
RFC 8922
A Survey of the Interaction between Security
Protocols and Transport Services

Abstract
This document provides a survey of commonly used or notable network security protocols, with
a focus on how they interact and integrate with applications and transport protocols. Its goal is to
supplement efforts to define and catalog Transport Services by describing the interfaces required
to add security protocols. This survey is not limited to protocols developed within the scope or
context of the IETF, and those included represent a superset of features a Transport Services
system may need to support.

Stream: Internet Engineering Task Force (IETF)
RFC: 8922
Category: Informational
Published: October 2020
ISSN: 2070-1721
Authors:

 T. Enghardt
TU Berlin

T. Pauly
Apple Inc.

C. Perkins
University of Glasgow

K. Rose
Akamai Technologies, Inc.

C. Wood
Cloudflare

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8922

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Enghardt, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc8922
https://www.rfc-editor.org/info/rfc8922
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents
1. Introduction

1.1. Goals

1.2. Non-goals

2. Terminology

3. Transport Security Protocol Descriptions

3.1. Application Payload Security Protocols

3.1.1. TLS

3.1.2. DTLS

3.2. Application-Specific Security Protocols

3.2.1. Secure RTP

3.3. Transport-Layer Security Protocols

3.3.1. IETF QUIC

3.3.2. Google QUIC

3.3.3. tcpcrypt

3.3.4. MinimaLT

3.3.5. CurveCP

3.4. Packet Security Protocols

3.4.1. IPsec

3.4.2. WireGuard

3.4.3. OpenVPN

4. Transport Dependencies

4.1. Reliable Byte-Stream Transports

4.2. Unreliable Datagram Transports

4.2.1. Datagram Protocols with Defined Byte-Stream Mappings

4.3. Transport-Specific Dependencies

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 2

5. Application Interface

5.1. Pre-connection Interfaces

5.2. Connection Interfaces

5.3. Post-connection Interfaces

5.4. Summary of Interfaces Exposed by Protocols

6. IANA Considerations

7. Security Considerations

8. Privacy Considerations

9. Informative References

Acknowledgments

Authors' Addresses

1. Introduction
Services and features provided by transport protocols have been cataloged in . This
document supplements that work by surveying commonly used and notable network security
protocols, and identifying the interfaces between these protocols and both transport protocols
and applications. It examines Transport Layer Security (TLS), Datagram Transport Layer Security
(DTLS), IETF QUIC, Google QUIC (gQUIC), tcpcrypt, Internet Protocol Security (IPsec), Secure Real-
time Transport Protocol (SRTP) with DTLS, WireGuard, CurveCP, and MinimaLT. For each
protocol, this document provides a brief description. Then, it describes the interfaces between
these protocols and transports in Section 4 and the interfaces between these protocols and
applications in Section 5.

A Transport Services system exposes an interface for applications to access various (secure)
transport protocol features. The security protocols included in this survey represent a superset of
functionality and features a Transport Services system may need to support both internally and
externally (via an API) for applications . Ubiquitous IETF protocols such as (D)TLS,
as well as non-standard protocols such as gQUIC, are included despite overlapping features. As
such, this survey is not limited to protocols developed within the scope or context of the IETF.
Outside of this candidate set, protocols that do not offer new features are omitted. For example,
newer protocols such as WireGuard make unique design choices that have implications for and
limitations on application usage. In contrast, protocols such as secure shell (SSH) , GRE

, the Layer 2 Tunneling Protocol (L2TP) , and Application Layer Transport
Security (ALTS) are omitted since they do not provide interfaces deemed unique.

[RFC8095]

[TAPS-ARCH]

[RFC4253]
[RFC2890] [RFC5641]

[ALTS]

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 3

Authentication-only protocols such as the TCP Authentication Option (TCP-AO) and the
IPsec Authentication Header (AH) are excluded from this survey. TCP-AO adds
authentication to long-lived TCP connections, e.g., replay protection with per-packet Message
Authentication Codes. (TCP-AO obsoletes TCP MD5 "signature" options specified in .)
One primary use case of TCP-AO is for protecting BGP connections. Similarly, AH adds per-
datagram authentication and integrity, along with replay protection. Despite these
improvements, neither protocol sees general use and both lack critical properties important for
emergent transport security protocols, such as confidentiality and privacy protections. Such
protocols are thus omitted from this survey.

This document only surveys point-to-point protocols; multicast protocols are out of scope.

[RFC5925]
[RFC4302]

[RFC2385]

1.1. Goals
This survey is intended to help identify the most common interface surfaces between security
protocols and transport protocols, and between security protocols and applications.

One of the goals of the Transport Services effort is to define a common interface for using
transport protocols that allows software using transport protocols to easily adopt new protocols
that provide similar feature sets. The survey of the dependencies security protocols have upon
transport protocols can guide implementations in determining which transport protocols are
appropriate to be able to use beneath a given security protocol. For example, a security protocol
that expects to run over a reliable stream of bytes, like TLS, restricts the set of transport protocols
that can be used to those that offer a reliable stream of bytes.

Defining the common interfaces that security protocols provide to applications also allows
interfaces to be designed in a way that common functionality can use the same APIs. For
example, many security protocols that provide authentication let the application be involved in
peer identity validation. Any interface to use a secure transport protocol stack thus needs to
allow applications to perform this action during connection establishment.

1.2. Non-goals
While this survey provides similar analysis to that which was performed for transport protocols
in , it is important to distinguish that the use of security protocols requires more
consideration.

It is not a goal to allow software implementations to automatically switch between different
security protocols, even where their interfaces to transport and applications are equivalent. Even
between versions, security protocols have subtly different guarantees and vulnerabilities. Thus,
any implementation needs to only use the set of protocols and algorithms that are requested by
applications or by a system policy.

Different security protocols also can use incompatible notions of peer identity and
authentication, and cryptographic options. It is not a goal to identify a common set of
representations for these concepts.

[RFC8095]

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 4

The protocols surveyed in this document represent a superset of functionality and features a
Transport Services system may need to support. It does not list all transport protocols that a
Transport Services system may need to implement, nor does it mandate that a Transport Service
system implement any particular protocol.

A Transport Services system may implement any secure transport protocol that provides the
described features. In doing so, it may need to expose an interface to the application to configure
these features.

Transport Feature:

Transport Service:

Transport Services system:

Transport Protocol:

Application:

Security Protocol:

Handshake Protocol:

Record:

Record Protocol:

Session:

Connection:

2. Terminology
The following terms are used throughout this document to describe the roles and interactions of
transport security protocols (some of which are also defined in):

a specific end-to-end feature that the transport layer provides to an
application. Examples include confidentiality, reliable delivery, ordered delivery, and
message-versus-stream orientation.

a set of Transport Features, without an association to any given framing
protocol, that provides functionality to an application.

a software component that exposes an interface to different
Transport Services to an application.

an implementation that provides one or more different Transport Services
using a specific framing and header format on the wire. A Transport Protocol services an
application, whether directly or in conjunction with a security protocol.

an entity that uses a transport protocol for end-to-end delivery of data across the
network. This may also be an upper layer protocol or tunnel encapsulation.

a defined network protocol that implements one or more security features,
such as authentication, encryption, key generation, session resumption, and privacy. Security
protocols may be used alongside transport protocols, and in combination with other security
protocols when appropriate.

a protocol that enables peers to validate each other and to securely
establish shared cryptographic context.

framed protocol messages.

a security protocol that allows data to be divided into manageable blocks and
protected using shared cryptographic context.

an ephemeral security association between applications.

the shared state of two or more endpoints that persists across messages that are
transmitted between these endpoints. A connection is a transient participant of a session, and
a session generally lasts between connection instances.

[RFC8095]

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 5

Peer:

Client:

Server:

an endpoint application party to a session.

the peer responsible for initiating a session.

the peer responsible for responding to a session initiation.

3. Transport Security Protocol Descriptions
This section contains brief transport and security descriptions of various security protocols
currently used to protect data being sent over a network. These protocols are grouped based on
where in the protocol stack they are implemented, which influences which parts of a packet they
protect: Generic application payload, application payload for specific application-layer protocols,
both application payload and transport headers, or entire IP packets.

Note that not all security protocols can be easily categorized, e.g., as some protocols can be used
in different ways or in combination with other protocols. One major reason for this is that
channel security protocols often consist of two components:

A handshake protocol, which is responsible for negotiating parameters, authenticating the
endpoints, and establishing shared keys.
A record protocol, which is used to encrypt traffic using keys and parameters provided by
the handshake protocol.

For some protocols, such as tcpcrypt, these two components are tightly integrated. In contrast, for
IPsec, these components are implemented in separate protocols: AH and the Encapsulating
Security Payload (ESP) are record protocols, which can use keys supplied by the handshake
protocol Internet Key Exchange Protocol Version 2 (IKEv2), by other handshake protocols, or by
manual configuration. Moreover, some protocols can be used in different ways: While the base
TLS protocol as defined in has an integrated handshake and record protocol, TLS or
DTLS can also be used to negotiate keys for other protocols, as in DTLS-SRTP, or the handshake
protocol can be used with a separate record layer, as in QUIC .

•

•

[RFC8446]

[QUIC-TRANSPORT]

3.1. Application Payload Security Protocols
The following protocols provide security that protects application payloads sent over a transport.
They do not specifically protect any headers used for transport-layer functionality.

3.1.1. TLS

TLS (Transport Layer Security) is a common protocol used to establish a secure session
between two endpoints. Communication over this session prevents "eavesdropping, tampering,
and message forgery." TLS consists of a tightly coupled handshake and record protocol. The
handshake protocol is used to authenticate peers, negotiate protocol options such as
cryptographic algorithms, and derive session-specific keying material. The record protocol is
used to marshal and, once the handshake has sufficiently progressed, encrypt data from one peer
to the other. This data may contain handshake messages or raw application data.

[RFC8446]

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 6

3.1.2. DTLS

DTLS (Datagram Transport Layer Security) is based on TLS, but differs in
that it is designed to run over unreliable datagram protocols like UDP instead of TCP. DTLS
modifies the protocol to make sure it can still provide equivalent security guarantees to TLS with
the exception of order protection/non-replayability. DTLS was designed to be as similar to TLS as
possible, so this document assumes that all properties from TLS are carried over except where
specified.

[RFC6347] [DTLS-1.3]

3.2. Application-Specific Security Protocols
The following protocols provide application-specific security by protecting application payloads
used for specific use cases. Unlike the protocols above, these are not intended for generic
application use.

3.2.1. Secure RTP

Secure RTP (SRTP) is a profile for RTP that provides confidentiality, message authentication, and
replay protection for RTP data packets and RTP control protocol (RTCP) packets . SRTP
provides a record layer only, and requires a separate handshake protocol to provide key
agreement and identity management.

The commonly used handshake protocol for SRTP is DTLS, in the form of DTLS-SRTP .
This is an extension to DTLS that negotiates the use of SRTP as the record layer and describes
how to export keys for use with SRTP.

ZRTP is an alternative key agreement and identity management protocol for SRTP.
ZRTP Key agreement is performed using a Diffie-Hellman key exchange that runs on the media
path. This generates a shared secret that is then used to generate the master key and salt for
SRTP.

[RFC3711]

[RFC5764]

[RFC6189]

3.3. Transport-Layer Security Protocols
The following security protocols provide protection for both application payloads and headers
that are used for Transport Services.

3.3.1. IETF QUIC

QUIC is a new standards-track transport protocol that runs over UDP, loosely based on Google's
original proprietary gQUIC protocol (See Section 3.3.2 for more details). The
QUIC transport layer itself provides support for data confidentiality and integrity. This requires
keys to be derived with a separate handshake protocol. A mapping for QUIC of TLS 1.3

 has been specified to provide this handshake.

[QUIC-TRANSPORT]

[QUIC-
TLS]

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 7

3.3.2. Google QUIC

Google QUIC (gQUIC) is a UDP-based multiplexed streaming protocol designed and deployed by
Google following experience from deploying SPDY, the proprietary predecessor to HTTP/2. gQUIC
was originally known as "QUIC"; this document uses gQUIC to unambiguously distinguish it from
the standards-track IETF QUIC. The proprietary technical forebear of IETF QUIC, gQUIC was
originally designed with tightly integrated security and application data transport protocols.

3.3.3. tcpcrypt

Tcpcrypt is a lightweight extension to the TCP protocol for opportunistic encryption.
Applications may use tcpcrypt's unique session ID for further application-level authentication.
Absent this authentication, tcpcrypt is vulnerable to active attacks.

[RFC8548]

3.3.4. MinimaLT

MinimaLT is a UDP-based transport security protocol designed to offer
confidentiality, mutual authentication, DoS prevention, and connection mobility. One major goal
of the protocol is to leverage existing protocols to obtain server-side configuration information
used to more quickly bootstrap a connection. MinimaLT uses a variant of TCP's congestion
control algorithm.

[MinimaLT]

3.3.5. CurveCP

CurveCP is a UDP-based transport security that, unlike many other security protocols,
is based entirely upon public key algorithms. CurveCP provides its own reliability for application
data as part of its protocol.

[CurveCP]

3.4. Packet Security Protocols
The following protocols provide protection for IP packets. These are generally used as tunnels,
such as for Virtual Private Networks (VPNs). Often, applications will not interact directly with
these protocols. However, applications that implement tunnels will interact directly with these
protocols.

3.4.1. IPsec

IKEv2 and ESP together form the modern IPsec protocol suite that encrypts
and authenticates IP packets, either for creating tunnels (tunnel-mode) or for direct transport
connections (transport-mode). This suite of protocols separates out the key generation protocol
(IKEv2) from the transport encryption protocol (ESP). Each protocol can be used independently,
but this document considers them together, since that is the most common pattern.

[RFC7296] [RFC4303]

3.4.2. WireGuard

WireGuard is an IP-layer protocol designed as an alternative to IPsec for certain use
cases. It uses UDP to encapsulate IP datagrams between peers. Unlike most transport security
protocols, which rely on Public Key Infrastructure (PKI) for peer authentication, WireGuard

[WireGuard]

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 8

authenticates peers using pre-shared public keys delivered out of band, each of which is bound
to one or more IP addresses. Moreover, as a protocol suited for VPNs, WireGuard offers no
extensibility, negotiation, or cryptographic agility.

3.4.3. OpenVPN

OpenVPN is a commonly used protocol designed as an alternative to IPsec. A major
goal of this protocol is to provide a VPN that is simple to configure and works over a variety of
transports. OpenVPN encapsulates either IP packets or Ethernet frames within a secure tunnel
and can run over either UDP or TCP. For key establishment, OpenVPN can either use TLS as a
handshake protocol or use pre-shared keys.

[OpenVPN]

4. Transport Dependencies
Across the different security protocols listed above, the primary dependency on transport
protocols is the presentation of data: either an unbounded stream of bytes, or framed messages.
Within protocols that rely on the transport for message framing, most are built to run over
transports that inherently provide framing, like UDP, but some also define how their messages
can be framed over byte-stream transports.

4.1. Reliable Byte-Stream Transports
The following protocols all depend upon running on a transport protocol that provides a reliable,
in-order stream of bytes. This is typically TCP.

Application Payload Security Protocols:

TLS

Transport-Layer Security Protocols:

tcpcrypt

•

•

4.2. Unreliable Datagram Transports
The following protocols all depend on the transport protocol to provide message framing to
encapsulate their data. These protocols are built to run using UDP, and thus do not have any
requirement for reliability. Running these protocols over a protocol that does provide reliability
will not break functionality but may lead to multiple layers of reliability if the security protocol
is encapsulating other transport protocol traffic.

Application Payload Security Protocols:

DTLS
ZRTP
SRTP

•
•
•

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 9

Transport-Layer Security Protocols:

QUIC
MinimaLT
CurveCP

Packet Security Protocols:

IPsec
WireGuard
OpenVPN

•
•
•

•
•
•

4.2.1. Datagram Protocols with Defined Byte-Stream Mappings

Of the protocols listed above that depend on the transport for message framing, some do have
well-defined mappings for sending their messages over byte-stream transports like TCP.

Application Payload Security Protocols:

DTLS when used as a handshake protocol for SRTP
ZRTP
SRTP

Packet Security Protocols:

IPsec

• [RFC7850]
• [RFC6189]
• [RFC4571][RFC3711]

• [RFC8229]

4.3. Transport-Specific Dependencies
One protocol surveyed, tcpcrypt, has a direct dependency on a feature in the transport that is
needed for its functionality. Specifically, tcpcrypt is designed to run on top of TCP and uses the
TCP Encryption Negotiation Option (TCP-ENO) to negotiate its protocol support.

QUIC, CurveCP, and MinimaLT provide both transport functionality and security functionality.
They depend on running over a framed protocol like UDP, but they add their own layers of
reliability and other Transport Services. Thus, an application that uses one of these protocols
cannot decouple the security from transport functionality.

[RFC8547]

5. Application Interface
This section describes the interface exposed by the security protocols described above. We
partition these interfaces into pre-connection (configuration), connection, and post-connection
interfaces, following conventions in and .

Note that not all protocols support each interface. The table in Section 5.4 summarizes which
protocol exposes which of the interfaces. In the following sections, we provide abbreviations of
the interface names to use in the summary table.

[TAPS-INTERFACE] [TAPS-ARCH]

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 10

Identities and Private Keys (IPK):

Supported Algorithms (Key Exchange, Signatures, and Ciphersuites) (ALG):

Extensions (EXT):

Session Cache Management (CM):

5.1. Pre-connection Interfaces
Configuration interfaces are used to configure the security protocols before a handshake begins
or keys are negotiated.

The application can provide its identity, credentials (e.g.,
certificates), and private keys, or mechanisms to access these, to the security protocol to use
during handshakes.

TLS
DTLS
ZRTP
QUIC
MinimaLT
CurveCP
IPsec
WireGuard
OpenVPN

The application can
choose the algorithms that are supported for key exchange, signatures, and ciphersuites.

TLS
DTLS
ZRTP
QUIC
tcpcrypt
MinimaLT
IPsec
OpenVPN

The application enables or configures extensions that are to be negotiated by
the security protocol, such as Application-Layer Protocol Negotiation (ALPN) .

TLS
DTLS
QUIC

The application provides the ability to save and retrieve
session state (such as tickets, keying material, and server parameters) that may be used to
resume the security session.

TLS

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

[RFC7301]

•
•
•

•

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 11

Authentication Delegation (AD):

Pre-Shared Key Import (PSKI):

DTLS
ZRTP
QUIC
tcpcrypt
MinimaLT

The application provides access to a separate module that will
provide authentication, using the Extensible Authentication Protocol (EAP) for
example.

IPsec
tcpcrypt

Either the handshake protocol or the application directly can
supply pre-shared keys for use in encrypting (and authenticating) communication with a
peer.

TLS
DTLS
ZRTP
QUIC
tcpcrypt
MinimaLT
IPsec
WireGuard
OpenVPN

•
•
•
•
•

[RFC3748]

•
•

•
•
•
•
•
•
•
•
•

Identity Validation (IV):

5.2. Connection Interfaces

During a handshake, the security protocol will conduct identity
validation of the peer. This can offload validation or occur transparently to the application.

TLS
DTLS
ZRTP
QUIC
MinimaLT
CurveCP
IPsec
WireGuard
OpenVPN

•
•
•
•
•
•
•
•
•

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 12

Source Address Validation (SAV): The handshake protocol may interact with the transport
protocol or application to validate the address of the remote peer that has sent data. This
involves sending a cookie exchange to avoid DoS attacks. (This list omits protocols that
depend on TCP and therefore implicitly perform SAV.)

DTLS
QUIC
IPsec
WireGuard

•
•
•
•

Connection Termination (CT):

Key Update (KU):

Shared Secret Key Export (SSKE):

5.3. Post-connection Interfaces

The security protocol may be instructed to tear down its
connection and session information. This is needed by some protocols, e.g., to prevent
application data truncation attacks in which an attacker terminates an underlying insecure
connection-oriented protocol to terminate the session.

TLS
DTLS
ZRTP
QUIC
tcpcrypt
MinimaLT
IPsec
OpenVPN

The handshake protocol may be instructed to update its keying material,
either by the application directly or by the record protocol sending a key expiration event.

TLS
DTLS
QUIC
tcpcrypt
MinimaLT
IPsec

The handshake protocol may provide an interface for
producing shared secrets for application-specific uses.

TLS
DTLS
tcpcrypt
IPsec

•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 13

Key Expiration (KE):

Mobility Events (ME):

OpenVPN
MinimaLT

The record protocol can signal that its keys are expiring due to reaching a
time-based deadline or a use-based deadline (number of bytes that have been encrypted with
the key). This interaction is often limited to signaling between the record layer and the
handshake layer.

IPsec

The record protocol can be signaled that it is being migrated to another
transport or interface due to connection mobility, which may reset address and state
validation and induce state changes such as use of a new Connection Identifier (CID).

DTLS (version 1.3 only)
QUIC
MinimaLT
CurveCP
IPsec
WireGuard

•
•

•

• [DTLS-1.3]
•
•
•
• [RFC4555]
•

5.4. Summary of Interfaces Exposed by Protocols
The following table summarizes which protocol exposes which interface.

Protocol IPK ALG EXT CM AD PSKI IV SAV CT KU SSKE KE ME

TLS x x x x x x x x x

DTLS x x x x x x x x x x x

ZRTP x x x x x x

QUIC x x x x x x x x x x

tcpcrypt x x x x x x x

MinimaLT x x x x x x x x x

CurveCP x x x

IPsec x x x x x x x x x x x

WireGuard x x x x x

OpenVPN x x x x x x

Table 1

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 14

[ALTS]

[CurveCP]

[DTLS-1.3]

[MinimaLT]

[OpenVPN]

9. Informative References
,

,
.

, , .

,
, ,

, 29 May 2020, .

,
,

, .

, ,
.

x = Interface is exposed
(blank) = Interface is not exposed

6. IANA Considerations
This document has no IANA actions.

7. Security Considerations
This document summarizes existing transport security protocols and their interfaces. It does not
propose changes to or recommend usage of reference protocols. Moreover, no claims of security
and privacy properties beyond those guaranteed by the protocols discussed are made. For
example, metadata leakage via timing side channels and traffic analysis may compromise any
protocol discussed in this survey. Applications using Security Interfaces should take such
limitations into consideration when using a particular protocol implementation.

8. Privacy Considerations
Analysis of how features improve or degrade privacy is intentionally omitted from this survey.
All security protocols surveyed generally improve privacy by using encryption to reduce
information leakage. However, varying amounts of metadata remain in the clear across each
protocol. For example, client and server certificates are sent in cleartext in TLS 1.2 ,
whereas they are encrypted in TLS 1.3 . A survey of privacy features, or lack thereof,
for various security protocols could be addressed in a separate document.

[RFC5246]
[RFC8446]

Ghali, C., Stubblefield, A., Knapp, E., Li, J., Schmidt, B., and J. Boeuf "Application
Layer Transport Security" <https://cloud.google.com/security/encryption-in-
transit/application-layer-transport-security/>

Bernstein, D. "CurveCP: Usable security for the Internet" <https://curvecp.org/>

Rescorla, E., Tschofenig, H., and N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" Work in Progress Internet-Draft, draft-
ietf-tls-dtls13-38 <https://tools.ietf.org/html/draft-ietf-tls-dtls13-38>

Petullo, W., Zhang, X., Solworth, J., Bernstein, D., and T. Lange "MinimaLT:
minimal-latency networking through better security" DOI
10.1145/2508859.2516737 <https://dl.acm.org/citation.cfm?id=2516737>

OpenVPN "OpenVPN cryptographic layer" <https://openvpn.net/community-
resources/openvpn-cryptographic-layer/>

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 15

https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/
https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/
https://curvecp.org/
https://tools.ietf.org/html/draft-ietf-tls-dtls13-38
https://dl.acm.org/citation.cfm?id=2516737
https://openvpn.net/community-resources/openvpn-cryptographic-layer/
https://openvpn.net/community-resources/openvpn-cryptographic-layer/

[QUIC-TLS]

[QUIC-TRANSPORT]

[RFC2385]

[RFC2890]

[RFC3711]

[RFC3748]

[RFC4253]

[RFC4302]

[RFC4303]

[RFC4555]

[RFC4571]

[RFC5246]

[RFC5641]

, , ,
, 24 September 2020,

.

,
, , , 24

September 2020, .

, ,
, , August 1998,
.

, , ,
, September 2000, .

,
, , , March

2004, .

,
, , , June 2004,

.

,
, , , January 2006,

.

, , , , December
2005, .

, , ,
, December 2005, .

, , ,
, June 2006, .

,
, ,

, July 2006, .

,
, , , August 2008,

.

,
, , , August 2009,

.

Thomson, M. and S. Turner "Using TLS to Secure QUIC" Work in Progress
Internet-Draft, draft-ietf-quic-tls-31 <https://tools.ietf.org/
html/draft-ietf-quic-tls-31>

Iyengar, J. and M. Thomson "QUIC: A UDP-Based Multiplexed and Secure
Transport" Work in Progress Internet-Draft, draft-ietf-quic-transport-31

<https://tools.ietf.org/html/draft-ietf-quic-transport-31>

Heffernan, A. "Protection of BGP Sessions via the TCP MD5 Signature Option"
RFC 2385 DOI 10.17487/RFC2385 <https://www.rfc-editor.org/info/
rfc2385>

Dommety, G. "Key and Sequence Number Extensions to GRE" RFC 2890 DOI
10.17487/RFC2890 <https://www.rfc-editor.org/info/rfc2890>

Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K. Norrman "The Secure
Real-time Transport Protocol (SRTP)" RFC 3711 DOI 10.17487/RFC3711

<https://www.rfc-editor.org/info/rfc3711>

Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H. Levkowetz, Ed. "Extensible
Authentication Protocol (EAP)" RFC 3748 DOI 10.17487/RFC3748
<https://www.rfc-editor.org/info/rfc3748>

Ylonen, T. and C. Lonvick, Ed. "The Secure Shell (SSH) Transport Layer
Protocol" RFC 4253 DOI 10.17487/RFC4253 <https://www.rfc-
editor.org/info/rfc4253>

Kent, S. "IP Authentication Header" RFC 4302 DOI 10.17487/RFC4302
<https://www.rfc-editor.org/info/rfc4302>

Kent, S. "IP Encapsulating Security Payload (ESP)" RFC 4303 DOI 10.17487/
RFC4303 <https://www.rfc-editor.org/info/rfc4303>

Eronen, P. "IKEv2 Mobility and Multihoming Protocol (MOBIKE)" RFC 4555 DOI
10.17487/RFC4555 <https://www.rfc-editor.org/info/rfc4555>

Lazzaro, J. "Framing Real-time Transport Protocol (RTP) and RTP Control
Protocol (RTCP) Packets over Connection-Oriented Transport" RFC 4571 DOI
10.17487/RFC4571 <https://www.rfc-editor.org/info/rfc4571>

Dierks, T. and E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

McGill, N. and C. Pignataro "Layer 2 Tunneling Protocol Version 3 (L2TPv3)
Extended Circuit Status Values" RFC 5641 DOI 10.17487/RFC5641
<https://www.rfc-editor.org/info/rfc5641>

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 16

https://tools.ietf.org/html/draft-ietf-quic-tls-31
https://tools.ietf.org/html/draft-ietf-quic-tls-31
https://tools.ietf.org/html/draft-ietf-quic-transport-31
https://www.rfc-editor.org/info/rfc2385
https://www.rfc-editor.org/info/rfc2385
https://www.rfc-editor.org/info/rfc2890
https://www.rfc-editor.org/info/rfc3711
https://www.rfc-editor.org/info/rfc3748
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4302
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4555
https://www.rfc-editor.org/info/rfc4571
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5641

[RFC5764]

[RFC5925]

[RFC6189]

[RFC6347]

[RFC7296]

[RFC7301]

[RFC7850]

[RFC8095]

[RFC8229]

[RFC8446]

[RFC8547]

[RFC8548]

,
,

, , May 2010,
.

, , ,
, June 2010, .

,
, , , April

2011, .

, ,
, , January 2012,
.

,
, , , ,

October 2014, .

,
, ,

, July 2014, .

,
, ,

, April 2016, .

,
, ,

, March 2017, .

,
, , , August 2017,

.

, , ,
, August 2018, .

,
, , , May 2019,

.

,
, ,

, May 2019, .

McGrew, D. and E. Rescorla "Datagram Transport Layer Security (DTLS)
Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"
RFC 5764 DOI 10.17487/RFC5764 <https://www.rfc-editor.org/info/
rfc5764>

Touch, J., Mankin, A., and R. Bonica "The TCP Authentication Option" RFC 5925
DOI 10.17487/RFC5925 <https://www.rfc-editor.org/info/rfc5925>

Zimmermann, P., Johnston, A., Ed., and J. Callas "ZRTP: Media Path Key
Agreement for Unicast Secure RTP" RFC 6189 DOI 10.17487/RFC6189

<https://www.rfc-editor.org/info/rfc6189>

Rescorla, E. and N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T. Kivinen "Internet Key
Exchange Protocol Version 2 (IKEv2)" STD 79 RFC 7296 DOI 10.17487/RFC7296

<https://www.rfc-editor.org/info/rfc7296>

Friedl, S., Popov, A., Langley, A., and E. Stephan "Transport Layer Security (TLS)
Application-Layer Protocol Negotiation Extension" RFC 7301 DOI 10.17487/
RFC7301 <https://www.rfc-editor.org/info/rfc7301>

Nandakumar, S. "Registering Values of the SDP 'proto' Field for Transporting
RTP Media over TCP under Various RTP Profiles" RFC 7850 DOI 10.17487/
RFC7850 <https://www.rfc-editor.org/info/rfc7850>

Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind, Ed. "Services Provided
by IETF Transport Protocols and Congestion Control Mechanisms" RFC 8095
DOI 10.17487/RFC8095 <https://www.rfc-editor.org/info/rfc8095>

Pauly, T., Touati, S., and R. Mantha "TCP Encapsulation of IKE and IPsec
Packets" RFC 8229 DOI 10.17487/RFC8229 <https://www.rfc-
editor.org/info/rfc8229>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Bittau, A., Giffin, D., Handley, M., Mazieres, D., and E. Smith "TCP-ENO:
Encryption Negotiation Option" RFC 8547 DOI 10.17487/RFC8547
<https://www.rfc-editor.org/info/rfc8547>

Bittau, A., Giffin, D., Handley, M., Mazieres, D., Slack, Q., and E. Smith
"Cryptographic Protection of TCP Streams (tcpcrypt)" RFC 8548 DOI 10.17487/
RFC8548 <https://www.rfc-editor.org/info/rfc8548>

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 17

https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc6189
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7850
https://www.rfc-editor.org/info/rfc8095
https://www.rfc-editor.org/info/rfc8229
https://www.rfc-editor.org/info/rfc8229
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8547
https://www.rfc-editor.org/info/rfc8548

[TAPS-ARCH]

[TAPS-INTERFACE]

[WireGuard]

, , ,
, 13 July 2020,

.

,
, ,

, 27 July 2020,
.

, ,
.

Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G., Perkins, C., Tiesel, P. S., and
C. A. Wood "An Architecture for Transport Services" Work in Progress Internet-
Draft, draft-ietf-taps-arch-08 <https://tools.ietf.org/html/draft-ietf-
taps-arch-08>

Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G., Kuehlewind, M.,
Perkins, C., Tiesel, P. S., Wood, C. A., and T. Pauly "An Abstract Application Layer
Interface to Transport Services" Work in Progress Internet-Draft, draft-ietf-
taps-interface-09 <https://tools.ietf.org/html/draft-ietf-taps-
interface-09>

Donenfeld, J. "WireGuard: Next Generation Kernel Network Tunnel" <https://
www.wireguard.com/papers/wireguard.pdf>

Acknowledgments
The authors would like to thank , , , ,

, and for their input and feedback on this document.
Bob Bradley Frederic Jacobs Mirja Kühlewind Yannick Sierra

Brian Trammell Magnus Westerlund

Authors' Addresses
Theresa Enghardt
TU Berlin
Marchstr. 23

 10587 Berlin
Germany

 ietf@tenghardt.net Email:

Tommy Pauly
Apple Inc.
One Apple Park Way

, Cupertino California 95014
United States of America

 tpauly@apple.com Email:

Colin Perkins
University of Glasgow
School of Computing Science
Glasgow
G12 8QQ
United Kingdom

 csp@csperkins.org Email:

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 18

https://tools.ietf.org/html/draft-ietf-taps-arch-08
https://tools.ietf.org/html/draft-ietf-taps-arch-08
https://tools.ietf.org/html/draft-ietf-taps-interface-09
https://tools.ietf.org/html/draft-ietf-taps-interface-09
https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard.pdf
mailto:ietf@tenghardt.net
mailto:tpauly@apple.com
mailto:csp@csperkins.org

Kyle Rose
Akamai Technologies, Inc.
150 Broadway

, Cambridge MA 02144
United States of America

 krose@krose.org Email:

Christopher A. Wood
Cloudflare
101 Townsend St

, San Francisco
United States of America

 caw@heapingbits.net Email:

RFC 8922 Transport Security Survey October 2020

Enghardt, et al. Informational Page 19

mailto:krose@krose.org
mailto:caw@heapingbits.net

	RFC 8922
	A Survey of the Interaction between Security Protocols and Transport Services
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Goals
	1.2. Non-goals

	2. Terminology
	3. Transport Security Protocol Descriptions
	3.1. Application Payload Security Protocols
	3.1.1. TLS
	3.1.2. DTLS

	3.2. Application-Specific Security Protocols
	3.2.1. Secure RTP

	3.3. Transport-Layer Security Protocols
	3.3.1. IETF QUIC
	3.3.2. Google QUIC
	3.3.3. tcpcrypt
	3.3.4. MinimaLT
	3.3.5. CurveCP

	3.4. Packet Security Protocols
	3.4.1. IPsec
	3.4.2. WireGuard
	3.4.3. OpenVPN

	4. Transport Dependencies
	4.1. Reliable Byte-Stream Transports
	4.2. Unreliable Datagram Transports
	4.2.1. Datagram Protocols with Defined Byte-Stream Mappings

	4.3. Transport-Specific Dependencies

	5. Application Interface
	5.1. Pre-connection Interfaces
	5.2. Connection Interfaces
	5.3. Post-connection Interfaces
	5.4. Summary of Interfaces Exposed by Protocols

	6. IANA Considerations
	7. Security Considerations
	8. Privacy Considerations
	9. Informative References
	Acknowledgments
	Authors' Addresses

 A Survey of the Interaction between Security Protocols and Transport Services

 TU Berlin

 Marchstr. 23
 Berlin
 10587
 Germany

 ietf@tenghardt.net

 Apple Inc.

 One Apple Park Way
 Cupertino
 California
 95014
 United States of America

 tpauly@apple.com

 University of Glasgow

 School of Computing Science
 Glasgow
 G12 8QQ
 United Kingdom

 csp@csperkins.org

 Akamai Technologies, Inc.

 150 Broadway
 Cambridge
 MA
 02144
 United States of America

 krose@krose.org

 Cloudflare

 101 Townsend St
 San Francisco
 United States of America

 caw@heapingbits.net

 Transport Protocols
 Transport Security

 This document provides a survey of commonly used or notable network
 security protocols, with a focus on how they interact and integrate with
 applications and transport protocols. Its goal is to supplement efforts
 to define and catalog Transport Services by describing the interfaces
 required to add security protocols. This survey is not limited to
 protocols developed within the scope or context of the IETF, and those
 included represent a superset of features a Transport Services system
 may need to support.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Goals

 . Non-goals

 . Terminology

 . Transport Security Protocol Descriptions

 . Application Payload Security Protocols

 . TLS

 . DTLS

 . Application-Specific Security Protocols

 . Secure RTP

 . Transport-Layer Security Protocols

 . IETF QUIC

 . Google QUIC

 . tcpcrypt

 . MinimaLT

 . CurveCP

 . Packet Security Protocols

 . IPsec

 . WireGuard

 . OpenVPN

 . Transport Dependencies

 . Reliable Byte-Stream Transports

 . Unreliable Datagram Transports

 . Datagram Protocols with Defined Byte-Stream Mappings

 . Transport-Specific Dependencies

 . Application Interface

 . Pre-connection Interfaces

 . Connection Interfaces

 . Post-connection Interfaces

 . Summary of Interfaces Exposed by Protocols

 . IANA Considerations

 . Security Considerations

 . Privacy Considerations

 . Informative References

 Acknowledgments

 Authors' Addresses

 Introduction
 Services and features provided by transport protocols have been
 cataloged in . This document
 supplements that work by surveying commonly used and notable network
 security protocols, and identifying the interfaces between these
 protocols and both transport protocols and applications. It examines
 Transport Layer Security (TLS), Datagram Transport Layer Security
 (DTLS), IETF QUIC, Google QUIC (gQUIC), tcpcrypt, Internet Protocol
 Security (IPsec), Secure Real-time Transport Protocol (SRTP) with DTLS,
 WireGuard, CurveCP, and MinimaLT. For each protocol, this document
 provides a brief description. Then, it describes the interfaces between
 these protocols and transports in and the interfaces between these protocols and
 applications in .
 A Transport Services system exposes an interface for applications to
 access various (secure) transport protocol features. The security
 protocols included in this survey represent a superset of functionality
 and features a Transport Services system may need to support both
 internally and externally (via an API) for applications . Ubiquitous IETF
 protocols such as (D)TLS, as well as non-standard protocols such as
 gQUIC, are included despite overlapping features. As such, this survey
 is not limited to protocols developed within the scope or context of the
 IETF. Outside of this candidate set, protocols that do not offer new
 features are omitted. For example, newer protocols such as WireGuard
 make unique design choices that have implications for and limitations on
 application usage. In contrast, protocols such as secure shell (SSH)
 , GRE , the Layer 2 Tunneling Protocol (L2TP) , and Application Layer Transport
 Security (ALTS) are omitted since they do not provide interfaces
 deemed unique.
 Authentication-only protocols such as the TCP Authentication Option
 (TCP-AO) and the IPsec
 Authentication Header (AH) are
 excluded from this survey. TCP-AO adds authentication to long-lived TCP
 connections, e.g., replay protection with per-packet Message
 Authentication Codes. (TCP-AO obsoletes TCP MD5 "signature" options
 specified in .) One primary use
 case of TCP-AO is for protecting BGP connections. Similarly, AH adds
 per-datagram authentication and integrity, along with replay
 protection. Despite these improvements, neither protocol sees general
 use and both lack critical properties important for emergent transport
 security protocols, such as confidentiality and privacy
 protections. Such protocols are thus omitted from this survey.
 This document only surveys point-to-point protocols; multicast protocols are out of scope.

 Goals
 This survey is intended to help identify the most common interface
 surfaces between security protocols and transport protocols, and
 between security protocols and applications.
 One of the goals of the Transport Services effort is to define a
 common interface for using transport protocols that allows software
 using transport protocols to easily adopt new protocols that provide
 similar feature sets. The survey of the dependencies security
 protocols have upon transport protocols can guide implementations in
 determining which transport protocols are appropriate to be able to
 use beneath a given security protocol. For example, a security
 protocol that expects to run over a reliable stream of bytes, like
 TLS, restricts the set of transport protocols that can be used to
 those that offer a reliable stream of bytes.
 Defining the common interfaces that security protocols provide to
 applications also allows interfaces to be designed in a way that
 common functionality can use the same APIs. For example, many security
 protocols that provide authentication let the application be involved
 in peer identity validation. Any interface to use a secure transport
 protocol stack thus needs to allow applications to perform this action
 during connection establishment.

 Non-goals
 While this survey provides similar analysis to that which was performed for transport protocols in ,
it is important to distinguish that the use of security protocols requires more consideration.
 It is not a goal to allow software implementations to automatically
 switch between different security protocols, even where their
 interfaces to transport and applications are equivalent. Even between
 versions, security protocols have subtly different guarantees and
 vulnerabilities. Thus, any implementation needs to only use the set of
 protocols and algorithms that are requested by applications or by a
 system policy.
 Different security protocols also can use incompatible notions of
 peer identity and authentication, and cryptographic options. It is not
 a goal to identify a common set of representations for these
 concepts.
 The protocols surveyed in this document represent a superset of
 functionality and features a Transport Services system may need to
 support. It does not list all transport protocols that a Transport
 Services system may need to implement, nor does it mandate that a
 Transport Service system implement any particular protocol.
 A Transport Services system may implement any secure transport
 protocol that provides the described features. In doing so, it may
 need to expose an interface to the application to configure these
 features.

 Terminology
 The following terms are used throughout this document to describe the
 roles and interactions of transport security protocols (some of which
 are also defined in):

 Transport Feature:
 a specific end-to-end feature that the
 transport layer provides to an application. Examples include
 confidentiality, reliable delivery, ordered delivery, and
 message-versus-stream orientation.
 Transport Service:
 a set of Transport Features, without an
 association to any given framing protocol, that provides
 functionality to an application.
 Transport Services system:
 a software component that exposes an
 interface to different Transport Services to an application.
 Transport Protocol:
 an implementation that provides one or more
 different Transport Services using a specific framing and header
 format on the wire. A Transport Protocol services an application,
 whether directly or in conjunction with a security protocol.
 Application:
 an entity that uses a transport protocol for
 end-to-end delivery of data across the network. This may also be an
 upper layer protocol or tunnel encapsulation.
 Security Protocol:
 a defined network protocol that implements one
 or more security features, such as authentication, encryption, key
 generation, session resumption, and privacy. Security protocols may be
 used alongside transport protocols, and in combination with other
 security protocols when appropriate.
 Handshake Protocol:
 a protocol that enables peers to validate each
 other and to securely establish shared cryptographic context.
 Record:
 framed protocol messages.
 Record Protocol:
 a security protocol that allows data to be
 divided into manageable blocks and protected using shared
 cryptographic context.
 Session:
 an ephemeral security association between
 applications.
 Connection:
 the shared state of two or more endpoints that
 persists across messages that are transmitted between these
 endpoints. A connection is a transient participant of a session, and a
 session generally lasts between connection instances.
 Peer:
 an endpoint application party to a session.
 Client:
 the peer responsible for initiating a session.
 Server:
 the peer responsible for responding to a session initiation.

 Transport Security Protocol Descriptions
 This section contains brief transport and security descriptions of
 various security protocols currently used to protect data being sent
 over a network. These protocols are grouped based on where in the
 protocol stack they are implemented, which influences which parts of a
 packet they protect: Generic application payload, application payload
 for specific application-layer protocols, both application payload and
 transport headers, or entire IP packets.
 Note that not all security protocols can be easily categorized, e.g.,
 as some protocols can be used in different ways or in combination with
 other protocols. One major reason for this is that channel security
 protocols often consist of two components:

 A handshake protocol, which is responsible for negotiating parameters, authenticating the
endpoints, and establishing shared keys.
 A record protocol, which is used to encrypt traffic using keys and parameters provided by the
handshake protocol.

 For some protocols, such as tcpcrypt, these two components are
 tightly integrated. In contrast, for IPsec, these components are
 implemented in separate protocols: AH and the Encapsulating Security Payload
 (ESP) are record protocols, which can use keys supplied by the handshake
 protocol Internet Key Exchange Protocol Version 2 (IKEv2), by other
 handshake protocols, or by manual configuration. Moreover, some
 protocols can be used in different ways: While the base TLS protocol as
 defined in has an integrated
 handshake and record protocol, TLS or DTLS can also be used to negotiate
 keys for other protocols, as in DTLS-SRTP, or the handshake protocol can
 be used with a separate record layer, as in QUIC .

 Application Payload Security Protocols
 The following protocols provide security that protects application payloads sent over a
transport. They do not specifically protect any headers used for transport-layer functionality.

 TLS
 TLS (Transport Layer Security) is a common protocol used to establish a secure
 session between two endpoints. Communication over this session
 prevents "eavesdropping, tampering, and message forgery." TLS
 consists of a tightly coupled handshake and record protocol. The
 handshake protocol is used to authenticate peers, negotiate protocol
 options such as cryptographic algorithms, and derive
 session-specific keying material. The record protocol is used to
 marshal and, once the handshake has sufficiently progressed,
 encrypt data from one peer to the other. This data may contain
 handshake messages or raw application data.

 DTLS
 DTLS (Datagram Transport Layer Security) is based on TLS, but differs in that it is
 designed to run over unreliable datagram protocols like UDP instead
 of TCP. DTLS modifies the protocol to make sure it can still
 provide equivalent security guarantees to TLS with the exception of
 order protection/non-replayability. DTLS was designed to be as
 similar to TLS as possible, so this document assumes that all
 properties from TLS are carried over except where specified.

 Application-Specific Security Protocols
 The following protocols provide application-specific security by protecting
application payloads used for specific use cases. Unlike the protocols above,
these are not intended for generic application use.

 Secure RTP
 Secure RTP (SRTP) is a profile for RTP that provides confidentiality,
message authentication, and replay protection for RTP data packets
and RTP control protocol (RTCP) packets .
SRTP provides a record layer only, and requires a separate handshake
protocol to provide key agreement and identity management.
 The commonly used handshake protocol for SRTP is DTLS, in the form of
DTLS-SRTP . This is an extension to DTLS that negotiates
the use of SRTP as the record layer and describes how to export keys
for use with SRTP.
 ZRTP is an alternative key agreement and identity management
protocol for SRTP. ZRTP Key agreement is performed using a Diffie-Hellman
key exchange that runs on the media path. This generates a shared secret
that is then used to generate the master key and salt for SRTP.

 Transport-Layer Security Protocols
 The following security protocols provide protection for both application payloads and
headers that are used for Transport Services.

 IETF QUIC
 QUIC is a new standards-track transport protocol that runs over UDP, loosely based on Google's
original proprietary gQUIC protocol (See for more details).
The QUIC transport layer itself provides support for data confidentiality and integrity. This requires
keys to be derived with a separate handshake protocol. A mapping for QUIC of TLS 1.3
has been specified to provide this handshake.

 Google QUIC
 Google QUIC (gQUIC) is a UDP-based multiplexed streaming protocol
 designed and deployed by Google following experience from deploying
 SPDY, the proprietary predecessor to HTTP/2. gQUIC was originally
 known as "QUIC"; this document uses gQUIC to unambiguously
 distinguish it from the standards-track IETF QUIC. The proprietary
 technical forebear of IETF QUIC, gQUIC was originally designed with
 tightly integrated security and application data transport
 protocols.

 tcpcrypt
 Tcpcrypt is a lightweight extension to the TCP protocol for opportunistic encryption. Applications may
use tcpcrypt's unique session ID for further application-level authentication. Absent this authentication,
tcpcrypt is vulnerable to active attacks.

 MinimaLT
 MinimaLT is a UDP-based transport security protocol designed to offer confidentiality,
mutual authentication, DoS prevention, and connection mobility. One major
goal of the protocol is to leverage existing protocols to obtain server-side configuration
information used to more quickly bootstrap a connection. MinimaLT uses a variant of TCP's
congestion control algorithm.

 CurveCP
 CurveCP is a UDP-based
 transport security that, unlike many other security protocols, is
 based entirely upon public key algorithms. CurveCP provides its own
 reliability for application data as part of its protocol.

 Packet Security Protocols
 The following protocols provide protection for IP packets. These
 are generally used as tunnels, such as for Virtual Private Networks
 (VPNs). Often, applications will not interact directly with these
 protocols. However, applications that implement tunnels will interact
 directly with these protocols.

 IPsec
 IKEv2 and ESP together form the modern IPsec
 protocol suite that encrypts and authenticates IP packets, either
 for creating tunnels (tunnel-mode) or for direct transport
 connections (transport-mode). This suite of protocols separates out
 the key generation protocol (IKEv2) from the transport encryption
 protocol (ESP). Each protocol can be used independently, but this
 document considers them together, since that is the most common
 pattern.

 WireGuard
 WireGuard is an IP-layer protocol designed as an alternative to IPsec
for certain use cases. It uses UDP to encapsulate IP datagrams between peers.
Unlike most transport security protocols, which rely on Public Key Infrastructure (PKI)
for peer authentication, WireGuard authenticates peers using pre-shared public keys
delivered out of band, each of which is bound to one or more IP addresses.
Moreover, as a protocol suited for VPNs, WireGuard offers no extensibility, negotiation,
or cryptographic agility.

 OpenVPN
 OpenVPN is a commonly used protocol designed as an alternative to
IPsec. A major goal of this protocol is to provide a VPN that is simple to
configure and works over a variety of transports. OpenVPN encapsulates either
IP packets or Ethernet frames within a secure tunnel and can run over either UDP or TCP.
For key establishment, OpenVPN can either use TLS as a handshake protocol or use pre-shared keys.

 Transport Dependencies
 Across the different security protocols listed above, the primary dependency on transport
protocols is the presentation of data: either an unbounded stream of bytes, or framed
messages. Within protocols that rely on the transport for message framing, most are
built to run over transports that inherently provide framing, like UDP, but some also define
how their messages can be framed over byte-stream transports.

 Reliable Byte-Stream Transports
 The following protocols all depend upon running on a transport protocol that provides
a reliable, in-order stream of bytes. This is typically TCP.
 Application Payload Security Protocols:

 TLS

 Transport-Layer Security Protocols:

 tcpcrypt

 Unreliable Datagram Transports
 The following protocols all depend on the transport protocol to provide message framing
to encapsulate their data. These protocols are built to run using UDP, and thus do not
have any requirement for reliability. Running these protocols over a protocol that
does provide reliability will not break functionality but may lead to multiple layers
of reliability if the security protocol is encapsulating other transport protocol traffic.
 Application Payload Security Protocols:

 DTLS
 ZRTP
 SRTP

 Transport-Layer Security Protocols:

 QUIC
 MinimaLT
 CurveCP

 Packet Security Protocols:

 IPsec
 WireGuard
 OpenVPN

 Datagram Protocols with Defined Byte-Stream Mappings
 Of the protocols listed above that depend on the transport for message framing, some
do have well-defined mappings for sending their messages over byte-stream transports
like TCP.
 Application Payload Security Protocols:

 DTLS when used as a handshake protocol for SRTP
 ZRTP
 SRTP

 Packet Security Protocols:

 IPsec

 Transport-Specific Dependencies
 One protocol surveyed, tcpcrypt, has a direct dependency on a
 feature in the transport that is needed for its
 functionality. Specifically, tcpcrypt is designed to run on top of
 TCP and uses the TCP Encryption Negotiation Option (TCP-ENO) to negotiate its protocol
 support.
 QUIC, CurveCP, and MinimaLT provide both transport functionality and security functionality. They
depend on running over a framed protocol like UDP, but they add their own layers of
reliability and other Transport Services. Thus, an application that uses one of these protocols
cannot decouple the security from transport functionality.

 Application Interface
 This section describes the interface exposed by the security protocols described above.
We partition these interfaces into
pre-connection (configuration), connection, and post-connection interfaces, following
conventions in and .
 Note that not all protocols support each interface.
The table in summarizes which protocol exposes which of the interfaces.
In the following sections, we provide abbreviations of the interface names to use in the summary table.

 Pre-connection Interfaces
 Configuration interfaces are used to configure the security protocols before a
handshake begins or keys are negotiated.

 Identities and Private Keys (IPK):

 The application can provide its identity, credentials (e.g.,
	 certificates), and private keys, or mechanisms to access these, to
	 the security protocol to use during handshakes.

 TLS
 DTLS
 ZRTP
 QUIC
 MinimaLT
 CurveCP
 IPsec
 WireGuard
 OpenVPN

 Supported Algorithms (Key Exchange, Signatures, and Ciphersuites) (ALG):

The application can choose the algorithms that are supported for key exchange,
signatures, and ciphersuites.

 TLS
 DTLS
 ZRTP
 QUIC
 tcpcrypt
 MinimaLT
 IPsec
 OpenVPN

 Extensions (EXT):

The application enables or configures extensions that are to be negotiated by
the security protocol, such as Application-Layer Protocol Negotiation (ALPN) .

 TLS
 DTLS
 QUIC

 Session Cache Management (CM):

 The application provides the
 ability to save and retrieve session state (such as tickets,
 keying material, and server parameters) that may be used to resume
 the security session.

 TLS
 DTLS
 ZRTP
 QUIC
 tcpcrypt
 MinimaLT

 Authentication Delegation (AD):

The application provides access to a separate module that will provide authentication,
using the Extensible Authentication Protocol (EAP) for example.

 IPsec
 tcpcrypt

 Pre-Shared Key Import (PSKI):

Either the handshake protocol or the application directly can supply pre-shared keys for use
in encrypting (and authenticating) communication with a peer.

 TLS
 DTLS
 ZRTP
 QUIC
 tcpcrypt
 MinimaLT
 IPsec
 WireGuard
 OpenVPN

 Connection Interfaces

 Identity Validation (IV):

During a handshake, the security protocol will conduct identity validation of the peer.
This can offload validation or occur transparently to the application.

 TLS
 DTLS
 ZRTP
 QUIC
 MinimaLT
 CurveCP
 IPsec
 WireGuard
 OpenVPN

 Source Address Validation (SAV):

The handshake protocol may interact with the transport protocol or application to
validate the address of the remote peer that has sent data. This involves sending a cookie
exchange to avoid DoS attacks. (This list omits protocols that depend on TCP and therefore
implicitly perform SAV.)

 DTLS
 QUIC
 IPsec
 WireGuard

 Post-connection Interfaces

 Connection Termination (CT):

The security protocol may be instructed to tear down its connection and session information.
This is needed by some protocols, e.g., to prevent application data truncation attacks in
which an attacker terminates an underlying insecure connection-oriented protocol to terminate
the session.

 TLS
 DTLS
 ZRTP
 QUIC
 tcpcrypt
 MinimaLT
 IPsec
 OpenVPN

 Key Update (KU):

The handshake protocol may be instructed to update its keying material, either
by the application directly or by the record protocol sending a key expiration event.

 TLS
 DTLS
 QUIC
 tcpcrypt
 MinimaLT
 IPsec

 Shared Secret Key Export (SSKE):

The handshake protocol may provide an interface for producing shared secrets for application-specific uses.

 TLS
 DTLS
 tcpcrypt
 IPsec
 OpenVPN
 MinimaLT

 Key Expiration (KE):

 The record protocol can signal that its
 keys are expiring due to reaching a time-based deadline or a
 use-based deadline (number of bytes that have been encrypted with
 the key). This interaction is often limited to signaling between
 the record layer and the handshake layer.

 IPsec

 Mobility Events (ME):

 The record protocol can be signaled that
it is being migrated to another transport or interface due to connection
mobility, which may reset address and state validation and induce state
changes such as use of a new Connection Identifier (CID).

 DTLS (version 1.3 only)
 QUIC
 MinimaLT
 CurveCP
 IPsec
 WireGuard

 Summary of Interfaces Exposed by Protocols
 The following table summarizes which protocol exposes which interface.

 Protocol
 IPK
 ALG
 EXT
 CM
 AD
 PSKI
 IV
 SAV
 CT
 KU
 SSKE
 KE
 ME

 TLS
 x
 x
 x
 x

 x
 x

 x
 x
 x

 DTLS
 x
 x
 x
 x

 x
 x
 x
 x
 x
 x

 x

 ZRTP
 x
 x

 x

 x
 x

 x

 QUIC
 x
 x
 x
 x

 x
 x
 x
 x
 x

 x

 tcpcrypt

 x

 x
 x
 x

 x
 x
 x

 MinimaLT
 x
 x

 x

 x
 x

 x
 x
 x

 x

 CurveCP
 x

 x

 x

 IPsec
 x
 x

 x
 x
 x
 x
 x
 x
 x
 x
 x

 WireGuard
 x

 x
 x
 x

 x

 OpenVPN
 x
 x

 x
 x

 x

 x

 x = Interface is exposed
(blank) = Interface is not exposed

 IANA Considerations
 This document has no IANA actions.

 Security Considerations
 This document summarizes existing transport security protocols and their interfaces.
It does not propose changes to or recommend usage of reference protocols. Moreover,
no claims of security and privacy properties beyond those guaranteed by the protocols
discussed are made. For example, metadata leakage via timing side channels and traffic
analysis may compromise any protocol discussed in this survey. Applications using
Security Interfaces should take such limitations into consideration when using a particular
protocol implementation.

 Privacy Considerations
 Analysis of how features improve or degrade privacy is intentionally omitted from this survey.
All security protocols surveyed generally improve privacy by using encryption to reduce information
leakage. However, varying amounts of metadata remain in the clear across each
protocol. For example, client and server certificates are sent in cleartext in TLS
1.2 , whereas they are encrypted in TLS 1.3 . A survey of privacy
features, or lack thereof, for various security protocols could be addressed in a
separate document.

 Informative References

 Application Layer Transport Security

 CurveCP: Usable security for the Internet

 CurveCP

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

 RTFM, Inc.

 Arm Limited

 Google, Inc.

 This document specifies Version 1.3 of the Datagram Transport Layer
 Security (DTLS) protocol. DTLS 1.3 allows client/server applications
 to communicate over the Internet in a way that is designed to prevent
 eavesdropping, tampering, and message forgery.

 The DTLS 1.3 protocol is intentionally based on the Transport Layer
 Security (TLS) 1.3 protocol and provides equivalent security
 guarantees with the exception of order protection/non-replayability.
 Datagram semantics of the underlying transport are preserved by the
 DTLS protocol.

 Work in Progress

 MinimaLT: minimal-latency networking through better security

 United States Military Academy, West Point, NY, USA

 University of Illinois at Chicago, Chicago, IL, USA

 University of Illinois at Chicago, Chicago, IL, USA

 University of Illinois at Chicago, Chicago, IL, USA

 TU Eindhoven, Eindhoven, Netherlands

 OpenVPN cryptographic layer

 OpenVPN

 Using TLS to Secure QUIC

 Mozilla

 sn3rd

 This document describes how Transport Layer Security (TLS) is used to
 secure QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/search/?email_list=quic.

 Working Group information can be found at https://github.com/quicwg;
 source code and issues list for this draft can be found at
 https://github.com/quicwg/base-drafts/labels/-tls.

 Work in Progress

 QUIC: A UDP-Based Multiplexed and Secure Transport

 Fastly

 Mozilla

 This document defines the core of the QUIC transport protocol.
 Accompanying documents describe QUIC's loss detection and congestion
 control and the use of TLS for key negotiation.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org (mailto:quic@ietf.org)), which is
 archived at https://mailarchive.ietf.org/arch/search/?email_list=quic

 Working Group information can be found at https://github.com/quicwg;
 source code and issues list for this draft can be found at
 https://github.com/quicwg/base-drafts/labels/-transport.

 Work in Progress

 Protection of BGP Sessions via the TCP MD5 Signature Option

 This memo describes a TCP extension to enhance security for BGP. [STANDARDS-TRACK]

 Key and Sequence Number Extensions to GRE

 This document describes extensions by which two fields, Key and Sequence Number, can be optionally carried in the GRE Header. [STANDARDS-TRACK]

 The Secure Real-time Transport Protocol (SRTP)

 This document describes the Secure Real-time Transport Protocol (SRTP), a profile of the Real-time Transport Protocol (RTP), which can provide confidentiality, message authentication, and replay protection to the RTP traffic and to the control traffic for RTP, the Real-time Transport Control Protocol (RTCP). [STANDARDS-TRACK]

 Extensible Authentication Protocol (EAP)

 This document defines the Extensible Authentication Protocol (EAP), an authentication framework which supports multiple authentication methods. EAP typically runs directly over data link layers such as Point-to-Point Protocol (PPP) or IEEE 802, without requiring IP. EAP provides its own support for duplicate elimination and retransmission, but is reliant on lower layer ordering guarantees. Fragmentation is not supported within EAP itself; however, individual EAP methods may support this. This document obsoletes RFC 2284. A summary of the changes between this document and RFC 2284 is available in Appendix A. [STANDARDS-TRACK]

 The Secure Shell (SSH) Transport Layer Protocol

 The Secure Shell (SSH) is a protocol for secure remote login and other secure network services over an insecure network.
 This document describes the SSH transport layer protocol, which typically runs on top of TCP/IP. The protocol can be used as a basis for a number of secure network services. It provides strong encryption, server authentication, and integrity protection. It may also provide compression.
 Key exchange method, public key algorithm, symmetric encryption algorithm, message authentication algorithm, and hash algorithm are all negotiated.
 This document also describes the Diffie-Hellman key exchange method and the minimal set of algorithms that are needed to implement the SSH transport layer protocol. [STANDARDS-TRACK]

 IP Authentication Header

 This document describes an updated version of the IP Authentication Header (AH), which is designed to provide authentication services in IPv4 and IPv6. This document obsoletes RFC 2402 (November 1998). [STANDARDS-TRACK]

 IP Encapsulating Security Payload (ESP)

 This document describes an updated version of the Encapsulating Security Payload (ESP) protocol, which is designed to provide a mix of security services in IPv4 and IPv6. ESP is used to provide confidentiality, data origin authentication, connectionless integrity, an anti-replay service (a form of partial sequence integrity), and limited traffic flow confidentiality. This document obsoletes RFC 2406 (November 1998). [STANDARDS-TRACK]

 IKEv2 Mobility and Multihoming Protocol (MOBIKE)

 This document describes the MOBIKE protocol, a mobility and multihoming extension to Internet Key Exchange (IKEv2). MOBIKE allows the IP addresses associated with IKEv2 and tunnel mode IPsec Security Associations to change. A mobile Virtual Private Network (VPN) client could use MOBIKE to keep the connection with the VPN gateway active while moving from one address to another. Similarly, a multihomed host could use MOBIKE to move the traffic to a different interface if, for instance, the one currently being used stops working. [STANDARDS-TRACK]

 Framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP) Packets over Connection-Oriented Transport

 This memo defines a method for framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP) packets onto connection-oriented transport (such as TCP). The memo also defines how session descriptions may specify RTP streams that use the framing method. [STANDARDS-TRACK]

 The Transport Layer Security (TLS) Protocol Version 1.2

 This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]

 Layer 2 Tunneling Protocol Version 3 (L2TPv3) Extended Circuit Status Values

 This document defines additional Layer 2 Tunneling Protocol Version 3 (L2TPv3) bit values to be used within the "Circuit Status" Attribute Value Pair (AVP) to communicate finer-grained error states for Attachment Circuits (ACs) and pseudowires (PWs). It also generalizes the Active bit and deprecates the use of the New bit in the Circuit Status AVP, updating RFC 3931, RFC 4349, RFC 4454, RFC 4591, and RFC 4719. [STANDARDS-TRACK]

 Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)

 This document describes a Datagram Transport Layer Security (DTLS) extension to establish keys for Secure RTP (SRTP) and Secure RTP Control Protocol (SRTCP) flows. DTLS keying happens on the media path, independent of any out-of-band signalling channel present. [STANDARDS-TRACK]

 The TCP Authentication Option

 This document specifies the TCP Authentication Option (TCP-AO), which obsoletes the TCP MD5 Signature option of RFC 2385 (TCP MD5). TCP-AO specifies the use of stronger Message Authentication Codes (MACs), protects against replays even for long-lived TCP connections, and provides more details on the association of security with TCP connections than TCP MD5. TCP-AO is compatible with either a static Master Key Tuple (MKT) configuration or an external, out-of-band MKT management mechanism; in either case, TCP-AO also protects connections when using the same MKT across repeated instances of a connection, using traffic keys derived from the MKT, and coordinates MKT changes between endpoints. The result is intended to support current infrastructure uses of TCP MD5, such as to protect long-lived connections (as used, e.g., in BGP and LDP), and to support a larger set of MACs with minimal other system and operational changes. TCP-AO uses a different option identifier than TCP MD5, even though TCP-AO and TCP MD5 are never permitted to be used simultaneously. TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5. [STANDARDS-TRACK]

 ZRTP: Media Path Key Agreement for Unicast Secure RTP

 This document defines ZRTP, a protocol for media path Diffie-Hellman exchange to agree on a session key and parameters for establishing unicast Secure Real-time Transport Protocol (SRTP) sessions for Voice over IP (VoIP) applications. The ZRTP protocol is media path keying because it is multiplexed on the same port as RTP and does not require support in the signaling protocol. ZRTP does not assume a Public Key Infrastructure (PKI) or require the complexity of certificates in end devices. For the media session, ZRTP provides confidentiality, protection against man-in-the-middle (MiTM) attacks, and, in cases where the signaling protocol provides end-to-end integrity protection, authentication. ZRTP can utilize a Session Description Protocol (SDP) attribute to provide discovery and authentication through the signaling channel. To provide best effort SRTP, ZRTP utilizes normal RTP/AVP (Audio-Visual Profile) profiles. ZRTP secures media sessions that include a voice media stream and can also secure media sessions that do not include voice by using an optional digital signature. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Datagram Transport Layer Security Version 1.2

 This document specifies version 1.2 of the Datagram Transport Layer Security (DTLS) protocol. The DTLS protocol provides communications privacy for datagram protocols. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees. Datagram semantics of the underlying transport are preserved by the DTLS protocol. This document updates DTLS 1.0 to work with TLS version 1.2. [STANDARDS-TRACK]

 Internet Key Exchange Protocol Version 2 (IKEv2)

 This document describes version 2 of the Internet Key Exchange (IKE) protocol. IKE is a component of IPsec used for performing mutual authentication and establishing and maintaining Security Associations (SAs). This document obsoletes RFC 5996, and includes all of the errata for it. It advances IKEv2 to be an Internet Standard.

 Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension

 This document describes a Transport Layer Security (TLS) extension for application-layer protocol negotiation within the TLS handshake. For instances in which multiple application protocols are supported on the same TCP or UDP port, this extension allows the application layer to negotiate which protocol will be used within the TLS connection.

 Registering Values of the SDP 'proto' Field for Transporting RTP Media over TCP under Various RTP Profiles

 The Real-time Transport Protocol (RTP) specification establishes a registry of profile names for use by higher-level control protocols, such as the Session Description Protocol (SDP), to refer to the transport methods. This specification describes the following new SDP transport protocol identifiers for transporting RTP Media over TCP: 'TCP/RTP/AVPF', 'TCP/RTP/SAVP', 'TCP/RTP/SAVPF', 'TCP/DTLS/RTP/SAVP', 'TCP/DTLS/RTP/SAVPF', 'TCP/TLS/RTP/AVP', and 'TCP/TLS/RTP/AVPF'.

 Services Provided by IETF Transport Protocols and Congestion Control Mechanisms

 This document describes, surveys, and classifies the protocol mechanisms provided by existing IETF protocols, as background for determining a common set of transport services. It examines the Transmission Control Protocol (TCP), Multipath TCP, the Stream Control Transmission Protocol (SCTP), the User Datagram Protocol (UDP), UDP-Lite, the Datagram Congestion Control Protocol (DCCP), the Internet Control Message Protocol (ICMP), the Real-Time Transport Protocol (RTP), File Delivery over Unidirectional Transport / Asynchronous Layered Coding (FLUTE/ALC) for Reliable Multicast, NACK- Oriented Reliable Multicast (NORM), Transport Layer Security (TLS), Datagram TLS (DTLS), and the Hypertext Transport Protocol (HTTP), when HTTP is used as a pseudotransport. This survey provides background for the definition of transport services within the TAPS working group.

 TCP Encapsulation of IKE and IPsec Packets

 This document describes a method to transport Internet Key Exchange Protocol (IKE) and IPsec packets over a TCP connection for traversing network middleboxes that may block IKE negotiation over UDP. This method, referred to as "TCP encapsulation", involves sending both IKE packets for Security Association establishment and Encapsulating Security Payload (ESP) packets over a TCP connection. This method is intended to be used as a fallback option when IKE cannot be negotiated over UDP.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 TCP-ENO: Encryption Negotiation Option

 Despite growing adoption of TLS, a significant fraction of TCP traffic on the Internet remains unencrypted. The persistence of unencrypted traffic can be attributed to at least two factors. First, some legacy protocols lack a signaling mechanism (such as a STARTTLS command) by which to convey support for encryption, thus making incremental deployment impossible. Second, legacy applications themselves cannot always be upgraded and therefore require a way to implement encryption transparently entirely within the transport layer. The TCP Encryption Negotiation Option (TCP-ENO) addresses both of these problems through a new TCP option kind providing out-of-band, fully backward-compatible negotiation of encryption.

 Cryptographic Protection of TCP Streams (tcpcrypt)

 This document specifies "tcpcrypt", a TCP encryption protocol designed for use in conjunction with the TCP Encryption Negotiation Option (TCP-ENO). Tcpcrypt coexists with middleboxes by tolerating resegmentation, NATs, and other manipulations of the TCP header. The protocol is self-contained and specifically tailored to TCP implementations, which often reside in kernels or other environments in which large external software dependencies can be undesirable. Because the size of TCP options is limited, the protocol requires one additional one-way message latency to perform key exchange before application data can be transmitted. However, the extra latency can be avoided between two hosts that have recently established a previous tcpcrypt connection.

 An Architecture for Transport Services

 Apple Inc.

 Google Switzerland GmbH

 Karlstad University

 University of Aberdeen

 University of Glasgow

 TU Berlin

 Cloudflare

 This document describes an architecture for exposing transport
 protocol features to applications for network communication, the
 Transport Services architecture. The Transport Services Application
 Programming Interface (API) is based on an asynchronous, event-driven
 interaction pattern. It uses messages for representing data transfer
 to applications, and it describes how implementations can use
 multiple IP addresses, multiple protocols, and multiple paths, and
 provide multiple application streams. This document further defines
 common terminology and concepts to be used in definitions of
 Transport Services APIs and implementations.

 Work in Progress

 An Abstract Application Layer Interface to Transport Services

 Google Switzerland GmbH

 University of Oslo

 Netflix

 University of Aberdeen

 Ericsson

 University of Glasgow

 TU Berlin

 Cloudflare

 Apple Inc.

 This document describes an abstract application programming
 interface, API, to the transport layer, following the Transport
 Services Architecture. It supports the asynchronous, atomic
 transmission of messages over transport protocols and network paths
 dynamically selected at runtime. It is intended to replace the
 traditional BSD sockets API as the common interface to the transport
 layer, in an environment where endpoints could select from multiple
 interfaces and potential transport protocols.

 Work in Progress

 WireGuard: Next Generation Kernel Network Tunnel

 WireGuard

 Acknowledgments
 The authors would like to thank ,
 , , , , and
 for their input and feedback on this document.

 Authors' Addresses

 TU Berlin

 Marchstr. 23
 Berlin
 10587
 Germany

 ietf@tenghardt.net

 Apple Inc.

 One Apple Park Way
 Cupertino
 California
 95014
 United States of America

 tpauly@apple.com

 University of Glasgow

 School of Computing Science
 Glasgow
 G12 8QQ
 United Kingdom

 csp@csperkins.org

 Akamai Technologies, Inc.

 150 Broadway
 Cambridge
 MA
 02144
 United States of America

 krose@krose.org

 Cloudflare

 101 Townsend St
 San Francisco
 United States of America

 caw@heapingbits.net

