        channel carried. Note that this means that all data packets, no matter
        what their relative priority is, will be treated the same by the
        network.
         All packets on one TCP connection, no matter what it carries,  MUST
        use a single DSCP.
         More advice on the use of DSCPs with RTP, as well as the
        relationship between DSCP and congestion control, is given in  .
         There exist a number of schemes for achieving quality of service
        that do not depend solely on DSCPs. Some of these schemes
        depend on classifying the traffic into flows based on 5-tuple (source
        address, source port, protocol, destination address, destination port)
        or 6-tuple (5-tuple + DSCP). Under differing conditions, it
        may therefore make sense for a sending application to choose any of
        the following configurations:
         
           Each media stream carried on its own 5-tuple
           Media streams grouped by media type into 5-tuples (such as
            carrying all audio on one 5-tuple)
           All media sent over a single 5-tuple, with or without
            differentiation into 6-tuples based on DSCPs
        
         In each of the configurations mentioned, data channels may be
        carried in their own 5-tuple or multiplexed together with one of the
        media flows.
         More complex configurations, such as sending a high-priority video
        stream on one 5-tuple and sending all other video streams multiplexed
        together over another 5-tuple, can also be envisioned. More
        information on mapping media flows to 5-tuples can be found in  .
         A sending implementation  MUST be able to support the following
        configurations:
         
           Multiplex all media and data on a single 5-tuple (fully
            bundled)
           Send each media stream on its own 5-tuple and data on its own
            5-tuple (fully unbundled)
        
         The sending implementation  MAY choose to support other
          configurations, such as
        bundling each media type (audio, video, or data) into its own 5-tuple
        (bundling by media type).
         Sending data channel data over multiple 5-tuples is not
        supported.
         A receiving implementation  MUST be able to receive media and data
        in all these configurations.
      
    
     
       IANA Considerations
       This document has no IANA actions.
    
     
       Security Considerations
       WebRTC security considerations are enumerated in  .
       Security considerations pertaining to the use of DSCP are enumerated
      in  .
    
  
   
     
     
       References
       
         Normative References
         
           
             User Datagram Protocol
             
               
            
             
          
           
           
           
        
         
           
             Transmission Control Protocol
             
               
            
             
          
           
           
           
        
         
           
             Key words for use in RFCs to Indicate Requirement Levels
             
               
            
             
             
               In many standards track documents several words are used to signify the requirements in the specification.  These words are often capitalized. This document defines these words as they should be interpreted in IETF documents.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
            
          
           
           
           
        
         
           
             Framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP) Packets over Connection-Oriented Transport
             
               
            
             
             
               This memo defines a method for framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP) packets onto connection-oriented transport (such as TCP).  The memo also defines how session descriptions may specify RTP streams that use the framing method.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Configuration Guidelines for DiffServ Service Classes
             
               
            
             
               
            
             
               
            
             
             
               This document describes service classes configured with Diffserv and recommends how they can be used and how to construct them using Differentiated Services Code Points (DSCPs), traffic conditioners, Per-Hop Behaviors (PHBs), and Active Queue Management (AQM) mechanisms.  There is no intrinsic requirement that particular DSCPs, traffic conditioners, PHBs, and AQM be used for a certain service class, but as a policy and for interoperability it is useful to apply them consistently.  This memo provides information for the Internet community.
            
          
           
           
        
         
           
             Privacy Extensions for Stateless Address Autoconfiguration in IPv6
             
               
            
             
               
            
             
               
            
             
             
               Nodes use IPv6 stateless address autoconfiguration to generate addresses using a combination of locally available information and information advertised by routers.  Addresses are formed by combining network prefixes with an interface identifier.  On an interface that contains an embedded IEEE Identifier, the interface identifier is typically derived from it.  On other interface types, the interface identifier is generated through other means, for example, via random number generation.  This document describes an extension to IPv6 stateless address autoconfiguration for interfaces whose interface identifier is derived from an IEEE identifier.  Use of the extension causes nodes to generate global scope addresses from interface identifiers that change over time, even in cases where the interface contains an embedded IEEE identifier.  Changing the interface identifier (and the global scope addresses generated from it) over time makes it more difficult for eavesdroppers and other information collectors to identify when different addresses used in different transactions actually correspond to the same node.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Session Traversal Utilities for NAT (STUN)
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               Session Traversal Utilities for NAT (STUN) is a protocol that serves as a tool for other protocols in dealing with Network Address Translator (NAT) traversal.  It can be used by an endpoint to determine the IP address and port allocated to it by a NAT.  It can also be used to check connectivity between two endpoints, and as a keep-alive protocol to maintain NAT bindings.  STUN works with many existing NATs, and does not require any special behavior from them.
               STUN is not a NAT traversal solution by itself.  Rather, it is a tool to be used in the context of a NAT traversal solution.  This is an important change from the previous version of this specification (RFC 3489), which presented STUN as a complete solution.
               This document obsoletes RFC 3489.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)
             
               
            
             
               
            
             
             
               This document describes a Datagram Transport Layer Security (DTLS) extension to establish keys for Secure RTP (SRTP) and Secure RTP Control Protocol (SRTCP) flows.  DTLS keying happens on the media path, independent of any out-of-band signalling channel present. [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Traversal Using Relays around NAT (TURN) Extensions for TCP Allocations
             
               
            
             
               
            
             
             
               This specification defines an extension of Traversal Using Relays around NAT (TURN), a relay protocol for Network Address Translator (NAT) traversal.  This extension allows a TURN client to request TCP allocations, and defines new requests and indications for the TURN server to open and accept TCP connections with the client\'s peers. TURN and this extension both purposefully restrict the ways in which the relayed address can be used.  In particular, it prevents users from running general-purpose servers from ports obtained from the TURN server.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Datagram Transport Layer Security Version 1.2
             
               
            
             
               
            
             
             
               This document specifies version 1.2 of the Datagram Transport Layer Security (DTLS) protocol.  The DTLS protocol provides communications privacy for datagram protocols.  The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.  The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees.  Datagram semantics of the underlying transport are preserved by the DTLS protocol.  This document updates DTLS 1.0 to work with TLS version 1.2.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             TCP Candidates with Interactive Connectivity Establishment (ICE)
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               Interactive Connectivity Establishment (ICE) defines a mechanism for NAT traversal for multimedia communication protocols based on the offer/answer model of session negotiation.  ICE works by providing a set of candidate transport addresses for each media stream, which are then validated with peer-to-peer connectivity checks based on Session Traversal Utilities for NAT (STUN).  ICE provides a general framework for describing candidates but only defines UDP-based media streams. This specification extends ICE to TCP-based media, including the ability to offer a mix of TCP and UDP-based candidates for a single stream.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Default Address Selection for Internet Protocol Version 6 (IPv6)
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document describes two algorithms, one for source address selection and one for destination address selection.  The algorithms specify default behavior for all Internet Protocol version 6 (IPv6) implementations.  They do not override choices made by applications or upper-layer protocols, nor do they preclude the development of more advanced mechanisms for address selection.  The two algorithms share a common context, including an optional mechanism for allowing administrators to provide policy that can override the default behavior.  In dual-stack implementations, the destination address selection algorithm can consider both IPv4 and IPv6 addresses -- depending on the available source addresses, the algorithm might prefer IPv6 addresses over IPv4 addresses, or vice versa.
               Default address selection as defined in this specification applies to all IPv6 nodes, including both hosts and routers.  This document obsoletes RFC 3484.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
             
               
            
             
               
            
             
             
               The Hypertext Transfer Protocol (HTTP) is a stateless \%application- level protocol for distributed, collaborative, hypertext information systems.  This document defines the semantics of HTTP/1.1 messages, as expressed by request methods, request header fields, response status codes, and response header fields, along with the payload of messages (metadata and body content) and mechanisms for content negotiation.
            
          
           
           
        
         
           
             Hypertext Transfer Protocol (HTTP/1.1): Authentication
             
               
            
             
               
            
             
             
               The Hypertext Transfer Protocol (HTTP) is a stateless application- level protocol for distributed, collaborative, hypermedia information systems.  This document defines the HTTP Authentication framework.
            
          
           
           
        
         
           
             The ALPN HTTP Header Field
             
               
            
             
               
            
             
               
            
             
             
               This specification allows HTTP CONNECT requests to indicate what protocol is intended to be used within the tunnel once established, using the ALPN header field.
            
          
           
           
        
         
           
             A Taxonomy of Semantics and Mechanisms for Real-Time Transport Protocol (RTP) Sources
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               The terminology about, and associations among, Real-time Transport Protocol (RTP) sources can be complex and somewhat opaque.  This document describes a number of existing and proposed properties and relationships among RTP sources and defines common terminology for discussing protocol entities and their relationships.
            
          
           
           
        
         
           
             Multiplexing Scheme Updates for Secure Real-time Transport Protocol (SRTP) Extension for Datagram Transport Layer Security (DTLS)
             
               
            
             
               
            
             
             
               This document defines how Datagram Transport Layer Security (DTLS), Real-time Transport Protocol (RTP), RTP Control Protocol (RTCP), Session Traversal Utilities for NAT (STUN), Traversal Using Relays around NAT (TURN), and ZRTP packets are multiplexed on a single receiving socket.  It overrides the guidance from RFC 5764 ("SRTP                Extension for DTLS"), which suffered from four issues described and fixed in this document.
               This document updates RFC 5764.
            
          
           
           
        
         
           
             Multimedia Congestion Control: Circuit Breakers for Unicast RTP Sessions
             
               
            
             
               
            
             
             
               The Real-time Transport Protocol (RTP) is widely used in telephony, video conferencing, and telepresence applications.  Such applications are often run on best-effort UDP/IP networks.  If congestion control is not implemented in these applications, then network congestion can lead to uncontrolled packet loss and a resulting deterioration of the user's multimedia experience.  The congestion control algorithm acts as a safety measure by stopping RTP flows from using excessive resources and protecting the network from overload.  At the time of this writing, however, while there are several proprietary solutions, there is no standard algorithm for congestion control of interactive RTP flows.
               This document does not propose a congestion control algorithm.  It instead defines a minimal set of RTP circuit breakers: conditions under which an RTP sender needs to stop transmitting media data to protect the network from excessive congestion.  It is expected that, in the absence of long-lived excessive congestion, RTP applications running on best-effort IP networks will be able to operate without triggering these circuit breakers.  To avoid triggering the RTP circuit breaker, any Standards Track congestion control algorithms defined for RTP will need to operate within the envelope set by these RTP circuit breaker algorithms.
            
          
           
           
        
         
           
             Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words
             
               
            
             
             
               RFC 2119 specifies common key words that may be used in protocol  specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the  defined special meanings.
            
          
           
           
           
        
         
           
             Stream Schedulers and User Message Interleaving for the Stream Control Transmission Protocol
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               The Stream Control Transmission Protocol (SCTP) is a message-oriented transport protocol supporting arbitrarily large user messages.  This document adds a new chunk to SCTP for carrying payload data.  This allows a sender to interleave different user messages that would otherwise result in head-of-line blocking at the sender.  The interleaving of user messages is required for WebRTC data channels.
               Whenever an SCTP sender is allowed to send user data, it may choose from multiple outgoing SCTP streams.  Multiple ways for performing this selection, called stream schedulers, are defined in this document.  A stream scheduler can choose to either implement, or not implement, user message interleaving.
            
          
           
           
        
         
           
             Datagram Transport Layer Security (DTLS) Encapsulation of SCTP Packets
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               The Stream Control Transmission Protocol (SCTP) is a transport protocol originally defined to run on top of the network protocols IPv4 or IPv6.  This document specifies how SCTP can be used on top of the Datagram Transport Layer Security (DTLS) protocol.  Using the encapsulation method described in this document, SCTP is unaware of the protocols being used below DTLS; hence, explicit IP addresses cannot be used in the SCTP control chunks.  As a consequence, the SCTP associations carried over DTLS can only be single-homed.
            
          
           
           
        
         
           
             Guidelines for Multihomed and IPv4/IPv6 Dual-Stack Interactive Connectivity Establishment (ICE)
             
               
            
             
               
            
             
               
            
             
             
               This document provides guidelines on how to make Interactive Connectivity Establishment (ICE) conclude faster in multihomed and IPv4/IPv6 dual-stack scenarios where broken paths exist.  The provided guidelines are backward compatible with the original ICE specification (see RFC 5245).
            
          
           
           
           
        
         
           
             Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal
             
               
            
             
               
            
             
               
            
             
             
               This document describes a protocol for Network Address Translator (NAT) traversal for UDP-based communication.  This protocol is called Interactive Connectivity Establishment (ICE).  ICE makes use of the Session Traversal Utilities for NAT (STUN) protocol and its extension, Traversal Using Relay NAT (TURN).
               This document obsoletes RFC 5245.
            
          
           
           
        
         
           
             The Transport Layer Security (TLS) Protocol Version 1.3
             
               
            
             
             
               This document specifies version 1.3 of the Transport Layer Security (TLS) protocol.  TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
               This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961.  This document also specifies new requirements for TLS 1.2 implementations.
            
          
           
           
        
         
           
             Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               If a host is located behind a NAT, it can be impossible for that host to communicate directly with other hosts (peers) in certain situations. In these situations, it is necessary for the host to use the services of an intermediate node that acts as a communication relay. This specification defines a protocol, called "Traversal Using Relays around NAT" (TURN), that allows the host to control the operation of the relay and to exchange packets with its peers using the relay. TURN differs from other relay control protocols in that it allows a client to communicate with multiple peers using a single relay address.
               The TURN protocol was designed to be used as part of the Interactive Connectivity Establishment (ICE) approach to NAT traversal, though it can also be used without ICE.
               This document obsoletes RFCs 5766 and 6156.
            
          
           
           
        
         
           
             Overview: Real-Time Protocols for Browser-Based Applications
             
               
            
             
          
           
           
        
         
           
             Security Considerations for WebRTC
             
               
            
             
          
           
           
        
         
           
             WebRTC Security Architecture
             
               
            
             
          
           
           
        
         
           
             WebRTC Data Channels
             
               
            
             
               
            
             
               
            
             
          
           
           
        
         
           
             WebRTC Data Channel Establishment Protocol
             
               
            
             
               
            
             
               
            
             
          
           
           
        
         
           
             Application-Layer Protocol Negotiation (ALPN) for WebRTC
             
               
            
             
          
           
           
        
         
           
             Media Transport and Use of RTP in WebRTC
             
               
            
             
               
            
             
               
            
             
          
           
           
        
         
           
             Congestion Control Requirements for Interactive Real-Time Media
             
               
            
             
               
            
             
          
           
           
        
         
           
             Differentiated Services Code Point (DSCP) Packet Markings for WebRTC QoS
             
               
            
             
               
            
             
               
            
             
               
            
             
          
           
           
        
         
           
             Session Description Protocol (SDP) Offer/Answer Procedures for Stream Control Transmission Protocol (SCTP) over Datagram Transport Layer Security (DTLS) Transport
             
               
            
             
               
            
             
               
            
             
               
            
             
          
           
           
        
         
           
             Session Description Protocol (SDP) Offer/Answer Considerations for Datagram Transport Layer Security (DTLS) and Transport Layer Security (TLS)
             
               
            
             
               
            
             
          
           
           
        
      
       
         Informative References
         
           
             How to say that you're special: Can we use bits in the IPv4 header?
             
             
             
             
          
           ANRW '16: Proceedings of the 2016 Applied Networking
          Research Workshop, pages 68-70
           
        
         
           
             Recursively Encapsulated TURN (RETURN) for Connectivity and Privacy in WebRTC
             
               
            
             
               
            
             
             
               In the context of WebRTC, the concept of a local TURN proxy has been suggested, but not reviewed in detail.  WebRTC applications are already using TURN to enhance connectivity and privacy.  This document explains how local TURN proxies and WebRTC applications can work together.
            
          
           
           
           Work in Progress
        
         
           
             Default Address Selection for Internet Protocol version 6 (IPv6)
             
               
            
             
             
               This document describes two algorithms, for source address selection and for destination address selection.  The algorithms specify default behavior for all Internet Protocol version 6 (IPv6) implementations. They do not override choices made by applications or upper-layer protocols, nor do they preclude the development of more advanced mechanisms for address selection.  The two algorithms share a common context, including an optional mechanism for allowing administrators to provide policy that can override the default behavior.  In dual stack implementations, the destination address selection algorithm can consider both IPv4 and IPv6 addresses - depending on the available source addresses, the algorithm might prefer IPv6 addresses over IPv4 addresses, or vice-versa. All IPv6 nodes, including both hosts and routers, must implement default address selection as defined in this specification.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             IPv6 Socket API for Source Address Selection
             
               
            
             
               
            
             
               
            
             
             
               The IPv6 default address selection document (RFC 3484) describes the rules for selecting source and destination IPv6 addresses, and indicates that applications should be able to reverse the sense of some of the address selection rules through some unspecified API. However, no such socket API exists in the basic (RFC 3493) or advanced (RFC 3542) IPv6 socket API documents.  This document fills that gap partially by specifying new socket-level options for source address selection and flags for the getaddrinfo() API to specify address selection based on the source address preference in accordance with the socket-level options that modify the default source address selection algorithm.  The socket API described in this document will be particularly useful for IPv6 applications that want to choose between temporary and public addresses, and for Mobile IPv6 aware applications that want to use the care-of address for communication.  It also specifies socket options and flags for selecting Cryptographically Generated Address (CGA) or non-CGA source addresses.  This memo provides information for the Internet community.
            
          
           
           
        
         
           
             State of Peer-to-Peer (P2P) Communication across Network Address Translators (NATs)
             
               
            
             
               
            
             
               
            
             
             
               This memo documents the various methods known to be in use by applications to establish direct communication in the presence of Network Address Translators (NATs) at the current time.  Although this memo is intended to be mainly descriptive, the Security Considerations section makes some purely advisory recommendations about how to deal with security vulnerabilities the applications could inadvertently create when using the methods described.  This memo covers NAT traversal approaches used by both TCP- and UDP-based applications.  This memo is not an endorsement of the methods described, but merely an attempt to capture them in a document.  This memo provides information for the Internet community.
            
          
           
           
        
         
           
             Differentiated Services (Diffserv) and Real-Time Communication
             
               
            
             
               
            
             
             
               This memo describes the interaction between Differentiated Services (Diffserv) network quality-of-service (QoS) functionality and real- time network communication, including communication based on the Real-time Transport Protocol (RTP).  Diffserv is based on network nodes applying different forwarding treatments to packets whose IP headers are marked with different Diffserv Codepoints (DSCPs). WebRTC applications, as well as some conferencing applications, have begun using the Session Description Protocol (SDP) bundle negotiation mechanism to send multiple traffic streams with different QoS requirements using the same network 5-tuple.  The results of using multiple DSCPs to obtain different QoS treatments within a single network 5-tuple have transport protocol interactions, particularly with congestion control functionality (e.g., reordering).  In addition, DSCP markings may be changed or removed between the traffic source and destination.  This memo covers the implications of these Diffserv aspects for real-time network communication, including WebRTC.
            
          
           
           
        
         
           
             Traversal Using Relays around NAT (TURN) Server Auto Discovery
             
               
            
             
               
            
             
               
            
             
             
               Current Traversal Using Relays around NAT (TURN) server discovery mechanisms are relatively static and limited to explicit configuration.  These are usually under the administrative control of the application or TURN service provider, and not the enterprise, ISP, or the network in which the client is located.  Enterprises and ISPs wishing to provide their own TURN servers need auto-discovery mechanisms that a TURN client could use with minimal or no configuration.  This document describes three such mechanisms for TURN server discovery.
               This document updates RFC 5766 to relax the requirement for mutual authentication in certain cases.
            
          
           
           
        
         
           
             Coupled Congestion Control for RTP Media
             
               
            
             
               
            
             
               
            
             
             
               When multiple congestion-controlled Real-time Transport Protocol (RTP) sessions traverse the same network bottleneck, combining their controls can improve the total on-the-wire behavior in terms of delay, loss, and fairness. This document describes such a method for flows that have the same sender, in a way that is as flexible and simple as possible while minimizing the number of changes needed to existing RTP applications. This document also specifies how to apply the method for the Network-Assisted Dynamic Adaptation (NADA) congestion control algorithm and provides suggestions on how to apply it to other congestion control algorithms.
            
          
           
           
        
      
    
     
       Acknowledgements
       This document is based on earlier draft versions embedded in  , which were the result of contributions from many RTCWEB Working Group
      members.
       Special thanks for reviews of earlier draft versions of this document go to
       ,  ,  , and  ; the
      contributions from   also deserve special mention.
    
     
       Author's Address
       
         Google
         
           harald@alvestrand.no
        
      
    
  


