
RFC 9061
A YANG Data Model for IPsec Flow Protection Based
on Software‑Defined Networking (SDN)

Abstract
This document describes how to provide IPsec-based flow protection (integrity and
confidentiality) by means of an Interface to Network Security Function (I2NSF) Controller. It
considers two main well-known scenarios in IPsec: gateway-to-gateway and host-to-host. The
service described in this document allows the configuration and monitoring of IPsec Security
Associations (IPsec SAs) from an I2NSF Controller to one or several flow-based Network Security
Functions (NSFs) that rely on IPsec to protect data traffic.

This document focuses on the I2NSF NSF-Facing Interface by providing YANG data models for
configuring the IPsec databases, namely Security Policy Database (SPD), Security Association
Database (SAD), Peer Authorization Database (PAD), and Internet Key Exchange Version 2
(IKEv2). This allows IPsec SA establishment with minimal intervention by the network
administrator. This document defines three YANG modules, but it does not define any new
protocol.

Stream: Internet Engineering Task Force (IETF)
RFC: 9061
Category: Standards Track
Published: July 2021 
ISSN: 2070-1721
Authors:    R. Marin-Lopez

University of Murcia
G. Lopez-Millan
University of Murcia

F. Pereniguez-Garcia
University Defense Center

Status of This Memo 
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9061

Marin-Lopez, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9061
https://www.rfc-editor.org/info/rfc9061


Copyright Notice 
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents ( ) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Table of Contents 
1.  Introduction

2.  Terminology

2.1.  Requirements Language

3.  SDN-Based IPsec Management Description

3.1.  IKE Case: IKEv2/IPsec in the NSF

3.2.  IKE-less Case: IPsec (No IKEv2) in the NSF

4.  IKE Case vs. IKE-less Case

4.1.  Rekeying Process

4.2.  NSF State Loss

4.3.  NAT Traversal

4.4.  NSF Registration and Discovery

5.  YANG Configuration Data Models

5.1.  The 'ietf-i2nsf-ikec' Module

5.1.1.  Data Model Overview

5.1.2.  YANG Module

5.2.  The 'ietf-i2nsf-ike' Module

5.2.1.  Data Model Overview

5.2.2.  Example Usage

5.2.3.  YANG Module

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 2

https://trustee.ietf.org/license-info


5.3.  The 'ietf-i2nsf-ikeless' Module

5.3.1.  Data Model Overview

5.3.2.  Example Usage

5.3.3.  YANG Module

6.  IANA Considerations

7.  Security Considerations

7.1.  IKE Case

7.2.  IKE-less Case

7.3.  YANG Modules

8.  References

8.1.  Normative References

8.2.  Informative References

Appendix A.  XML Configuration Example for IKE Case (Gateway-to-Gateway)

Appendix B.  XML Configuration Example for IKE-less Case (Host-to-Host)

Appendix C.  XML Notification Examples

Appendix D.  Operational Use Case Examples

D.1.  Example of IPsec SA Establishment

D.1.1.  IKE Case

D.1.2.  IKE-less Case

D.2.  Example of the Rekeying Process in IKE-less Case

D.3.  Example of Managing NSF State Loss in the IKE-less Case

Acknowledgements

Authors' Addresses

1. Introduction 
Software-Defined Networking (SDN) is an architecture that enables administrators to directly
program, orchestrate, control, and manage network resources through software. The SDN
paradigm relocates the control of network resources to a centralized entity, namely the SDN
Controller. SDN Controllers configure and manage distributed network resources and provide an
abstracted view of the network resources to SDN applications. SDN applications can customize

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 3



and automate the operations (including management) of the abstracted network resources in a
programmable manner via this interface    

.

Recently, several network scenarios now demand a centralized way of managing different
security aspects, for example, Software-Defined WANs (SD-WANs). SD-WANs are SDN extensions
providing software abstractions to create secure network overlays over traditional WAN and
branch networks. SD-WANs utilize IPsec  as an underlying security protocol. The goal
of SD-WANs is to provide flexible and automated deployment from a centralized point to enable
on-demand network security services, such as IPsec Security Association (IPsec SA) management.
Additionally, Section  of  describes
another example use case for a cloud data center scenario. The use case in  states that
"dynamic key management is critical for securing the VPN and the distribution of policies". These
VPNs can be established using IPsec. The management of IPsec SAs in data centers using a
centralized entity is a scenario where the current specification may be applicable.

Therefore, with the growth of SDN-based scenarios where network resources are deployed in an
autonomous manner, a mechanism to manage IPsec SAs from a centralized entity becomes more
relevant in the industry.

In response to this need, the Interface to Network Security Functions (I2NSF) charter states that
the goal of this working group is "to define a set of software interfaces and data models for
controlling and monitoring aspects of physical and virtual NSFs". As defined in , a
Network Security Function (NSF) is "a function that is used to ensure integrity, confidentiality, or
availability of network communication; to detect unwanted network activity; or to block, or at
least mitigate, the effects of unwanted activity". This document pays special attention to flow-
based NSFs that ensure integrity and confidentiality by means of IPsec.

In fact,  states that "there is a need for a controller to create, manage,
and distribute various keys to distributed NSFs"; however, "there is a lack of a standard interface
to provision and manage security associations". Inspired by the SDN paradigm, the I2NSF
framework  defines a centralized entity, the I2NSF Controller, which manages one or
multiple NSFs through an I2NSF NSF-Facing Interface. In this document, an architecture is
defined for allowing the I2NSF Controller to carry out the key management procedures. More
specifically, three YANG data models are defined for the I2NSF NSF-Facing Interface, which
allows the I2NSF Controller to configure and monitor IPsec-enabled, flow-based NSFs.

The IPsec architecture  defines a clear separation between the processing to provide
security services to IP packets and the key management procedures to establish the IPsec SAs,
which allows centralizing the key management procedures in the I2NSF Controller. This
document considers two typical scenarios to autonomously manage IPsec SAs: gateway-to-
gateway and host-to-host . In these cases, hosts, gateways, or both may act as NSFs. Due
to its complexity, consideration for the host-to-gateway scenario is out of scope. The source of this
complexity comes from the fact that, in this scenario, the host may not be under the control of
the I2NSF Controller and, therefore, it is not configurable. Nevertheless, the I2NSF interfaces
defined in this document can be considered as a starting point to analyze and provide a solution
for the host-to-gateway scenario.

[RFC7149] [ITU-T.Y.3300] [ONF-SDN-Architecture] [ONF-
OpenFlow]

[RFC4301]

4.3.3 ("Client-Specific Security Policy in Cloud VPNs") [RFC8192]
[RFC8192]

[RFC8192]

Section 3.1.9 of [RFC8192]

[RFC8329]

[RFC4301]

[RFC6071]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8192#section-4.3.3
https://www.rfc-editor.org/rfc/rfc8192#section-4.3.3
https://www.rfc-editor.org/rfc/rfc8192#section-3.1.9


For the definition of the YANG data models for the I2NSF NSF-Facing Interface, this document
considers two general cases, namely:

IKE case. The NSF implements the Internet Key Exchange Version 2 (IKEv2) protocol and the
IPsec databases: the Security Policy Database (SPD), the Security Association Database (SAD),
and the Peer Authorization Database (PAD). The I2NSF Controller is in charge of provisioning
the NSF with the required information in the SPD and PAD (e.g., IKE credentials) and the IKE
protocol itself (e.g., parameters for the IKE_SA_INIT negotiation). 
IKE-less case. The NSF only implements the IPsec databases (no IKE implementation). The
I2NSF Controller will provide the required parameters to create valid entries in the SPD and
the SAD of the NSF. Therefore, the NSF will only have support for IPsec whereas key
management functionality is moved to the I2NSF Controller. 

In both cases, a YANG data model for the I2NSF NSF-Facing Interface is required to carry out this
provisioning in a secure manner between the I2NSF Controller and the NSF. Using YANG data
modeling language version 1.1  and based on YANG data models defined in 

 and  and the data structures defined in  and ,
this document defines the required interfaces with a YANG data model for configuration and
state data for IKE, PAD, SPD, and SAD (see Sections 5.1, 5.2, and 5.3). The proposed YANG data
model conforms to the Network Management Datastore Architecture (NMDA) defined in 

. Examples of the usage of these data models can be found in Appendices A, B, and C.

In summary, the objectives of this document are:

To describe the architecture for I2NSF-based IPsec management, which allows for the
establishment and management of IPsec Security Associations from the I2NSF Controller in
order to protect specific data flows between two flow-based NSFs implementing IPsec. 
To map this architecture to the I2NSF framework. 
To define the interfaces required to manage and monitor the IPsec SAs in the NSF from an
I2NSF Controller. YANG data models are defined for configuration and state data for IPsec
and IKEv2 management through the I2NSF NSF-Facing Interface. The YANG data models can
be used via existing protocols, such as the Network Configuration Protocol (NETCONF) 

 or RESTCONF . Thus, this document defines three YANG modules (see 
Section 5) but does not define any new protocol. 

1. 

2. 

[RFC7950] [netconf-
vpn] [TRAN-IPSECME-YANG] [RFC4301] [RFC7296]

[RFC8342]

• 

• 
• 

[RFC6241] [RFC8040]

2. Terminology 
This document uses the terminology described in , , , 

, , , and .

The following term is defined in :

Software-Defined Networking (SDN) 

The following terms are defined in :

Network Security Function (NSF) 

[ITU-T.Y.3300] [RFC8192] [RFC4301]
[RFC6437] [RFC7296] [RFC6241] [RFC8329]

[ITU-T.Y.3300]

• 

[RFC8192]

• 

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 5



flow-based NSF 

The following terms are defined in :

Peer Authorization Database (PAD) 
Security Association Database (SAD) 
Security Policy Database (SPD) 

The following two terms are related or have identical definition/usage in :

flow 
traffic flow 

The following term is defined in :

Internet Key Exchange Version 2 (IKEv2) 

The following terms are defined in :

configuration data 
configuration datastore 
state data 
startup configuration datastore 
running configuration datastore 

2.1. Requirements Language 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

• 

[RFC4301]

• 
• 
• 

[RFC6437]

• 
• 

[RFC7296]

• 

[RFC6241]

• 
• 
• 
• 
• 

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. SDN-Based IPsec Management Description 
As mentioned in Section 1, two cases are considered, depending on whether the NSF implements
IKEv2 or not: the IKE case and the IKE-less case.

3.1. IKE Case: IKEv2/IPsec in the NSF 
In this case, the NSF implements IPsec with IKEv2 support. The I2NSF Controller is in charge of
managing and applying IPsec connection information (determining which nodes need to start an
IKEv2/IPsec session, identifying the type of traffic to be protected, and deriving and delivering
IKEv2 credentials, such as a pre-shared key (PSK), certificates, etc.) and applying other IKEv2
configuration parameters (e.g., cryptographic algorithms for establishing an IKEv2 SA) to the NSF
necessary for the IKEv2 negotiation.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 6



With these entries, the IKEv2 implementation can operate to establish the IPsec SAs. The I2NSF
User establishes the IPsec requirements and information about the endpoints (through the I2NSF
Consumer-Facing Interface ), and the I2NSF Controller translates these requirements
into IKEv2, SPD, and PAD entries that will be installed into the NSF (through the I2NSF NSF-
Facing Interface). With that information, the NSF can just run IKEv2 to establish the required
IPsec SA (when the traffic flow needs protection). Figure 1 shows the different layers and
corresponding functionality.

I2NSF-based IPsec flow protection services provide dynamic and flexible management of IPsec
SAs in flow-based NSFs. In order to support this capability in the IKE case, a YANG data model for
IKEv2, SPD, and PAD configuration data and for IKEv2 state data needs to be defined for the
I2NSF NSF-Facing Interface (see Section 5).

[RFC8329]

Figure 1: IKE Case: IKE/IPsec in the NSF 

            +-------------------------------------------+
            |          IPsec Management System          | I2NSF User
            +-------------------------------------------+
                                    |
                                    |  I2NSF Consumer-Facing
                                    |  Interface
            +-------------------------------------------+
            | IKEv2 Configuration, PAD and SPD Entries  | I2NSF
            |               Distribution                | Controller
            +-------------------------------------------+
                                    |
                                    |  I2NSF NSF-Facing
                                    |  Interface
            +-------------------------------------------+
            |   IKEv2  |      IPsec(PAD, SPD)           | Network
            |-------------------------------------------| Security
            |    IPsec Data Protection and Forwarding   | Function
            +-------------------------------------------+

3.2. IKE-less Case: IPsec (No IKEv2) in the NSF 
In this case, the NSF does not deploy IKEv2 and, therefore, the I2NSF Controller has to perform
the IKEv2 security functions and management of IPsec SAs by populating and managing the SPD
and the SAD.

As shown in Figure 2, when an I2NSF User enforces flow-based protection policies through the
Consumer-Facing Interface, the I2NSF Controller translates these requirements into SPD and SAD
entries, which are installed in the NSF. PAD entries are not required, since there is no IKEv2 in
the NSF.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 7



In order to support the IKE-less case, a YANG data model for SPD and SAD configuration data and
SAD state data  be defined for the NSF-Facing Interface (see Section 5).

Specifically, the IKE-less case assumes that the I2NSF Controller has to perform some security
functions that IKEv2 typically does, namely (non-exhaustive list):

Initialization Vector (IV) generation 
prevention of counter resets for the same key 
generation of pseudorandom cryptographic keys for the IPsec SAs 
generation of the IPsec SAs when required based on notifications (i.e., sadb-acquire) from the
NSF 
rekey of the IPsec SAs based on notifications from the NSF (i.e., expire) 
NAT traversal discovery and management 

Additionally to these functions, another set of tasks must be performed by the I2NSF Controller
(non-exhaustive list):

IPsec SA's Security Parameter Index (SPI) random generation 
cryptographic algorithm selection 
usage of extended sequence numbers 
establishment of proper Traffic Selectors 

Figure 2: IKE-less Case: IPsec (No IKEv2) in the NSF 

         +-----------------------------------------+
         |         IPsec Management System         | I2NSF User
         +-----------------------------------------+
                             |
                             |  I2NSF Consumer-Facing Interface
                             |
         +-----------------------------------------+
         |           SPD and SAD Entries           | I2NSF
         |              Distribution               | Controller
         +-----------------------------------------+
                             |
                             |  I2NSF NSF-Facing Interface
                             |
         +-----------------------------------------+
         |             IPsec (SPD, SAD)            | Network
         |-----------------------------------------| Security
         |   IPsec Data Protection and Forwarding  | Function
         +-----------------------------------------+

MUST

• 
• 
• 
• 

• 
• 

• 
• 
• 
• 

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 8



4. IKE Case vs. IKE-less Case 
In principle, the IKE case is easier to deploy than the IKE-less case because current flow-based
NSFs (either hosts or gateways) have access to IKEv2 implementations. While gateways typically
deploy an IKEv2/IPsec implementation, hosts can easily install it. As a downside, the NSF needs
more resources to use IKEv2, such as memory for the IKEv2 implementation and computation,
since each IPsec Security Association rekeying  involve a Diffie-Hellman (DH) exchange.

Alternatively, the IKE-less case benefits the deployment in resource-constrained NSFs. Moreover,
IKEv2 does not need to be performed in gateway-to-gateway and host-to-host scenarios under the
same I2NSF Controller (see Appendix D.1). On the contrary, the complexity of creating and
managing IPsec SAs is shifted to the I2NSF Controller since IKEv2 is not in the NSF. As a
consequence, this may result in a more complex implementation in the controller side in
comparison with the IKE case. For example, the I2NSF Controller has to deal with the latency
existing in the path between the I2NSF Controller and the NSF (in order to solve tasks, such as
rekey) or creation and installation of new IPsec SAs. However, this is not specific to this
contribution but a general aspect in any SDN-based network. In summary, this complexity may
create some scalability and performance issues when the number of NSFs is high.

Nevertheless, literature around SDN-based network management using a centralized controller
(like the I2NSF Controller) is aware of scalability and performance issues, and solutions have
been already provided and discussed (e.g., hierarchical controllers, having multiple replicated
controllers, dedicated high-speed management networks, etc.). In the context of I2NSF-based
IPsec management, one way to reduce the latency and alleviate some performance issues can be
to install the IPsec policies and IPsec SAs at the same time (proactive mode, as described in 
Appendix D.1) instead of waiting for notifications (e.g., a sadb-acquire notification received from
an NSF requiring a new IPsec SA) to proceed with the IPsec SA installation (reactive mode).
Another way to reduce the overhead and the potential scalability and performance issues in the
I2NSF Controller is to apply the IKE case described in this document since the IPsec SAs are
managed between NSFs without the involvement of the I2NSF Controller at all, except by the
initial configuration (i.e., IKEv2, PAD, and SPD entries) provided by the I2NSF Controller. Other
solutions, such as Controller-IKE , have proposed that NSFs provide
their DH public keys to the I2NSF Controller so that the I2NSF Controller distributes all public
keys to all peers. All peers can calculate a unique pairwise secret for each other peer, and there is
no inter-NSF messages. A rekey mechanism is further described in .

In terms of security, the IKE case provides better security properties than the IKE-less case, as
discussed in Section 7. The main reason is that the NSFs generate the session keys and not the
I2NSF Controller.

MAY

[IPSECME-CONTROLLER-IKE]

[IPSECME-CONTROLLER-IKE]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 9



4.1. Rekeying Process 
Performing a rekey for IPsec SAs is an important operation during the IPsec SAs management.
With the YANG data models defined in this document the I2NSF Controller can configure
parameters of the rekey process (IKE case) or conduct the rekey process (IKE-less case). Indeed,
depending on the case, the rekey process is different.

For the IKE case, the rekeying process is carried out by IKEv2, following the information defined
in the SPD and SAD (i.e., based on the IPsec SA lifetime established by the I2NSF Controller using
the YANG data model defined in this document). Therefore, IPsec connections will live unless
something different is required by the I2NSF User or the I2NSF Controller detects something
wrong.

For the IKE-less case, the I2NSF Controller  take care of the rekeying process. When the
IPsec SA is going to expire (e.g., IPsec SA soft lifetime), it  create a new IPsec SA and it 
remove the old one (e.g., when the lifetime of the old IPsec SA has not been defined). This
rekeying process starts when the I2NSF Controller receives a sadb-expire notification or, on the
I2NSF Controller's initiative, based on lifetime state data obtained from the NSF. How the I2NSF
Controller implements an algorithm for the rekey process is out of the scope of this document.
Nevertheless, an example of how this rekey could be performed is described in Appendix D.2.

MUST
MUST MAY

4.2. NSF State Loss 
If one of the NSF restarts, it will lose the IPsec state (affected NSF). By default, the I2NSF
Controller can assume that all the state has been lost and, therefore, it will have to send IKEv2,
SPD, and PAD information to the NSF in the IKE case and SPD and SAD information in the IKE-
less case.

In both cases, the I2NSF Controller is aware of the affected NSF (e.g., the NETCONF/TCP
connection is broken with the affected NSF, the I2NSF Controller is receiving a sadb-bad-spi
notification from a particular NSF, etc.). Moreover, the I2NSF Controller keeps a list of NSFs that
have IPsec SAs with the affected NSF. Therefore, it knows the affected IPsec SAs.

In the IKE case, the I2NSF Controller may need to configure the affected NSF with the new IKEv2,
SPD, and PAD information. Alternatively, IKEv2 configuration  be made permanent between
NSF reboots without compromising security by means of the startup configuration datastore in
the NSF. This way, each time an NSF reboots, it will use that configuration for each rebooting. It
would imply avoiding contact with the I2NSF Controller. Finally, the I2NSF Controller may also
need to send new parameters (e.g., a new fresh PSK for authentication) to the NSFs that had
IKEv2 SAs and IPsec SAs with the affected NSF.

In the IKE-less case, the I2NSF Controller  delete the old IPsec SAs in the non-failed nodes
established with the affected NSF. Once the affected node restarts, the I2NSF Controller 
take the necessary actions to reestablish IPsec-protected communication between the failed node

MAY

SHOULD
MUST

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 10



and those others having IPsec SAs with the affected NSF. How the I2NSF Controller implements
an algorithm for managing a potential NSF state loss is out of the scope of this document.
Nevertheless, an example of how this could be performed is described in Appendix D.3.

4.3. NAT Traversal 
In the IKE case, IKEv2 already provides a mechanism to detect whether some of the peers or both
are located behind a NAT. In this case, UDP or TCP encapsulation for Encapsulating Security
Payload (ESP) packets   is required. Note that IPsec transport mode 

 be used in this specification when NAT is required.

In the IKE-less case, the NSF does not have the assistance of the IKEv2 implementation to detect if
it is located behind a NAT. If the NSF does not have any other mechanism to detect this situation,
the I2NSF Controller  implement a mechanism to detect that case. The SDN paradigm
generally assumes the I2NSF Controller has a view of the network under its control. This view is
built either by requesting information from the NSFs under its control or information pushed
from the NSFs to the I2NSF Controller. Based on this information, the I2NSF Controller  guess
if there is a NAT configured between two hosts and apply the required policies to both NSFs
besides activating the usage of UDP or TCP encapsulation of ESP packets  .
The interface for discovering if the NSF is behind a NAT is out of scope of this document.

If the I2NSF Controller does not have any mechanism to know whether a host is behind a NAT or
not, then the IKE case  be used and not the IKE-less case.

[RFC3948] [RFC8229] MUST
NOT

SHOULD

MAY

[RFC3948] [RFC8229]

MUST

4.4. NSF Registration and Discovery 
NSF registration refers to the process of providing the I2NSF Controller information about a valid
NSF, such as certificate, IP address, etc. This information is incorporated in a list of NSFs under its
control.

The assumption in this document is that, for both cases, before an NSF can operate in this system,
it  be registered in the I2NSF Controller. In this way, when the NSF starts and establishes a
connection to the I2NSF Controller, it knows that the NSF is valid for joining the system.

Either during this registration process or when the NSF connects with the I2NSF Controller, the
I2NSF Controller  discover certain capabilities of this NSF, such as what are the
cryptographic suites supported, the authentication method, the support of the IKE case and/or
the IKE-less case, etc.

The registration and discovery processes are out of the scope of this document.

MUST

MUST

5. YANG Configuration Data Models 
In order to support the IKE and IKE-less cases, models are provided for the different parameters
and values that must be configured to manage IPsec SAs. Specifically, the IKE case requires
modeling IKEv2 configuration parameters, SPD and PAD, while the IKE-less case requires
configuration YANG data models for the SPD and SAD. Three modules have been defined: ietf-

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 11



i2nsf-ikec (Section 5.1, common to both cases), ietf-i2nsf-ike (Section 5.2, IKE case), and ietf-i2nsf-
ikeless (Section 5.3, IKE-less case). Since the module ietf-i2nsf-ikec has only typedef and
groupings common to the other modules, a simplified view of the ietf-i2nsf-ike and ietf-i2nsf-
ikeless modules is shown.

5.1. The 'ietf-i2nsf-ikec' Module 
5.1.1. Data Model Overview 

The module ietf-i2nsf-ikec only has definitions of data types (typedef) and groupings that are
common to the other modules.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 12



5.1.2. YANG Module 

This module has normative references to , , , , ,
, , , , , 

, and .

[RFC3947] [RFC4301] [RFC4303] [RFC8174] [RFC8221]
[RFC3948] [RFC8229] [RFC6991] [IANA-Protocols-Number] [IKEv2-Parameters] [IKEv2-
Transform-Type-1] [IKEv2-Transform-Type-3]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 13



<CODE BEGINS> file "ietf-i2nsf-ikec@2021-07-14.yang"

module ietf-i2nsf-ikec {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikec";
  prefix nsfikec;

  import ietf-inet-types {
    prefix inet;
    reference
      "RFC 6991: Common YANG Data Types.";
  }

  organization
    "IETF I2NSF Working Group";
  contact
    "WG Web:  <https://datatracker.ietf.org/wg/i2nsf/>
     WG List: <mailto:i2nsf@ietf.org>

     Author: Rafael Marin-Lopez
               <mailto:rafa@um.es>

     Author: Gabriel Lopez-Millan
               <mailto:gabilm@um.es>

     Author: Fernando Pereniguez-Garcia
               <mailto:fernando.pereniguez@cud.upct.es>
    ";
  description
    "Common data model for the IKE and IKE-less cases
     defined by the SDN-based IPsec flow protection service.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
     document are to be interpreted as described in BCP 14
     (RFC 2119) (RFC 8174) when, and only when, they appear
     in all capitals, as shown here.

     Copyright (c) 2021 IETF Trust and the persons
     identified as authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9061; see
     the RFC itself for full legal notices.";

  revision 2021-07-14 {
    description
      "Initial version.";
    reference

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 14



      "RFC 9061: A YANG Data Model for IPsec Flow Protection
                 Based on Software-Defined Networking (SDN).";
  }

  typedef encr-alg-t {
    type uint16;
    description
      "The encryption algorithm is specified with a 16-bit
       number extracted from the IANA registry.  The acceptable
       values MUST follow the requirement levels for
       encryption algorithms for ESP and IKEv2.";
    reference
      "IANA: Internet Key Exchange Version 2 (IKEv2) Parameters,
             IKEv2 Transform Attribute Types, Transform Type 1 -
             Encryption Algorithm Transform IDs
       RFC 8221: Cryptographic Algorithm Implementation
                 Requirements and Usage Guidance for Encapsulating
                 Security Payload (ESP) and Authentication Header
                 (AH)
       RFC 8247: Algorithm Implementation Requirements and Usage
                 Guidance for the Internet Key Exchange Protocol
                 Version 2 (IKEv2).";
  }

  typedef intr-alg-t {
    type uint16;
    description
      "The integrity algorithm is specified with a 16-bit
       number extracted from the IANA registry.
       The acceptable values MUST follow the requirement
       levels for integrity algorithms for ESP and IKEv2.";
    reference
      "IANA: Internet Key Exchange Version 2 (IKEv2) Parameters,
             IKEv2 Transform Attribute Types, Transform Type 3 -
             Integrity Algorithm Transform IDs
       RFC 8221: Cryptographic Algorithm Implementation
                 Requirements and Usage Guidance for Encapsulating
                 Security Payload (ESP) and Authentication Header
                 (AH)
       RFC 8247: Algorithm Implementation Requirements and Usage
                 Guidance for the Internet Key Exchange Protocol
                 Version 2 (IKEv2).";
  }

  typedef ipsec-mode {
    type enumeration {
      enum transport {
        description
          "IPsec transport mode.  No Network Address
           Translation (NAT) support.";
      }
      enum tunnel {
        description
          "IPsec tunnel mode.";
      }
    }
    description
      "Type definition of IPsec mode: transport or

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 15



       tunnel.";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 3.2.";
  }

  typedef esp-encap {
    type enumeration {
      enum espintcp {
        description
          "ESP in TCP encapsulation.";
        reference
          "RFC 8229: TCP Encapsulation of IKE and
                     IPsec Packets.";
      }
      enum espinudp {
        description
          "ESP in UDP encapsulation.";
        reference
          "RFC 3948: UDP Encapsulation of IPsec ESP
                     Packets.";
      }
      enum none {
        description
          "No ESP encapsulation.";
      }
    }
    description
      "Types of ESP encapsulation when Network Address
       Translation (NAT) may be present between two NSFs.";
    reference
      "RFC 8229: TCP Encapsulation of IKE and IPsec Packets
       RFC 3948: UDP Encapsulation of IPsec ESP Packets.";
  }

  typedef ipsec-protocol-params {
    type enumeration {
      enum esp {
        description
          "IPsec ESP protocol.";
      }
    }
    description
      "Only the Encapsulation Security Protocol (ESP) is
       supported, but it could be extended in the future.";
    reference
      "RFC 4303: IP Encapsulating Security Payload (ESP).";
  }

  typedef lifetime-action {
    type enumeration {
      enum terminate-clear {
        description
          "Terminates the IPsec SA and allows the
           packets through.";
      }
      enum terminate-hold {
        description

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 16



          "Terminates the IPsec SA and drops the
           packets.";
      }
      enum replace {
        description
          "Replaces the IPsec SA with a new one:
           rekey.";
      }
    }
    description
      "When the lifetime of an IPsec SA expires, an action
       needs to be performed for the IPsec SA that
       reached the lifetime.  There are three possible
       options: terminate-clear, terminate-hold, and
       replace.";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.5.";
  }

  typedef ipsec-traffic-direction {
    type enumeration {
      enum inbound {
        description
          "Inbound traffic.";
      }
      enum outbound {
        description
          "Outbound traffic.";
      }
    }
    description
      "IPsec traffic direction is defined in
       two directions: inbound and outbound.
       From an NSF perspective, inbound and
       outbound are defined as mentioned
       in Section 3.1 in RFC 4301.";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 3.1.";
  }

  typedef ipsec-spd-action {
    type enumeration {
      enum protect {
        description
          "PROTECT the traffic with IPsec.";
      }
      enum bypass {
        description
          "BYPASS the traffic.  The packet is forwarded
           without IPsec protection.";
      }
      enum discard {
        description
          "DISCARD the traffic.  The IP packet is
           discarded.";
      }

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 17



    }
    description
      "The action when traffic matches an IPsec security
       policy.  According to RFC 4301, there are three
       possible values: BYPASS, PROTECT, and DISCARD.";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.4.1.";
  }

  typedef ipsec-inner-protocol {
    type union {
      type uint8;
      type enumeration {
        enum any {
          value 256;
          description
            "Any IP protocol number value.";
        }
      }
    }
    default "any";
    description
      "IPsec protection can be applied to specific IP
       traffic and Layer 4 traffic (TCP, UDP, SCTP, etc.)
       or ANY protocol in the IP packet payload.
       The IP protocol number is specified with a uint8
       or ANY defining an enumerate with value 256 to
       indicate the protocol number.  Note that in case
       of IPv6, the protocol in the IP packet payload
       is indicated in the Next Header field of the IPv6
       packet.";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.4.1.1
       IANA: Protocol Numbers.";
  }

  grouping encap {
    description
      "This group of nodes allows defining of the type of
       encapsulation in case NAT traversal is
       required and includes port information.";
    leaf espencap {
      type esp-encap;
      default "none";
      description
        "ESP in TCP, ESP in UDP, or ESP in TLS.";
    }
    leaf sport {
      type inet:port-number;
      default "4500";
      description
        "Encapsulation source port.";
    }
    leaf dport {
      type inet:port-number;
      default "4500";

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 18



      description
        "Encapsulation destination port.";
    }
    leaf-list oaddr {
      type inet:ip-address;
      description
        "If required, this is the original address that
         was used before NAT was applied over the packet.";
    }
    reference
      "RFC 3947: Negotiation of NAT-Traversal in the IKE
       RFC 8229: TCP Encapsulation of IKE and IPsec Packets.";
  }

  grouping lifetime {
    description
      "Different lifetime values limited to an IPsec SA.";
    leaf time {
      type uint32;
      units "seconds";
      default "0";
      description
        "Time in seconds since the IPsec SA was added.
         For example, if this value is 180 seconds, it
         means the IPsec SA expires in 180 seconds since
         it was added.  The value 0 implies infinite.";
    }
    leaf bytes {
      type uint64;
      default "0";
      description
        "If the IPsec SA processes the number of bytes
         expressed in this leaf, the IPsec SA expires and
         SHOULD be rekeyed.  The value 0 implies
         infinite.";
    }
    leaf packets {
      type uint32;
      default "0";
      description
        "If the IPsec SA processes the number of packets
         expressed in this leaf, the IPsec SA expires and
         SHOULD be rekeyed.  The value 0 implies
         infinite.";
    }
    leaf idle {
      type uint32;
      units "seconds";
      default "0";
      description
        "When an NSF stores an IPsec SA, it
         consumes system resources.  For an idle IPsec SA, this
         is a waste of resources.  If the IPsec SA is idle
         during this number of seconds, the IPsec SA
         SHOULD be removed.  The value 0 implies
         infinite.";
    }
    reference

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 19



      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.4.2.1.";
  }

  grouping port-range {
    description
      "This grouping defines a port range, such as that
       expressed in RFC 4301, for example, 1500 (Start
       Port Number)-1600 (End Port Number).
       A port range is used in the Traffic Selector.";
    leaf start {
      type inet:port-number;
      description
        "Start port number.";
    }
    leaf end {
      type inet:port-number;
      must '. >= ../start' {
        error-message
          "The end port number MUST be equal or greater
           than the start port number.";
      }
      description
        "End port number.  To express a single port, set
         the same value as start and end.";
    }
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.4.1.2.";
  }

  grouping tunnel-grouping {
    description
      "The parameters required to define the IP tunnel
       endpoints when IPsec SA requires tunnel mode.  The
       tunnel is defined by two endpoints: the local IP
       address and the remote IP address.";
    leaf local {
      type inet:ip-address;
      mandatory true;
      description
        "Local IP address' tunnel endpoint.";
    }
    leaf remote {
      type inet:ip-address;
      mandatory true;
      description
        "Remote IP address' tunnel endpoint.";
    }
    leaf df-bit {
      type enumeration {
        enum clear {
          description
            "Disable the Don't Fragment (DF) bit
             in the outer header.  This is the
             default value.";
        }
        enum set {

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 20



          description
            "Enable the DF bit in the outer header.";
        }
        enum copy {
          description
            "Copy the DF bit to the outer header.";
        }
      }
      default "clear";
      description
        "Allow configuring the DF bit when encapsulating
         tunnel mode IPsec traffic.  RFC 4301 describes
         three options to handle the DF bit during
         tunnel encapsulation: clear, set, and copy from
         the inner IP header.  This MUST be ignored or
         has no meaning when the local/remote
         IP addresses are IPv6 addresses.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 8.1.";
    }
    leaf bypass-dscp {
      type boolean;
      default "true";
      description
        "If true, to copy the Differentiated Services Code
         Point (DSCP) value from inner header to outer header.
         If false, to map DSCP values
         from an inner header to values in an outer header
         following ../dscp-mapping.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.2.";
    }
    list dscp-mapping {
      must '../bypass-dscp = "false"';
      key "id";
      ordered-by user;
      leaf id {
        type uint8;
        description
          "The index of list with the
           different mappings.";
      }
      leaf inner-dscp {
        type inet:dscp;
        description
          "The DSCP value of the inner IP packet.  If this
           leaf is not defined, it means ANY inner DSCP value.";
      }
      leaf outer-dscp {
        type inet:dscp;
        default "0";
        description
          "The DSCP value of the outer IP packet.";
      }
      description
        "A list that represents an array with the mapping from the

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 21



         inner DSCP value to outer DSCP value when bypass-dscp is
         false.  To express a default mapping in the list where any
         other inner dscp value is not matching a node in the list,
         a new node has to be included at the end of the list where
         the leaf inner-dscp is not defined (ANY) and the leaf
         outer-dscp includes the value of the mapping.  If there is
         no value set in the leaf outer-dscp, the default value for
         this leaf is 0.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.2 and Appendix C.";
    }
  }

  grouping selector-grouping {
    description
      "This grouping contains the definition of a Traffic
       Selector, which is used in the IPsec policies and
       IPsec SAs.";
    leaf local-prefix {
      type inet:ip-prefix;
      mandatory true;
      description
        "Local IP address prefix.";
    }
    leaf remote-prefix {
      type inet:ip-prefix;
      mandatory true;
      description
        "Remote IP address prefix.";
    }
    leaf inner-protocol {
      type ipsec-inner-protocol;
      default "any";
      description
        "Inner protocol that is going to be
         protected with IPsec.";
    }
    list local-ports {
      key "start end";
      uses port-range;
      description
        "List of local ports. When the inner
         protocol is ICMP, this 16-bit value
         represents code and type.
         If this list is not defined,
         it is assumed that start and
         end are 0 by default (any port).";
    }
    list remote-ports {
      key "start end";
      uses port-range;
      description
        "List of remote ports. When the upper layer
         protocol is ICMP, this 16-bit value represents
         code and type.  If this list is not defined,
         it is assumed that start and end are 0 by
         default (any port).";

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 22



    }
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.4.1.2.";
  }

  grouping ipsec-policy-grouping {
    description
      "Holds configuration information for an IPsec SPD
       entry.";
    leaf anti-replay-window-size {
      type uint32;
      default "64";
      description
        "To set the anti-replay window size.
         The default value is set
         to 64, following the recommendation in RFC 4303.";
      reference
        "RFC 4303: IP Encapsulating Security Payload (ESP),
                   Section 3.4.3.";
    }
    container traffic-selector {
      description
        "Packets are selected for
         processing actions based on Traffic Selector
         values, which refer to IP and inner protocol
         header information.";
      uses selector-grouping;
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.4.1.";
    }
    container processing-info {
      description
        "SPD processing.  If the required processing
         action is protect, it contains the required
         information to process the packet.";
      leaf action {
        type ipsec-spd-action;
        default "discard";
        description
          "If bypass or discard, container
           ipsec-sa-cfg is empty.";
      }
      container ipsec-sa-cfg {
        when "../action = 'protect'";
        description
          "IPsec SA configuration included in the SPD
           entry.";
        leaf pfp-flag {
          type boolean;
          default "false";
          description
            "Each selector has a Populate From
             Packet (PFP) flag.  If asserted for a
             given selector X, the flag indicates
             that the IPsec SA to be created should
             take its value (local IP address,

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 23



             remote IP address, Next Layer
             Protocol, etc.) for X from the value
             in the packet.  Otherwise, the IPsec SA
             should take its value(s) for X from
             the value(s) in the SPD entry.";
        }
        leaf ext-seq-num {
          type boolean;
          default "false";
          description
            "True if this IPsec SA is using extended
             sequence numbers.  If true, the 64-bit
             extended sequence number counter is used;
             if false, the normal 32-bit sequence
             number counter is used.";
        }
        leaf seq-overflow {
          type boolean;
          default "false";
          description
            "The flag indicating whether
             overflow of the sequence number
             counter should prevent transmission
             of additional packets on the IPsec
             SA (false) and, therefore, needs to
             be rekeyed or whether rollover is
             permitted (true).  If Authenticated
             Encryption with Associated Data
             (AEAD) is used (leaf
             esp-algorithms/encryption/algorithm-type),
             this flag MUST be false.  Setting this
             flag to true is strongly discouraged.";
        }
        leaf stateful-frag-check {
          type boolean;
          default "false";
          description
            "Indicates whether (true) or not (false)
             stateful fragment checking applies to
             the IPsec SA to be created.";
        }
        leaf mode {
          type ipsec-mode;
          default "transport";
          description
            "IPsec SA has to be processed in
             transport or tunnel mode.";
        }
        leaf protocol-parameters {
          type ipsec-protocol-params;
          default "esp";
          description
            "Security protocol of the IPsec SA.
             Only ESP is supported, but it could be
             extended in the future.";
        }
        container esp-algorithms {
          when "../protocol-parameters = 'esp'";

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 24



          description
            "Configuration of Encapsulating
             Security Payload (ESP) parameters and
             algorithms.";
          leaf-list integrity {
            type intr-alg-t;
            default "0";
            ordered-by user;
            description
              "Configuration of ESP authentication
               based on the specified integrity
               algorithm.  With AEAD encryption
               algorithms, the integrity node is
               not used.";
            reference
              "RFC 4303: IP Encapsulating Security Payload (ESP),
                         Section 3.2.";
          }
          list encryption {
            key "id";
            ordered-by user;
            leaf id {
              type uint16;
              description
                "An identifier that unequivocally identifies each
                 entry of the list, i.e., an encryption algorithm
                 and its key length (if required).";
            }
            leaf algorithm-type {
              type encr-alg-t;
              default "20";
              description
                "Default value 20 (ENCR_AES_GCM_16).";
            }
            leaf key-length {
              type uint16;
              default "128";
              description
                "By default, key length is 128
                 bits.";
            }
            description
              "Encryption or AEAD algorithm for the
               IPsec SAs.  This list is ordered
               following from the higher priority to
               lower priority.  First node of the
               list will be the algorithm with
               higher priority.  In case the list
               is empty, then no encryption algorithm
               is applied (NULL).";
            reference
              "RFC 4303: IP Encapsulating Security Payload (ESP),
                         Section 3.2.";
          }
          leaf tfc-pad {
            type boolean;
            default "false";
            description

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 25



              "If Traffic Flow Confidentiality
               (TFC) padding for ESP encryption
               can be used (true) or not (false).";
            reference
              "RFC 4303: IP Encapsulating Security Payload (ESP),
                         Section 2.7.";
          }
          reference
            "RFC 4303: IP Encapsulating Security Payload (ESP).";
        }
        container tunnel {
          when "../mode = 'tunnel'";
          uses tunnel-grouping;
          description
            "IPsec tunnel endpoints definition.";
        }
      }
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.2.";
    }
  }
}

<CODE ENDS>

5.2. The 'ietf-i2nsf-ike' Module 
In this section, the YANG module for the IKE case is described.

5.2.1. Data Model Overview 

The model related to IKEv2 has been extracted from reading the IKEv2 standard in 
and observing some open source implementations, such as strongSwan  or
Libreswan .

The definition of the PAD model has been extracted from the specification in 
. (Note that many implementations integrate PAD configuration as part of the IKEv2

configuration.)

The definition of the SPD model has been mainly extracted from the specification in Section 4.4.1
and Appendix D of .

[RFC7296]
[strongswan]

[libreswan]

Section 4.4.3 of
[RFC4301]

[RFC4301]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 26

https://www.rfc-editor.org/rfc/rfc4301#section-4.4.3
https://www.rfc-editor.org/rfc/rfc4301#section-4.4.1
https://www.rfc-editor.org/rfc/rfc4301#appendix-D


The YANG data model for the IKE case is defined by the module "ietf-i2nsf-ike". Its structure is
depicted in the following diagram, using the notation syntax for YANG tree diagrams .[RFC8340]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 27



module: ietf-i2nsf-ike
  +--rw ipsec-ike
    +--rw pad
    |  +--rw pad-entry* [name]
    |     +--rw name                           string
    |     +--rw (identity)
    |     |  +--:(ipv4-address)
    |     |  |  +--rw ipv4-address?            inet:ipv4-address
    |     |  +--:(ipv6-address)
    |     |  |  +--rw ipv6-address?            inet:ipv6-address
    |     |  +--:(fqdn-string)
    |     |  |  +--rw fqdn-string?             inet:domain-name
    |     |  +--:(rfc822-address-string)
    |     |  |  +--rw rfc822-address-string?   string
    |     |  +--:(dnx509)
    |     |  |  +--rw dnx509?                  binary
    |     |  +--:(gnx509)
    |     |  |  +--rw gnx509?                  binary
    |     |  +--:(id-key)
    |     |  |  +--rw id-key?                  binary
    |     |  +--:(id-null)
    |     |     +--rw id-null?                 empty
    |     +--rw auth-protocol?                 auth-protocol-type
    |     +--rw peer-authentication
    |        +--rw auth-method?         auth-method-type
    |        +--rw eap-method
    |        |  +--rw eap-type    uint64
    |        +--rw pre-shared
    |        |  +--rw secret?   yang:hex-string
    |        +--rw digital-signature
    |           +--rw ds-algorithm?           uint8
    |           +--rw (public-key)?
    |           |  +--:(raw-public-key)
    |           |  |  +--rw raw-public-key?   binary
    |           |  +--:(cert-data)
    |           |     +--rw cert-data?        binary
    |           +--rw private-key?            binary
    |           +--rw ca-data*                binary
    |           +--rw crl-data?               binary
    |           +--rw crl-uri?                inet:uri
    |           +--rw oscp-uri?               inet:uri
    +--rw conn-entry* [name]
    |  +--rw name                             string
    |  +--rw autostartup?                     autostartup-type
    |  +--rw initial-contact?                 boolean
    |  +--rw version?                         auth-protocol-type
    |  +--rw fragmentation
    |  |  +--rw enabled?   boolean
    |  |  +--rw mtu?      uint16
    |  +--rw ike-sa-lifetime-soft
    |  |  +--rw rekey-time?    uint32
    |  |  +--rw reauth-time?   uint32
    |  +--rw ike-sa-lifetime-hard
    |  |  +--rw over-time?   uint32
    |  +--rw ike-sa-intr-alg*  nsfikec:intr-alg-t
    |  +--rw ike-sa-encr-alg* [id]
    |  |  +--rw id                uint16

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 28



    |  |  +--rw algorithm-type?   nsfikec:encr-alg-t
    |  |  +--rw key-length?       uint16
    |  +--rw dh-group?                            fs-group
    |  +--rw half-open-ike-sa-timer?              uint32
    |  +--rw half-open-ike-sa-cookie-threshold?   uint32
    |  +--rw local
    |  |  +--rw local-pad-entry-name    string
    |  +--rw remote
    |  |  +--rw remote-pad-entry-name    string
    |  +--rw encapsulation-type
    |  |  +--rw espencap?   esp-encap
    |  |  +--rw sport?      inet:port-number
    |  |  +--rw dport?      inet:port-number
    |  |  +--rw oaddr*      inet:ip-address
    |  +--rw spd
    |  |  +--rw spd-entry* [name]
    |  |    +--rw name                   string
    |  |    +--rw ipsec-policy-config
    |  |      +--rw anti-replay-window-size?   uint32
    |  |      +--rw traffic-selector
    |  |      |  +--rw local-prefix      inet:ip-prefix
    |  |      |  +--rw remote-prefix     inet:ip-prefix
    |  |      |  +--rw inner-protocol?   ipsec-inner-protocol
    |  |      |  +--rw local-ports* [start end]
    |  |      |  |  +--rw start    inet:port-number
    |  |      |  |  +--rw end      inet:port-number
    |  |      |  +--rw remote-ports* [start end]
    |  |      |     +--rw start    inet:port-number
    |  |      |     +--rw end      inet:port-number
    |  |      +--rw processing-info
    |  |        +--rw action?         ipsec-spd-action
    |  |        +--rw ipsec-sa-cfg
    |  |         +--rw pfp-flag?              boolean
    |  |         +--rw ext-seq-num?           boolean
    |  |         +--rw seq-overflow?          boolean
    |  |         +--rw stateful-frag-check?   boolean
    |  |         +--rw mode?                  ipsec-mode
    |  |         +--rw protocol-parameters? ipsec-protocol-params
    |  |              +--rw esp-algorithms
    |  |              |  +--rw integrity*    intr-alg-t
    |  |              |  +--rw encryption* [id]
    |  |              |  |  +--rw id                uint16
    |  |              |  |  +--rw algorithm-type?   encr-alg-t
    |  |              |  |  +--rw key-length?       uint16
    |  |              |  +--rw tfc-pad?      boolean
    |  |              +--rw tunnel
    |  |                 +--rw local           inet:ip-address
    |  |                 +--rw remote          inet:ip-address
    |  |                 +--rw df-bit?         enumeration
    |  |                 +--rw bypass-dscp?    boolean
    |  |                 +--rw dscp-mapping* [id]
    |  |                    +--rw id            uint8
    |  |                    +--rw inner-dscp?   inet:dscp
    |  |                    +--rw outer-dscp?   inet:dscp
    |  +--rw child-sa-info
    |  |  +--rw fs-groups*                fs-group
    |  |  +--rw child-sa-lifetime-soft
    |  |  |  +--rw time?      uint32

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 29



The YANG data model consists of a unique "ipsec-ike" container defined as follows. Firstly, it
contains a "pad" container that serves to configure the Peer Authentication Database with
authentication information about local and remote peers (NSFs). More precisely, it consists of a
list of entries, each one indicating the identity, authentication method, and credentials that a
particular peer (local or remote) will use. Therefore, each entry contains identity, authentication
information, and credentials of either the local NSF or the remote NSF. As a consequence, the
I2NF Controller can store identity, authentication information, and credentials for the local NSF
and the remote NSF.

Next, a list "conn-entry" is defined with information about the different IKE connections a peer
can maintain with others. Each connection entry is composed of a wide number of parameters to
configure different aspects of a particular IKE connection between two peers: local and remote
peer authentication information, IKE SA configuration (soft and hard lifetimes, cryptographic
algorithms, etc.), a list of IPsec policies describing the type of network traffic to be secured (local/
remote subnet and ports, etc.) and how it must be protected (ESP, tunnel/transport, cryptographic
algorithms, etc.), Child SA configuration (soft and hard lifetimes), and state information of the
IKE connection (SPIs, usage of NAT, current expiration times, etc.).

Lastly, the "ipsec-ike" container declares a "number-ike-sas" container to specify state
information reported by the IKE software related to the amount of IKE connections established.

    |  |  |  +--rw bytes?     yang:counter64
    |  |  |  +--rw packets?   uint32
    |  |  |  +--rw idle?      uint32
    |  |  |  +--rw action?    nsfikec:lifetime-action
    |  |  +--rw child-sa-lifetime-hard
    |  |     +--rw time?      uint32
    |  |     +--rw bytes?     yang:counter64
    |  |     +--rw packets?   uint32
    |  |     +--rw idle?      uint32
    |  +--ro state
    |     +--ro initiator?             boolean
    |     +--ro initiator-ikesa-spi?   ike-spi
    |     +--ro responder-ikesa-spi?   ike-spi
    |     +--ro nat-local?             boolean
    |     +--ro nat-remote?            boolean
    |     +--ro encapsulation-type
    |     |  +--ro espencap?   esp-encap
    |     |  +--ro sport?      inet:port-number
    |     |  +--ro dport?      inet:port-number
    |     |  +--ro oaddr*      inet:ip-address
    |     +--ro established?           uint64
    |     +--ro current-rekey-time?    uint64
    |     +--ro current-reauth-time?   uint64
    +--ro number-ike-sas
        +--ro total?               yang:gauge64
        +--ro half-open?           yang:gauge64
        +--ro half-open-cookies?   yang:gauge64

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 30



5.2.2. Example Usage 

Appendix A shows an example of IKE case configuration for an NSF, in tunnel mode (gateway-to-
gateway), with NSF authentication based on X.509 certificates.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 31



5.2.3. YANG Module 

This YANG module has normative references to , , , , 
, , , , , , , , 
, , , , , and 

.

[RFC5280] [RFC4301] [RFC5915] [RFC6991]
[RFC7296] [RFC7383] [RFC7427] [RFC7619] [RFC8017] [ITU-T.X.690] [RFC5322] [RFC8229]
[RFC8174] [RFC6960] [IKEv2-Auth-Method] [IKEv2-Transform-Type-4] [IKEv2-Parameters]
[IANA-Method-Type]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 32



<CODE BEGINS> file "ietf-i2nsf-ike@2021-07-14.yang"

module ietf-i2nsf-ike {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike";
  prefix nsfike;

  import ietf-inet-types {
    prefix inet;
    reference
      "RFC 6991: Common YANG Data Types.";
  }
  import ietf-yang-types {
    prefix yang;
    reference
      "RFC 6991: Common YANG Data Types.";
  }
  import ietf-i2nsf-ikec {
    prefix nsfikec;
    reference
      "RFC 9061: A YANG Data Model for IPsec Flow Protection
                 Based on Software-Defined Networking (SDN).";
  }
  import ietf-netconf-acm {
    prefix nacm;
    reference
      "RFC 8341: Network Configuration Access Control
                 Model.";
  }

  organization
    "IETF I2NSF Working Group";
  contact
    "WG Web:  <https://datatracker.ietf.org/wg/i2nsf/>
     WG List: <mailto:i2nsf@ietf.org>

     Author: Rafael Marin-Lopez
               <mailto:rafa@um.es>

     Author: Gabriel Lopez-Millan
               <mailto:gabilm@um.es>

     Author: Fernando Pereniguez-Garcia
               <mailto:fernando.pereniguez@cud.upct.es>
    ";
  description
    "This module contains the IPsec IKE case model for the SDN-based
     IPsec flow protection service.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
     document are to be interpreted as described in BCP 14
     (RFC 2119) (RFC 8174) when, and only when, they appear
     in all capitals, as shown here.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 33



     Copyright (c) 2021 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (http://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9061; see
     the RFC itself for full legal notices.";

  revision 2021-07-14 {
    description
      "Initial version.";
    reference
      "RFC 9061: A YANG Data Model for IPsec Flow Protection
                 Based on Software-Defined Networking (SDN).";
  }

  typedef ike-spi {
    type uint64 {
      range "0..max";
    }
    description
      "Security Parameter Index (SPI)'s IKE SA.";
    reference
      "RFC 7296: Internet Key Exchange Protocol Version 2
                 (IKEv2), Section 2.6.";
  }

  typedef autostartup-type {
    type enumeration {
      enum add {
        description
          "IKE/IPsec configuration is only loaded into
           IKE implementation, but IKE/IPsec SA is not
           started.";
      }
      enum on-demand {
        description
          "IKE/IPsec configuration is loaded
           into IKE implementation.  The IPsec policies
           are transferred to the NSF, but the
           IPsec SAs are not established immediately.
           The IKE implementation will negotiate the
           IPsec SAs when they are required
           (i.e., through an ACQUIRE notification).";
      }
      enum start {
        description
          "IKE/IPsec configuration is loaded
           and transferred to the NSF's kernel, and the
           IKEv2-based IPsec SAs are established
           immediately without waiting for any packet.";
      }
    }

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 34



    description
      "Different policies to set IPsec SA configuration
       into NSF's kernel when IKEv2 implementation has
       started.";
  }

  typedef fs-group {
    type uint16;
    description
      "DH groups for IKE and IPsec SA rekey.";
    reference
      "IANA: Internet Key Exchange Version 2 (IKEv2) Parameters,
             IKEv2 Transform Attribute Types, Transform Type 4 -
             Diffie-Hellman Group Transform IDs
       RFC 7296: Internet Key Exchange Protocol Version 2
                 (IKEv2), Section 3.3.2.";
  }

  typedef auth-protocol-type {
    type enumeration {
      enum ikev2 {
        value 2;
        description
          "IKEv2 authentication protocol.  It is the
           only one defined right now.  An enum is
           used for further extensibility.";
      }
    }
    description
      "IKE authentication protocol version specified in the
       Peer Authorization Database (PAD).  It is defined as
       enumerated to allow new IKE versions in the
       future.";
    reference
      "RFC 7296: Internet Key Exchange Protocol Version 2
                 (IKEv2).";
  }

  typedef auth-method-type {
    type enumeration {
      enum pre-shared {
        description
          "Select pre-shared key as the
           authentication method.";
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2).";
      }
      enum eap {
        description
          "Select the Extensible Authentication Protocol (EAP) as
           the authentication method.";
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2).";
      }
      enum digital-signature {
        description

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 35



          "Select digital signature as the authentication method.";
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2)
           RFC 7427: Signature Authentication in the Internet Key
                     Exchange Version 2 (IKEv2).";
      }
      enum null {
        description
          "Null authentication.";
        reference
          "RFC 7619: The NULL Authentication Method in the Internet
                     Key Exchange Protocol Version 2 (IKEv2).";
      }
    }
    description
      "Peer authentication method specified in the Peer
       Authorization Database (PAD).";
  }

  container ipsec-ike {
    description
      "IKE configuration for an NSF.  It includes PAD
       parameters, IKE connection information, and state
       data.";
    container pad {
      description
        "Configuration of the Peer Authorization Database
         (PAD).  Each entry of PAD contains authentication
         information of either the local peer or the remote peer.
         Therefore, the I2NSF Controller stores authentication
         information (and credentials) not only for the remote NSF
         but also for the local NSF.  The local NSF MAY use the
         same identity for different types of authentication
         and credentials.  Pointing to the entry for a local NSF
         (e.g., A) and the entry for remote NSF (e.g., B)
         is possible to specify all the required information to
         carry out the authentication between A and B (see
         ../conn-entry/local and ../conn-entry/remote).";
      list pad-entry {
        key "name";
        ordered-by user;
        description
          "Peer Authorization Database (PAD) entry.  It
           is a list of PAD entries ordered by the
           I2NSF Controller, and each entry is
           unequivocally identified by a name.";
        leaf name {
          type string;
          description
            "PAD-unique name to identify this
             entry.";
        }
        choice identity {
          mandatory true;
          description
            "A particular IKE peer will be
             identified by one of these identities.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 36



             This peer can be a remote peer or local
             peer (this NSF).";
          reference
            "RFC 4301: Security Architecture for the Internet
                       Protocol, Section 4.4.3.1.";
          case ipv4-address {
            leaf ipv4-address {
              type inet:ipv4-address;
              description
                "Specifies the identity as
                 a single 4-octet IPv4 address.";
            }
          }
          case ipv6-address {
            leaf ipv6-address {
              type inet:ipv6-address;
              description
                "Specifies the identity as a
                 single 16-octet IPv6
                 address.  An example is
                 2001:db8::8:800:200c:417a.";
            }
          }
          case fqdn-string {
            leaf fqdn-string {
              type inet:domain-name;
              description
                "Specifies the identity as a
                 Fully Qualified Domain Name
                 (FQDN) string.  An example is
                 example.com.  The string MUST
                 NOT contain any terminators
                 (e.g., NULL, Carriage Return
                 (CR), etc.).";
            }
          }
          case rfc822-address-string {
            leaf rfc822-address-string {
              type string;
              description
                "Specifies the identity as a
                 fully qualified  email address
                 string (RFC 5322).  An example is
                 jsmith@example.com.  The string
                 MUST NOT contain any
                 terminators (e.g., NULL, CR,
                 etc.).";
              reference
                "RFC 5322: Internet Message Format.";
            }
          }
          case dnx509 {
            leaf dnx509 {
              type binary;
              description
                "The binary
                 Distinguished Encoding Rules (DER)
                 encoding of an ASN.1 X.500

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 37



                 Distinguished Name, as specified in IKEv2.";
              reference
                "RFC 5280: Internet X.509 Public Key Infrastructure
                           Certificate and Certificate Revocation
                           List (CRL) Profile
                 RFC 7296: Internet Key Exchange Protocol Version 2
                           (IKEv2), Section 3.5.";
            }
          }
          case gnx509 {
            leaf gnx509 {
              type binary;
              description
                "ASN.1 X.509 GeneralName structure,
                 as specified in RFC 5280, encoded
                 using ASN.1 Distinguished Encoding Rules
                 (DER), as specified in ITU-T X.690.";
              reference
                "RFC 5280: Internet X.509 Public Key Infrastructure
                           Certificate and Certificate Revocation
                           List (CRL) Profile.";
            }
          }
          case id-key {
            leaf id-key {
              type binary;
              description
                "Opaque octet stream that may be
                 used to pass vendor-specific
                 information for proprietary
                 types of identification.";
              reference
                "RFC 7296: Internet Key Exchange Protocol Version 2
                           (IKEv2), Section 3.5.";
            }
          }
          case id-null {
            leaf id-null {
              type empty;
              description
                "The ID_NULL identification is used
                 when the IKE identification payload
                 is not used.";
              reference
                "RFC 7619: The NULL Authentication Method in the
                           Internet Key Exchange Protocol Version 2
                           (IKEv2).";
            }
          }
        }
        leaf auth-protocol {
          type auth-protocol-type;
          default "ikev2";
          description
            "Only IKEv2 is supported right now, but
             other authentication protocols may be
             supported in the future.";
        }

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 38



        container peer-authentication {
          description
            "This container allows the security
             controller to configure the
             authentication method (pre-shared key,
             eap, digital-signature, null) that
             will be used with a particular peer and
             the credentials to use, which will
             depend on the selected authentication
             method.";
          leaf auth-method {
            type auth-method-type;
            default "pre-shared";
            description
              "Type of authentication method
               (pre-shared key, eap, digital signature,
               null).";
            reference
              "RFC 7296: Internet Key Exchange Protocol Version 2
                         (IKEv2), Section 2.15.";
          }
          container eap-method {
            when "../auth-method = 'eap'";
            leaf eap-type {
              type uint32 {
                range "1 .. 4294967295";
              }
              mandatory true;
              description
                "EAP method type specified with
                 a value extracted from the
                 IANA registry.  This
                 information provides the
                 particular EAP method to be
                 used.  Depending on the EAP
                 method, pre-shared keys or
                 certificates may be used.";
            }
            description
              "EAP method description used when
               authentication method is 'eap'.";
            reference
              "IANA: Extensible Authentication Protocol (EAP)
                     Registry, Method Types
               RFC 7296: Internet Key Exchange Protocol Version 2
                         (IKEv2), Section 2.16.";
          }
          container pre-shared {
            when "../auth-method[.='pre-shared' or
                  .='eap']";
            leaf secret {
              nacm:default-deny-all;
              type yang:hex-string;
              description
                "Pre-shared secret value.  The
                 NSF has to prevent read access
                 to this value for security
                 reasons.  This value MUST be

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 39



                 set if the EAP method uses a
                 pre-shared key or pre-shared
                 authentication has been chosen.";
            }
            description
              "Shared secret value for PSK or
               EAP method authentication based on
               PSK.";
          }
          container digital-signature {
            when "../auth-method[.='digital-signature'
                  or .='eap']";
            leaf ds-algorithm {
              type uint8;
              default "14";
              description
                "The digital signature
                 algorithm is specified with a
                 value extracted from the IANA
                 registry.  Default is the generic
                 digital signature method.  Depending
                 on the algorithm, the following leafs
                 MUST contain information.  For
                 example, if digital signature or the
                 EAP method involves a certificate,
                 then leaves 'cert-data' and 'private-key'
                 will contain this information.";
              reference
                "IANA: Internet Key Exchange Version 2 (IKEv2)
                       Parameters, IKEv2 Authentication Method.";
            }
            choice public-key {
              leaf raw-public-key {
                type binary;
                description
                  "A binary that contains the
                   value of the public key.  The
                   interpretation of the content
                   is defined by the digital
                   signature algorithm.  For
                   example, an RSA key is
                   represented as RSAPublicKey, as
                   defined in RFC 8017, and an
                   Elliptic Curve Cryptography
                   (ECC) key is represented
                   using the 'publicKey'
                   described in RFC 5915.";
                reference
                  "RFC 5915: Elliptic Curve Private Key
                             Structure
                   RFC 8017: PKCS #1: RSA Cryptography
                             Specifications Version 2.2.";
              }
              leaf cert-data {
                type binary;
                description
                  "X.509 certificate data in DER
                   format.  If raw-public-key is

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 40



                   defined, this leaf is empty.";
                reference
                  "RFC 5280: Internet X.509 Public Key
                             Infrastructure Certificate
                             and Certificate Revocation
                             List (CRL) Profile.";
              }
              description
                "If the I2NSF Controller
                 knows that the NSF
                 already owns a private key
                 associated to this public key
                 (e.g., the NSF generated the pair
                 public key/private key out of
                 band), it will only configure
                 one of the leaves of this
                 choice but not the leaf
                 private-key.  The NSF, based on
                 the public key value, can know
                 the private key to be used.";
            }
            leaf private-key {
              nacm:default-deny-all;
              type binary;
              description
                "A binary that contains the
                 value of the private key.  The
                 interpretation of the content
                 is defined by the digital
                 signature algorithm.  For
                 example, an RSA key is
                 represented as RSAPrivateKey, as
                 defined in RFC 8017, and an
                 Elliptic Curve Cryptography
                 (ECC) key is represented as
                 ECPrivateKey, as defined in RFC
                 5915.  This value is set
                 if public key is defined and the
                 I2NSF Controller is in charge
                 of configuring the
                 private key.  Otherwise, it is
                 not set and the value is
                 kept in secret.";
              reference
                "RFC 5915: Elliptic Curve Private Key
                           Structure
                 RFC 8017: PKCS #1: RSA Cryptography
                           Specifications Version 2.2.";
            }
            leaf-list ca-data {
              type binary;
              description
                "List of trusted Certification
                 Authorities (CAs) certificates
                 encoded using ASN.1
                 Distinguished Encoding Rules
                 (DER).  If it is not defined,
                 the default value is empty.";

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 41



            }
            leaf crl-data {
              type binary;
              description
                "A CertificateList structure, as
                 specified in RFC 5280,
                 encoded using ASN.1
                 Distinguished Encoding Rules
                 (DER), as specified in ITU-T
                 X.690.  If it is not defined,
                 the default value is empty.";
              reference
                "RFC 5280: Internet X.509 Public Key Infrastructure
                           Certificate and Certificate Revocation
                           List (CRL) Profile.";
            }
            leaf crl-uri {
              type inet:uri;
              description
                "X.509 Certificate Revocation List
                 (CRL) certificate URI.
                 If it is not defined,
                 the default value is empty.";
              reference
                "RFC 5280: Internet X.509 Public Key Infrastructure
                           Certificate and Certificate Revocation
                           List (CRL) Profile.";
            }
            leaf oscp-uri {
              type inet:uri;
              description
                "Online Certificate Status Protocol
                 (OCSP) URI.  If it is not defined,
                 the default value is empty.";
              reference
                "RFC 6960: X.509 Internet Public Key Infrastructure
                           Online Certificate Status Protocol - OCSP
                 RFC 5280: Internet X.509 Public Key Infrastructure
                           Certificate and Certificate Revocation
                           List (CRL) Profile.";
            }
            description
              "digital-signature container.";
          } /*container digital-signature*/
        } /*container peer-authentication*/
      }
    }
    list conn-entry {
      key "name";
      description
        "IKE peer connection information.  This list
         contains the IKE connection for this peer
         with other peers.  This will create, in
         real time, IKE Security Associations
         established with these nodes.";
      leaf name {
        type string;
        description

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 42



          "Identifier for this connection
           entry.";
      }
      leaf autostartup {
        type autostartup-type;
        default "add";
        description
          "By default, only add configuration
           without starting the security
           association.";
      }
      leaf initial-contact {
        type boolean;
        default "false";
        description
          "The goal of this value is to deactivate the
           usage of INITIAL_CONTACT notification
           (true).  If this flag remains set to false, it
           means the usage of the INITIAL_CONTACT
           notification will depend on the IKEv2
           implementation.";
      }
      leaf version {
        type auth-protocol-type;
        default "ikev2";
        description
          "IKE version.  Only version 2 is supported.";
      }
      container fragmentation {
        leaf enabled {
          type boolean;
          default "false";
          description
            "Whether or not to enable IKEv2
             fragmentation (true or false).";
          reference
            "RFC 7383: Internet Key Exchange Protocol Version 2
                       (IKEv2) Message Fragmentation.";
        }
        leaf mtu {
          when "../enabled='true'";
          type uint16 {
            range "68..65535";
          }
          description
            "MTU that IKEv2 can use
             for IKEv2 fragmentation.";
          reference
            "RFC 7383: Internet Key Exchange Protocol Version 2
                       (IKEv2) Message Fragmentation.";
        }
        description
          "IKEv2 fragmentation, as per RFC 7383.  If the
           IKEv2 fragmentation is enabled, it is possible
           to specify the MTU.";
      }
      container ike-sa-lifetime-soft {
        description

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 43



          "IKE SA lifetime soft.  Two lifetime values
           can be configured: either rekey time of the
           IKE SA or reauth time of the IKE SA.  When
           the rekey lifetime expires, a rekey of the
           IKE SA starts.  When reauth lifetime
           expires, an IKE SA reauthentication starts.";
        leaf rekey-time {
          type uint32;
          units "seconds";
          default "0";
          description
            "Time in seconds between each IKE SA
             rekey.  The value 0 means infinite.";
        }
        leaf reauth-time {
          type uint32;
          units "seconds";
          default "0";
          description
            "Time in seconds between each IKE SA
             reauthentication.  The value 0 means
             infinite.";
        }
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2), Section 2.8.";
      }
      container ike-sa-lifetime-hard {
        description
          "Hard IKE SA lifetime.  When this
           time is reached, the IKE SA is removed.";
        leaf over-time {
          type uint32;
          units "seconds";
          default "0";
          description
            "Time in seconds before the IKE SA is
             removed.  The value 0 means infinite.";
        }
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2).";
      }
      leaf-list ike-sa-intr-alg {
        type nsfikec:intr-alg-t;
        default "12";
        ordered-by user;
        description
          "Integrity algorithm for establishing
           the IKE SA.  This list is ordered following
           from the higher priority to lower priority.
           The first node of the list will be the
           algorithm with higher priority.
           Default value 12 (AUTH_HMAC_SHA2_256_128).";
      }
      list ike-sa-encr-alg {
        key "id";
        min-elements 1;

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 44



        ordered-by user;
        leaf id {
          type uint16;
          description
            "An identifier that unequivocally
             identifies each entry of the list,
             i.e., an encryption algorithm and
             its key length (if required).";
        }
        leaf algorithm-type {
          type nsfikec:encr-alg-t;
          default "12";
          description
            "Default value 12 (ENCR_AES_CBC).";
        }
        leaf key-length {
          type uint16;
          default "128";
          description
            "By default, key length is 128 bits.";
        }
        description
          "Encryption or AEAD algorithm for the IKE
           SAs.  This list is ordered following
           from the higher priority to lower priority.
           The first node of the list will be the
           algorithm with higher priority.";
      }
      leaf dh-group {
        type fs-group;
        default "14";
        description
          "Group number for Diffie-Hellman
           Exponentiation used during IKE_SA_INIT
           for the IKE SA key exchange.";
      }
      leaf half-open-ike-sa-timer {
        type uint32;
        units "seconds";
        default "0";
        description
          "Set the half-open IKE SA timeout
           duration.  The value 0 implies infinite.";
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2), Section 2.";
      }
      leaf half-open-ike-sa-cookie-threshold {
        type uint32;
        default "0";
        description
          "Number of half-open IKE SAs that activate
           the cookie mechanism.  The value 0 implies
           infinite.";
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2), Section 2.6.";
      }

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 45



      container local {
        leaf local-pad-entry-name {
          type string;
          mandatory true;
          description
            "Local peer authentication information.
             This node points to a specific entry in
             the PAD where the authorization
             information about this particular local
             peer is stored.  It MUST match a
             pad-entry-name.";
        }
        description
          "Local peer authentication information.";
      }
      container remote {
        leaf remote-pad-entry-name {
          type string;
          mandatory true;
          description
            "Remote peer authentication information.
             This node points to a specific entry in
             the PAD where the authorization
             information about this particular
             remote peer is stored.  It MUST match a
             pad-entry-name.";
        }
        description
          "Remote peer authentication information.";
      }
      container encapsulation-type {
        uses nsfikec:encap;
        description
          "This container carries configuration
           information about the source and destination
           ports of encapsulation that IKE should use
           and the type of encapsulation that
           should be used when NAT traversal is required.
           However, this is just a best effort since
           the IKE implementation may need to use a
           different encapsulation, as described in
           RFC 8229.";
        reference
          "RFC 8229: TCP Encapsulation of IKE and IPsec
                     Packets.";
      }
      container spd {
        description
          "Configuration of the Security Policy
           Database (SPD).  This main information is
           placed in the grouping
           ipsec-policy-grouping.";
        list spd-entry {
          key "name";
          ordered-by user;
          leaf name {
            type string;
            description

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 46



              "SPD-entry-unique name to identify
               the IPsec policy.";
          }
          container ipsec-policy-config {
            description
              "This container carries the
               configuration of an IPsec policy.";
            uses nsfikec:ipsec-policy-grouping;
          }
          description
            "List of entries that will constitute
             the representation of the SPD.  In this
             case, since the NSF implements IKE, it
             is only required to send an IPsec policy
             from this NSF where 'local' is this NSF
             and 'remote' the other NSF.  The IKE
             implementation will install IPsec
             policies in the NSF's kernel in both
             directions (inbound and outbound) and
             their corresponding IPsec SAs based on
             the information in this SPD entry.";
        }
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2), Section 2.9.";
      }
      container child-sa-info {
        leaf-list fs-groups {
          type fs-group;
          default "0";
          ordered-by user;
          description
            "If non-zero, forward secrecy is
             required when a new IPsec SA is being
             created, the (non-zero) value indicates
             the group number to use for the key
             exchange process used to achieve forward
             secrecy.
             This list is ordered following from the
             higher priority to lower priority.  The
             first node of the list will be the
             algorithm with higher priority.";
        }
        container child-sa-lifetime-soft {
          description
            "Soft IPsec SA lifetime.
             After the lifetime, the action is
             defined in this container
             in the leaf action.";
          uses nsfikec:lifetime;
          leaf action {
            type nsfikec:lifetime-action;
            default "replace";
            description
              "When the lifetime of an IPsec SA
               expires, an action needs to be
               performed over the IPsec SA that
               reached the lifetime.  There are

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 47



               three possible options:
               terminate-clear, terminate-hold, and
               replace.";
            reference
              "RFC 4301: Security Architecture for the Internet
                         Protocol, Section 4.5
               RFC 7296: Internet Key Exchange Protocol Version 2
                         (IKEv2), Section 2.8.";
          }
        }
        container child-sa-lifetime-hard {
          description
            "IPsec SA lifetime hard.  The action will
             be to terminate the IPsec SA.";
          uses nsfikec:lifetime;
          reference
            "RFC 7296: Internet Key Exchange Protocol Version 2
                       (IKEv2), Section 2.8.";
        }
        description
          "Specific information for IPsec SAs.
           It includes the Perfect Forward Secrecy (PFS)
           group and IPsec SAs rekey lifetimes.";
      }
      container state {
        config false;
        leaf initiator {
          type boolean;
          description
            "It is acting as an initiator for this
             connection.";
        }
        leaf initiator-ikesa-spi {
          type ike-spi;
          description
            "Initiator's IKE SA SPI.";
        }
        leaf responder-ikesa-spi {
          type ike-spi;
          description
            "Responder's IKE SA SPI.";
        }
        leaf nat-local {
          type boolean;
          description
            "True if local endpoint is behind a
             NAT.";
        }
        leaf nat-remote {
          type boolean;
          description
            "True if remote endpoint is behind
             a NAT.";
        }
        container encapsulation-type {
          uses nsfikec:encap;
          description
            "This container provides information

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 48



             about the source and destination
             ports of encapsulation that IKE is
             using and the type of encapsulation
             when NAT traversal is required.";
          reference
            "RFC 8229: TCP Encapsulation of IKE and IPsec Packets.";
        }
        leaf established {
          type uint64;
          units "seconds";
          description
            "Seconds since this IKE SA has been
             established.";
        }
        leaf current-rekey-time {
          type uint64;
          units "seconds";
          description
            "Seconds before IKE SA is rekeyed.";
        }
        leaf current-reauth-time {
          type uint64;
          units "seconds";
          description
            "Seconds before IKE SA is
             reauthenticated.";
        }
        description
          "IKE state data for a particular
           connection.";
      } /* ike-sa-state */
    } /* ike-conn-entries */
    container number-ike-sas {
      config false;
      leaf total {
        type yang:gauge64;
        description
          "Total number of active IKE SAs.";
      }
      leaf half-open {
        type yang:gauge64;
        description
          "Number of half-open active IKE SAs.";
      }
      leaf half-open-cookies {
        type yang:gauge64;
        description
          "Number of half-open active IKE SAs with
           cookie activated.";
      }
      description
        "General information about the IKE SAs.  In
         particular, it provides the current number of
         IKE SAs.";
    }
  } /* container ipsec-ike */
}

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 49



<CODE ENDS>

5.3. The 'ietf-i2nsf-ikeless' Module 
In this section, the YANG module for the IKE-less case is described.

5.3.1. Data Model Overview 

For this case, the definition of the SPD model has been mainly extracted from the specification in
Section 4.4.1 and Appendix D in , though with some changes, namely:

For simplicity, each IPsec policy (spd-entry) contains one Traffic Selector, instead of a list of
them. The reason is that actual kernel implementations only admit a single Traffic Selector
per IPsec policy. 
Each IPsec policy contains an identifier (reqid) to relate the policy with the IPsec SA. This is
common in Linux-based systems. 
Each IPsec policy has only one name and not a list of names. 
Combined algorithms have been removed because encryption algorithms  include
Authenticated Encryption with Associated Data (AEAD). 
Tunnel information has been extended with information about DSCP mapping. The reason is
that certain kernel implementations accept configuration of these values. 

The definition of the SAD model has been mainly extracted from the specification in 
, though with some changes, namely:

For simplicity, each IPsec SA (sad-entry) contains one Traffic Selector, instead of a list of
them. The reason is that actual kernel implementations only admit a single Traffic Selector
per IPsec SA. 
Each IPsec SA contains an identifier (reqid) to relate the IPsec SA with the IPsec policy. The
reason is that real kernel implementations allow this value to be included. 
Each IPsec SA is also named in the same way as IPsec policies. 
The model allows specifying the algorithm for encryption. This can be Authenticated
Encryption with Associated Data (AEAD) or non-AEAD. If an AEAD algorithm is specified, the
integrity algorithm is not required. If a non-AEAD algorithm is specified, the integrity
algorithm is required . 
Tunnel information has been extended with information about Differentiated Services Code
Point (DSCP) mapping. It is assumed that NSFs involved in this document provide ECN full
functionality to prevent discarding of ECN congestion indications . 
The lifetime of the IPsec SAs also includes idle time and the number of IP packets as a
threshold to trigger the lifetime. The reason is that actual kernel implementations allow for
setting these types of lifetimes. 
Information to configure the type of encapsulation (encapsulation-type) for IPsec ESP
packets in UDP  or TCP  has been included. 

[RFC4301]

• 

• 

• 
• MAY

• 

Section 4.4.2
of [RFC4301]

• 

• 

• 
• 

[RFC8221]
• 

[RFC6040]
• 

• 
[RFC3948] [RFC8229]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 50

https://www.rfc-editor.org/rfc/rfc4301#section-4.4.1
https://www.rfc-editor.org/rfc/rfc4301#appendix-D
https://www.rfc-editor.org/rfc/rfc4301#section-4.4.2


The notifications model has been defined using, as reference, the PF_KEYv2 specification in 
.[RFC2367]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 51



The YANG data model for the IKE-less case is defined by the module "ietf-i2nsf-ikeless". Its
structure is depicted in the following diagram, using the notation syntax for YANG tree diagrams 

.[RFC8340]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 52



module: ietf-i2nsf-ikeless
  +--rw ipsec-ikeless
    +--rw spd
    |  +--rw spd-entry* [name]
    |     +--rw name  string
    |     +--rw direction nsfikec:ipsec-traffic-direction
    |     +--rw reqid? uint64
    |     +--rw ipsec-policy-config
    |        +--rw anti-replay-window-size?   uint32
    |        +--rw traffic-selector
    |        |  +--rw local-prefix      inet:ip-prefix
    |        |  +--rw remote-prefix     inet:ip-prefix
    |        |  +--rw inner-protocol?   ipsec-inner-protocol
    |        |  +--rw local-ports* [start end]
    |        |  |  +--rw start    inet:port-number
    |        |  |  +--rw end      inet:port-number
    |        |  +--rw remote-ports* [start end]
    |        |     +--rw start    inet:port-number
    |        |     +--rw end      inet:port-number
    |        +--rw processing-info
    |           +--rw action?         ipsec-spd-action
    |           +--rw ipsec-sa-cfg
    |             +--rw pfp-flag?              boolean
    |             +--rw ext-seq-num?           boolean
    |             +--rw seq-overflow?          boolean
    |             +--rw stateful-frag-check?   boolean
    |             +--rw mode?                  ipsec-mode
    |             +--rw protocol-parameters? ipsec-protocol-params
    |              +--rw esp-algorithms
    |              |  +--rw integrity*    intr-alg-t
    |              |  +--rw encryption* [id]
    |              |  |  +--rw id                uint16
    |              |  |  +--rw algorithm-type?   encr-alg-t
    |              |  |  +--rw key-length?       uint16
    |              |  +--rw tfc-pad?      boolean
    |              +--rw tunnel
    |                 +--rw local           inet:ip-address
    |                 +--rw remote          inet:ip-address
    |                 +--rw df-bit?         enumeration
    |                 +--rw bypass-dscp?    boolean
    |                 +--rw dscp-mapping* [id]
    |                    +--rw id            uint8
    |                    +--rw inner-dscp?   inet:dscp
    |                    +--rw outer-dscp?   inet:dscp
    +--rw sad
      +--rw sad-entry* [name]
       +--rw name               string
       +--rw reqid?             uint64
       +--rw ipsec-sa-config
       |  +--rw spi                        uint32
       |  +--rw ext-seq-num?               boolean
       |  +--rw seq-overflow?              boolean
       |  +--rw anti-replay-window-size?   uint32
       |  +--rw traffic-selector
       |  |  +--rw local-prefix      inet:ip-prefix
       |  |  +--rw remote-prefix     inet:ip-prefix
       |  |  +--rw inner-protocol?   ipsec-inner-protocol

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 53



       |  |  +--rw local-ports* [start end]
       |  |  |  +--rw start    inet:port-number
       |  |  |  +--rw end      inet:port-number
       |  |  +--rw remote-ports* [start end]
       |  |     +--rw start    inet:port-number
       |  |     +--rw end      inet:port-number
       |  +--rw protocol-parameters? nsfikec:ipsec-protocol-params
       |  +--rw mode?                      nsfikec:ipsec-mode
       |  +--rw esp-sa
       |  |  +--rw encryption
       |  |  |  +--rw encryption-algorithm?   nsfikec:encr-alg-t
       |  |  |  +--rw key?                    yang:hex-string
       |  |  |  +--rw iv?                     yang:hex-string
       |  |  +--rw integrity
       |  |     +--rw integrity-algorithm?   nsfikec:intr-alg-t
       |  |     +--rw key?                   yang:hex-string
       |  +--rw sa-lifetime-hard
       |  |  +--rw time?      uint32
       |  |  +--rw bytes?     yang:counter64
       |  |  +--rw packets?   uint32
       |  |  +--rw idle?      uint32
       |  +--rw sa-lifetime-soft
       |  |  +--rw time?      uint32
       |  |  +--rw bytes?     yang:counter64
       |  |  +--rw packets?   uint32
       |  |  +--rw idle?      uint32
       |  |  +--rw action?    nsfikec:lifetime-action
       |  +--rw tunnel
       |  |  +--rw local           inet:ip-address
       |  |  +--rw remote          inet:ip-address
       |  |  +--rw df-bit?         enumeration
       |  |  +--rw bypass-dscp?    boolean
       |  |  +--rw dscp-mapping* [id]
       |  |  |  +--rw id            uint8
       |  |  |  +--rw inner-dscp?   inet:dscp
       |  |  |  +--rw outer-dscp?   inet:dscp
       |  |  +--rw dscp-values*    inet:dscp
       |  +--rw encapsulation-type
       |     +--rw espencap?   esp-encap
       |     +--rw sport?      inet:port-number
       |     +--rw dport?      inet:port-number
       |     +--rw oaddr*      inet:ip-address
       +--ro ipsec-sa-state
          +--ro sa-lifetime-current
          |  +--ro time?      uint32
          |  +--ro bytes?     yang:counter64
          |  +--ro packets?   uint32
          |  +--ro idle?      uint32
          +--ro replay-stats
             +--ro replay-window
             |  +--ro w?   uint32
             |  +--ro t?   uint64
             |  +--ro b?   uint64
             +--ro packet-dropped?       yang:counter64
             +--ro failed?               yang:counter64
             +--ro seq-number-counter?   uint64

   notifications:

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 54



The YANG data model consists of a unique "ipsec-ikeless" container, which, in turn, is composed
of two additional containers: "spd" and "sad". The "spd" container consists of a list of entries that
form the Security Policy Database. Compared to the IKE case YANG data model, this part specifies
a few additional parameters necessary due to the absence of an IKE software in the NSF: traffic
direction to apply the IPsec policy and a "reqid" value to link an IPsec policy with its associated
IPsec SAs since it is otherwise a little hard to find by searching. The "sad" container is a list of
entries that form the Security Association Database. In general, each entry allows specifying both
configuration information (SPI, Traffic Selectors, tunnel/transport mode, cryptographic
algorithms and keying material, soft/hard lifetimes, etc.) as well as stating information (time to
expire, replay statistics, etc.) of a concrete IPsec SA.

In addition, the module defines a set of notifications to allow the NSF to inform the I2NSF
Controller about relevant events, such as IPsec SA expiration, sequence number overflow, or bad
SPI in a received packet.

     +---n sadb-acquire {ikeless-notification}?
     |  +--ro ipsec-policy-name    string
     |  +--ro traffic-selector
     |     +--ro local-prefix      inet:ip-prefix
     |     +--ro remote-prefix     inet:ip-prefix
     |     +--ro inner-protocol?   ipsec-inner-protocol
     |     +--ro local-ports* [start end]
     |     |  +--ro start    inet:port-number
     |     |  +--ro end      inet:port-number
     |     +--ro remote-ports* [start end]
     |        +--ro start    inet:port-number
     |        +--ro end      inet:port-number
     +---n sadb-expire {ikeless-notification}?
     |  +--ro ipsec-sa-name           string
     |  +--ro soft-lifetime-expire?   boolean
     |  +--ro lifetime-current
     |     +--ro time?      uint32
     |     +--ro bytes?     yang:counter64
     |     +--ro packets?   uint32
     |     +--ro idle?      uint32
     +---n sadb-seq-overflow {ikeless-notification}?
     |  +--ro ipsec-sa-name    string
     +---n sadb-bad-spi {ikeless-notification}?
        +--ro spi    uint32

5.3.2. Example Usage 

Appendix B shows an example of an IKE-less case configuration for an NSF in transport mode
(host-to-host). Additionally, Appendix C shows examples of IPsec SA expire, acquire, sequence
number overflow, and bad SPI notifications.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 55



5.3.3. YANG Module 

This YANG module has normative references to , , ,  and 
.

[RFC4301] [RFC4303] [RFC6991] [RFC8174]
[RFC8341]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 56



<CODE BEGINS> file "ietf-i2nsf-ikeless@2021-07-14.yang"

module ietf-i2nsf-ikeless {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless";
  prefix nsfikels;

  import ietf-inet-types {
    prefix inet;
    reference
      "RFC 6991: Common YANG Data Types.";
  }
  import ietf-yang-types {
    prefix yang;
    reference
      "RFC 6991: Common YANG Data Types.";
  }
  import ietf-i2nsf-ikec {
    prefix nsfikec;
    reference
      "RFC 9061: A YANG Data Model for IPsec Flow Protection
                 Based on Software-Defined Networking (SDN).";
  }
  import ietf-netconf-acm {
    prefix nacm;
    reference
      "RFC 8341: Network Configuration Access Control
                 Model.";
  }

  organization
    "IETF I2NSF Working Group";
  contact
    "WG Web:  <https://datatracker.ietf.org/wg/i2nsf/>
     WG List: <mailto:i2nsf@ietf.org>

     Author: Rafael Marin-Lopez
              <mailto:rafa@um.es>

     Author: Gabriel Lopez-Millan
              <mailto:gabilm@um.es>

     Author: Fernando Pereniguez-Garcia
              <mailto:fernando.pereniguez@cud.upct.es>
    ";
  description
    "Data model for IKE-less case in the SDN-based IPsec flow
     protection service.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
     document are to be interpreted as described in BCP 14
     (RFC 2119) (RFC 8174) when, and only when, they appear
     in all capitals, as shown here.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 57



     Copyright (c) 2021 IETF Trust and the persons
     identified as authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9061; see
     the RFC itself for full legal notices.";

  revision 2021-07-14 {
    description
      "Initial version.";
    reference
      "RFC 9061: A YANG Data Model for IPsec Flow Protection
                 Based on Software-Defined Networking (SDN).";
  }

  feature ikeless-notification {
    description
      "This feature indicates that the server supports
       generating notifications in the ikeless module.

       To ensure broader applicability of this module,
       the notifications are marked as a feature.
       For the implementation of the IKE-less case,
       the NSF is expected to implement this
       feature.";
  }

  container ipsec-ikeless {
    description
      "Container for configuration of the IKE-less
       case. The container contains two additional
       containers: 'spd' and 'sad'.  The first allows the
       I2NSF Controller to configure IPsec policies in
       the Security Policy Database (SPD), and the second
       allows the I2NSF Controller to configure IPsec
       Security Associations (IPsec SAs) in the Security
       Association Database (SAD).";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol.";
    container spd {
      description
        "Configuration of the Security Policy Database
         (SPD).";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.2.";
      list spd-entry {
        key "name";
        ordered-by user;
        leaf name {
          type string;
          description

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 58



            "SPD-entry-unique name to identify this
             entry.";
        }
        leaf direction {
          type nsfikec:ipsec-traffic-direction;
          mandatory true;
          description
            "Inbound traffic or outbound
             traffic.  In the IKE-less case, the
             I2NSF Controller needs to
             specify the policy direction to be
             applied in the NSF.  In the IKE case,
             this direction does not need to be
             specified, since IKE
             will determine the direction that the
             IPsec policy will require.";
        }
        leaf reqid {
          type uint64;
          default "0";
          description
            "This value allows linking this
             IPsec policy with IPsec SAs with the
             same reqid.  It is only required in
             the IKE-less model since, in the IKE
             case, this link is handled internally
             by IKE.";
        }
        container ipsec-policy-config {
          description
            "This container carries the
             configuration of an IPsec policy.";
          uses nsfikec:ipsec-policy-grouping;
        }
        description
          "The SPD is represented as a list of SPD
           entries, where each SPD entry represents an
           IPsec policy.";
      } /*list spd-entry*/
    } /*container spd*/
    container sad {
      description
        "Configuration of the IPsec Security Association
         Database (SAD).";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.2.1.";
      list sad-entry {
        key "name";
        ordered-by user;
        leaf name {
          type string;
          description
            "SAD-entry-unique name to identify this
             entry.";
        }
        leaf reqid {
          type uint64;

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 59



          default "0";
          description
            "This value allows linking this
             IPsec SA with an IPsec policy with
             the same reqid.";
        }
        container ipsec-sa-config {
          description
            "This container allows configuring
             details of an IPsec SA.";
          leaf spi {
            type uint32 {
              range "0..max";
            }
            mandatory true;
            description
              "IPsec SA of Security Parameter Index (SPI).";
          }
          leaf ext-seq-num {
            type boolean;
            default "true";
            description
              "True if this IPsec SA is using extended
               sequence numbers.  If true, the 64-bit
               extended sequence number counter is used;
               if false, the normal 32-bit sequence
               number counter is used.";
          }
          leaf seq-overflow {
            type boolean;
            default "false";
            description
              "The flag indicating whether
               overflow of the sequence number
               counter should prevent transmission
               of additional packets on the IPsec
               SA (false) and, therefore, needs to
               be rekeyed or whether rollover is
               permitted (true).  If Authenticated
               Encryption with Associated Data
               (AEAD) is used (leaf
               esp-algorithms/encryption/algorithm-type),
               this flag MUST BE false. Setting this
               flag to true is strongly discouraged.";
          }
          leaf anti-replay-window-size {
            type uint32;
            default "64";
            description
              "To set the anti-replay window size.
               The default value is set to 64,
               following the recommendation in RFC 4303.";
            reference
              "RFC 4303: IP Encapsulating Security Payload (ESP),
                         Section 3.4.3.";
          }
          container traffic-selector {
            uses nsfikec:selector-grouping;

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 60



            description
              "The IPsec SA Traffic Selector.";
          }
          leaf protocol-parameters {
            type nsfikec:ipsec-protocol-params;
            default "esp";
            description
              "Security protocol of IPsec SA, only
               ESP so far.";
          }
          leaf mode {
            type nsfikec:ipsec-mode;
            default "transport";
            description
              "Tunnel or transport mode.";
          }
          container esp-sa {
            when "../protocol-parameters = 'esp'";
            description
              "In case the IPsec SA is an
               Encapsulation Security Payload
               (ESP), it is required to specify
               encryption and integrity
               algorithms and key materials.";
            container encryption {
              description
                "Configuration of encryption or
                 AEAD algorithm for IPsec
                 Encapsulation Security Payload
                 (ESP).";
              leaf encryption-algorithm {
                type nsfikec:encr-alg-t;
                default "12";
                description
                  "Configuration of ESP
                   encryption.  With AEAD
                   algorithms, the integrity-algorithm
                   leaf is not used.";
              }
              leaf key {
                nacm:default-deny-all;
                type yang:hex-string;
                description
                  "ESP encryption key value.
                   If this leaf is not defined,
                   the key is not defined
                   (e.g., encryption is NULL).
                   The key length is
                   determined by the
                   length of the key set in
                   this leaf.  By default, it is
                   128 bits.";
              }
              leaf iv {
                nacm:default-deny-all;
                type yang:hex-string;
                description
                  "ESP encryption IV value.  If

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 61



                   this leaf is not defined, the
                   IV is not defined (e.g.,
                   encryption is NULL).";
              }
            }
            container integrity {
              description
                "Configuration of integrity for
                 IPsec Encapsulation Security
                 Payload (ESP).  This container
                 allows configuration of integrity
                 algorithms when no AEAD
                 algorithms are used and
                 integrity is required.";
              leaf integrity-algorithm {
                type nsfikec:intr-alg-t;
                default "12";
                description
                  "Message Authentication Code
                   (MAC) algorithm to provide
                   integrity in ESP (default
                   AUTH_HMAC_SHA2_256_128).
                   With AEAD algorithms,
                   the integrity leaf is not
                   used.";
              }
              leaf key {
                nacm:default-deny-all;
                type yang:hex-string;
                description
                  "ESP integrity key value.
                   If this leaf is not defined,
                   the key is not defined (e.g.,
                   AEAD algorithm is chosen and
                   integrity algorithm is not
                   required).  The key length is
                   determined by the length of
                   the key configured.";
              }
            }
          } /*container esp-sa*/
          container sa-lifetime-hard {
            description
              "IPsec SA hard lifetime.  The action
               associated is terminate and hold.";
            uses nsfikec:lifetime;
          }
          container sa-lifetime-soft {
            description
              "IPsec SA soft lifetime.";
            uses nsfikec:lifetime;
            leaf action {
              type nsfikec:lifetime-action;
              description
                "Action lifetime: terminate-clear,
                 terminate-hold, or replace.";
            }
          }

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 62



          container tunnel {
            when "../mode = 'tunnel'";
            uses nsfikec:tunnel-grouping;
            leaf-list dscp-values {
              type inet:dscp;
              description
                "DSCP values allowed for ingress packets carried
                 over this IPsec SA.  If no values are specified, no
                 DSCP-specific filtering is applied.  When
                 ../bypass-dscp is false and a dscp-mapping is
                 defined, each value here would be the same as the
                 'inner' DSCP value for the DSCP mapping (list
                 dscp-mapping).";
              reference
                "RFC 4301: Security Architecture for the Internet
                           Protocol, Section 4.4.2.1.";
            }
            description
              "Endpoints of the IPsec tunnel.";
          }
          container encapsulation-type {
            uses nsfikec:encap;
            description
              "This container carries
               configuration information about
               the source and destination ports
               that will be used for ESP
               encapsulation of ESP packets and
               the type of encapsulation when NAT
               traversal is in place.";
          }
        } /*ipsec-sa-config*/
        container ipsec-sa-state {
          config false;
          description
            "Container describing IPsec SA state
             data.";
          container sa-lifetime-current {
            uses nsfikec:lifetime;
            description
              "SAD lifetime current.";
          }
          container replay-stats {
            description
              "State data about the anti-replay
               window.";
            container replay-window {
              leaf w {
                type uint32;
                description
                  "Size of the replay window.";
              }
              leaf t {
                type uint64;
                description
                  "Highest sequence number
                   authenticated so far,
                   upper bound of window.";

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 63



              }
              leaf b {
                type uint64;
                description
                  "Lower bound of window.";
              }
              description
                "This container contains three
                 parameters that define the state
                 of the replay window: window size (w),
                 highest sequence number authenticated (t),
                 and lower bound of the window (b), according
                 to Appendix A2.1 in RFC 4303 (w = t - b + 1).";
              reference
                "RFC 4303: IP Encapsulating Security Payload (ESP),
                           Appendix A.";
            }
            leaf packet-dropped {
              type yang:counter64;
              description
                "Packets dropped
                 because they are
                 replay packets.";
            }
            leaf failed {
              type yang:counter64;
              description
                "Number of packets detected out
                 of the replay window.";
            }
            leaf seq-number-counter {
              type uint64;
              description
                "A 64-bit counter when this
                 IPsec SA is using Extended
                 Sequence Number or 32-bit
                 counter when it is not.
                 Current value of sequence
                 number.";
            }
          } /* container replay-stats*/
        } /*ipsec-sa-state*/
        description
          "List of SAD entries that form the SAD.";
      } /*list sad-entry*/
    } /*container sad*/
  } /*container ipsec-ikeless*/

  /* Notifications */

  notification sadb-acquire {
    if-feature "ikeless-notification";
    description
      "The NSF detects and notifies that
       an IPsec SA is required for an
       outbound IP packet that has matched an SPD entry.
       The traffic-selector container in this
       notification contains information about

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 64



       the IP packet that triggered this
       notification.";
    leaf ipsec-policy-name {
      type string;
      mandatory true;
      description
        "It contains the SPD entry name (unique) of
         the IPsec policy that hits the IP-packet-required
         IPsec SA.  It is assumed the
         I2NSF Controller will have a copy of the
         information of this policy so it can
         extract all the information with this
         unique identifier.  The type of IPsec SA is
         defined in the policy so the security
         controller can also know the type of IPsec
         SA that MUST be generated.";
    }
    container traffic-selector {
      description
        "The IP packet that triggered the acquire
         and requires an IPsec SA.  Specifically, it
         will contain the IP source/mask and IP
         destination/mask, protocol (udp, tcp,
         etc.), and source and destination
         ports.";
      uses nsfikec:selector-grouping;
    }
  }

  notification sadb-expire {
    if-feature "ikeless-notification";
    description
      "An IPsec SA expiration (soft or hard).";
    leaf ipsec-sa-name {
      type string;
      mandatory true;
      description
        "It contains the SAD entry name (unique) of
         the IPsec SA that is about to expire.  It is assumed
         the I2NSF Controller will have a copy of the
         IPsec SA information (except the cryptographic
         material and state data) indexed by this name
         (unique identifier) so it can know all the
         information (crypto algorithms, etc.) about
         the IPsec SA that has expired in order to
         perform a rekey (soft lifetime) or delete it
         (hard lifetime) with this unique identifier.";
    }
    leaf soft-lifetime-expire {
      type boolean;
      default "true";
      description
        "If this value is true, the lifetime expired is
         soft.  If it is false, the lifetime is hard.";
    }
    container lifetime-current {
      description
        "IPsec SA current lifetime.  If

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 65



         soft-lifetime-expired is true,
         this container is set with the
         lifetime information about current
         soft lifetime.
         It can help the NSF Controller
         to know which of the (soft) lifetime
         limits raised the event: time, bytes,
         packets, or idle.";
      uses nsfikec:lifetime;
    }
  }

  notification sadb-seq-overflow {
    if-feature "ikeless-notification";
    description
      "Sequence overflow notification.";
    leaf ipsec-sa-name {
      type string;
      mandatory true;
      description
        "It contains the SAD entry name (unique) of
         the IPsec SA that is about to have a sequence
         number overflow, and rollover is not permitted.
         When the NSF issues this event before reaching
         a sequence number, overflow is implementation
         specific and out of scope of this specification.
         It is assumed the I2NSF Controller will have a
         copy of the IPsec SA information (except the
         cryptographic material and state data) indexed
         by this name (unique identifier) so it can
         know all the information (crypto algorithms,
         etc.) about the IPsec SA in
         order to perform a rekey of the IPsec SA.";
    }
  }

  notification sadb-bad-spi {
    if-feature "ikeless-notification";
    description
      "Notify when the NSF receives a packet with an
       incorrect SPI (i.e., not present in the SAD).";
    leaf spi {
      type uint32 {
        range "0..max";
      }
      mandatory true;
      description
        "SPI number contained in the erroneous IPsec
         packet.";
    }
  }
}

<CODE ENDS>

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 66



URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

Name:
Maintained by IANA:
Namespace:
Prefix:
Reference:

Name:
Maintained by IANA:
Namespace:
Prefix:
Reference:

Name:
Maintained by IANA:
Namespace:
Prefix:
Reference:

6. IANA Considerations 
IANA has registered the following namespaces in the "ns" subregistry within the "IETF XML
Registry" :

urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikec 
The IESG. 

N/A, the requested URI is an XML namespace. 

urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike 
The IESG. 

N/A, the requested URI is an XML namespace. 

urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless 
The IESG. 

N/A, the requested URI is an XML namespace. 

IANA has registered the following YANG modules in the "YANG Module Names" registry 
:

ietf-i2nsf-ikec 
N 

urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikec 
nsfikec 
RFC 9061 

ietf-i2nsf-ike 
N 

urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike 
nsfike 
RFC 9061 

ietf-i2nsf-ikeless 
N 

urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless 
nsfikels 
RFC 9061 

[RFC3688]

[RFC6020]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 67



7. Security Considerations 
First of all, this document shares all the security issues of SDN that are specified in the Security
Considerations sections of  and .

On the one hand, it is important to note that there  exist a security association between the
I2NSF Controller and the NSFs to protect the critical information (cryptographic keys,
configuration parameter, etc.) exchanged between these entities. The nature of and means to
create that security association is out of the scope of this document (i.e., it is part of device
provisioning or onboarding).

On the other hand, if encryption is mandatory for all traffic of an NSF, its default policy  be
to drop (DISCARD) packets to prevent cleartext packet leaks. This default policy  be
preconfigured in the startup configuration datastore in the NSF before the NSF contacts the
I2NSF Controller. Moreover, the startup configuration datastore  be also preconfigured with
the required ALLOW policies that allow the NSF to communicate with the I2NSF Controller once
the NSF is deployed. This preconfiguration step is not carried out by the I2NSF Controller but by
some other entity before the NSF deployment. In this manner, when the NSF starts/reboots, it will
always first apply the configuration in the startup configuration before contacting the I2NSF
Controller.

Finally, this section is divided in two parts in order to analyze different security considerations
for both cases: NSF with IKEv2 (IKE case) and NSF without IKEv2 (IKE-less case). In general, the
I2NSF Controller, as typically in the SDN paradigm, is a target for different type of attacks; see 

 and . Thus, the I2NSF Controller is a key entity in the infrastructure
and  be protected accordingly. In particular, the I2NSF Controller will handle cryptographic
material; thus, the attacker may try to access this information. The impact is different depending
on the IKE case or the IKE-less case.

[ITU-T.Y.3300] [RFC7426]

MUST

MUST
MUST

MUST

[SDNSecServ] [SDNSecurity]
MUST

7.1. IKE Case 
In the IKE case, the I2NSF Controller sends IKEv2 credentials (PSK, public/private keys,
certificates, etc.) to the NSFs using the security association between the I2NSF Controller and
NSFs. The I2NSF Controller  store the IKEv2 credentials after distributing them.
Moreover, the NSFs  allow the reading of these values once they have been applied by
the I2NSF Controller (i.e., write-only operations). One option is to always return the same value
(i.e., all 0s) if a read operation is carried out.

If the attacker has access to the I2NSF Controller during the period of time that key material is
generated, it might have access to the key material. Since these values are used during NSF
authentication in IKEv2, it may impersonate the affected NSFs. Several recommendations are
important.

IKEv2 configurations  adhere to the recommendations in . 

MUST NOT
MUST NOT

• SHOULD [RFC8247]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 68



If PSK authentication is used in IKEv2, the I2NSF Controller  remove the PSK
immediately after generating and distributing it. 
When public/private keys are used, the I2NSF Controller  generate both public key and
private key. In such a case, the I2NSF Controller  remove the associated private key
immediately after distributing them to the NSFs. Alternatively, the NSF  generate the
private key and export only the public key to the I2NSF Controller. How the NSF generates
these cryptographic materials (public key/ private keys) and exports the public key is out of
scope of this document. 
If certificates are used, the NSF  generate the private key and export the public key for
certification to the I2NSF Controller. How the NSF generates these cryptographic material
(public key/ private keys) and exports the public key is out of scope of this document. 

• MUST

• MAY
MUST

MAY

• MAY

7.2. IKE-less Case 
In the IKE-less case, the I2NSF Controller sends the IPsec SA information to the NSF's SAD that
includes the private session keys required for integrity and encryption. The I2NSF Controller 

 store the keys after distributing them. Moreover, the NSFs receiving private key
material  allow the reading of these values by any other entity (including the I2NSF
Controller itself) once they have been applied (i.e., write-only operations) into the NSFs.
Nevertheless, if the attacker has access to the I2NSF Controller during the period of time that key
material is generated, it may obtain these values. In other words, the attacker might be able to
observe the IPsec traffic and decrypt, or even modify and re-encrypt, the traffic between peers.

Finally, the security association between the I2NSF Controller and the NSFs  provide, at
least, the same degree of protection as the one achieved by the IPsec SAs configured in the NSFs.
In particular, the security association between the I2NSF Controller and the NSFs  provide
forward secrecy if this property is to be achieved in the IPsec SAs that the I2NSF Controller
configures in the NSFs. Similarly, the encryption algorithms used in the security association
between the I2NSF Controller and the NSF  have, at least, the same strength (minimum
strength of a 128-bit key) as the algorithms used to establish the IPsec SAs.

MUST NOT
MUST NOT

MUST

MUST

MUST

7.3. YANG Modules 
The YANG modules specified in this document define a schema for data that is designed to be
accessed via network management protocols such as NETCONF  or RESTCONF 

. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-
implement secure transport is Secure Shell (SSH) . The lowest RESTCONF layer is
HTTPS, and the mandatory-to-implement secure transport is TLS .

The Network Configuration Access Control Model (NACM)  provides the means to
restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all
available NETCONF or RESTCONF protocol operations and content.

[RFC6241]
[RFC8040]

[RFC6242]
[RFC8446]

[RFC8341]

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 69



[IANA-Method-Type]

8. References 

8.1. Normative References 

/ipsec-ike:

/ipsec-ikeless:

/ipsec-ike/pad:

/ipsec-ikeless/sad/sad-entry/ipsec-sa-config/esp-sa:

There are a number of data nodes defined in these YANG modules that are writable/creatable/
deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or
vulnerable in some network environments. Write operations (e.g., edit-config) to these data
nodes without proper protection can have a negative effect on network operations. These are the
subtrees and data nodes and their sensitivity/vulnerability:

For the IKE case (ietf-i2nsf-ike):
The entire container in this module is sensitive to write operations. An attacker

may add/modify the credentials to be used for the authentication (e.g., to impersonate an
NSF), for the trust root (e.g., changing the trusted CA certificates), for the cryptographic
algorithms (allowing a downgrading attack), for the IPsec policies (e.g., by allowing leaking
of data traffic by changing to an allow policy), and in general, changing the IKE SA
conditions and credentials between any NSF. 

For the IKE-less case (ietf-i2nsf-ikeless):
The entire container in this module is sensitive to write operations. An

attacker may add/modify/delete any IPsec policies (e.g., by allowing leaking of data traffic
by changing to an allow policy) in the /ipsec-ikeless/spd container, add/modify/delete any
IPsec SAs between two NSF by means of /ipsec-ikeless/sad container, and, in general,
change any IPsec SAs and IPsec policies between any NSF. 

Some of the readable data nodes in these YANG modules may be considered sensitive or
vulnerable in some network environments. It is thus important to control read access (e.g., via
get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and
their sensitivity/vulnerability:

For the IKE case (ietf-i2nsf-ike):
This container includes sensitive information to read operations. This

information  be returned to a client. For example, cryptographic material
configured in the NSFs (peer-authentication/pre-shared/secret and peer-authentication/
digital-signature/private-key) are already protected by the NACM extension "default-deny-
all" in this document. 

For the IKE-less case (ietf-i2nsf-ikeless):
This container includes symmetric keys

for the IPsec SAs. For example, encryption/key contains an ESP encryption key value and
encryption/iv contains an Initialization Vector value. Similarly, integrity/key has an ESP
integrity key value. Those values  be read by anyone and are protected by the
NACM extension "default-deny-all" in this document. 

MUST NOT

MUST NOT

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 70



[IANA-Protocols-Number]

[IKEv2-Auth-Method]

[IKEv2-Parameters]

[IKEv2-Transform-Type-1]

[IKEv2-Transform-Type-3]

[IKEv2-Transform-Type-4]

[ITU-T.X.690]

[RFC2119]

[RFC3947]

[RFC3948]

[RFC4301]

[RFC4303]

[RFC5280]

[RFC5322]

, , . 

, , 
. 

, , 
. 

, , 
. 

, , 
. 

, , 
. 

, , 
. 

, 

, 
, , February 2021. 

, , , 
, , March 1997, 
. 

, , , and , 
, , , January 2005, 

. 

, , , , and , 
, , , January

2005, . 

 and , , , 
, December 2005, 

. 

, , , 
, December 2005, . 

, , , , , and , 

, , , May 2008, 
. 

, , , , 
October 2008, . 

IANA "Method Type" <https://www.iana.org/assignments/eap-numbers/>

IANA "Protocol Numbers" <https://www.iana.org/assignments/
protocol-numbers/>

IANA "IKEv2 Authentication Method" <https://www.iana.org/
assignments/ikev2-parameters/>

IANA "Internet Key Exchange Version 2 (IKEv2) Parameters" <https://
www.iana.org/assignments/ikev2-parameters/>

IANA "Transform Type 1 - Encryption Algorithm Transform IDs"
<https://www.iana.org/assignments/ikev2-parameters/>

IANA "Transform Type 3 - Integrity Algorithm Transform IDs"
<https://www.iana.org/assignments/ikev2-parameters/>

IANA "Transform Type 4 - Diffie-Hellman Group Transform IDs"
<https://www.iana.org/assignments/ikev2-parameters/>

International Telecommunication Union "Information Technology - ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER)" ITU-T Recommendation
X.690 ISO/IEC 8825-1

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Kivinen, T. Swander, B. Huttunen, A. V. Volpe "Negotiation of NAT-
Traversal in the IKE" RFC 3947 DOI 10.17487/RFC3947 <https://
www.rfc-editor.org/info/rfc3947>

Huttunen, A. Swander, B. Volpe, V. DiBurro, L. M. Stenberg "UDP
Encapsulation of IPsec ESP Packets" RFC 3948 DOI 10.17487/RFC3948

<https://www.rfc-editor.org/info/rfc3948>

Kent, S. K. Seo "Security Architecture for the Internet Protocol" RFC 4301
DOI 10.17487/RFC4301 <https://www.rfc-editor.org/info/
rfc4301>

Kent, S. "IP Encapsulating Security Payload (ESP)" RFC 4303 DOI 10.17487/
RFC4303 <https://www.rfc-editor.org/info/rfc4303>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Resnick, P., Ed. "Internet Message Format" RFC 5322 DOI 10.17487/RFC5322
<https://www.rfc-editor.org/info/rfc5322>

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 71

https://www.iana.org/assignments/eap-numbers/
https://www.iana.org/assignments/protocol-numbers/
https://www.iana.org/assignments/protocol-numbers/
https://www.iana.org/assignments/ikev2-parameters/
https://www.iana.org/assignments/ikev2-parameters/
https://www.iana.org/assignments/ikev2-parameters/
https://www.iana.org/assignments/ikev2-parameters/
https://www.iana.org/assignments/ikev2-parameters/
https://www.iana.org/assignments/ikev2-parameters/
https://www.iana.org/assignments/ikev2-parameters/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3947
https://www.rfc-editor.org/info/rfc3947
https://www.rfc-editor.org/info/rfc3948
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5322


[RFC5915]

[RFC6020]

[RFC6241]

[RFC6242]

[RFC6960]

[RFC6991]

[RFC7296]

[RFC7383]

[RFC7427]

[RFC7619]

[RFC7950]

[RFC8017]

[RFC8040]

 and , , , 
, June 2010, . 

, 
, , , October

2010, . 

, , , and , 
, , , 

June 2011, . 

, , 
, , June 2011, 

. 

, , , , , and , 

, , , June 2013, 
. 

, , , 
, July 2013, . 

, , , , and , 
, , , , 

October 2014, . 

, 
, , , November 2014, 

. 

 and , 
, , , January 2015, 

. 

 and , 
, , , 

August 2015, . 

, , , 
, August 2016, . 

, , , and , 
, , , 

November 2016, . 

, , and , , , 
, January 2017, . 

Turner, S. D. Brown "Elliptic Curve Private Key Structure" RFC 5915 DOI
10.17487/RFC5915 <https://www.rfc-editor.org/info/rfc5915>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Wasserman, M. "Using the NETCONF Protocol over Secure Shell (SSH)" RFC
6242 DOI 10.17487/RFC6242 <https://www.rfc-editor.org/info/
rfc6242>

Santesson, S. Myers, M. Ankney, R. Malpani, A. Galperin, S. C. Adams
"X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP" RFC 6960 DOI 10.17487/RFC6960 <https://www.rfc-editor.org/
info/rfc6960>

Schoenwaelder, J., Ed. "Common YANG Data Types" RFC 6991 DOI 10.17487/
RFC6991 <https://www.rfc-editor.org/info/rfc6991>

Kaufman, C. Hoffman, P. Nir, Y. Eronen, P. T. Kivinen "Internet Key
Exchange Protocol Version 2 (IKEv2)" STD 79 RFC 7296 DOI 10.17487/RFC7296

<https://www.rfc-editor.org/info/rfc7296>

Smyslov, V. "Internet Key Exchange Protocol Version 2 (IKEv2) Message
Fragmentation" RFC 7383 DOI 10.17487/RFC7383 <https://
www.rfc-editor.org/info/rfc7383>

Kivinen, T. J. Snyder "Signature Authentication in the Internet Key
Exchange Version 2 (IKEv2)" RFC 7427 DOI 10.17487/RFC7427
<https://www.rfc-editor.org/info/rfc7427>

Smyslov, V. P. Wouters "The NULL Authentication Method in the Internet
Key Exchange Protocol Version 2 (IKEv2)" RFC 7619 DOI 10.17487/RFC7619

<https://www.rfc-editor.org/info/rfc7619>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Moriarty, K., Ed. Kaliski, B. Jonsson, J. A. Rusch "PKCS #1: RSA
Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

<https://www.rfc-editor.org/info/rfc8017>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 72

https://www.rfc-editor.org/info/rfc5915
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc7427
https://www.rfc-editor.org/info/rfc7619
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8040


[RFC8174]

[RFC8221]

[RFC8229]

[RFC8247]

[RFC8340]

[RFC8341]

[RFC8342]

[RFC8446]

[IPSECME-CONTROLLER-IKE]

[ITU-T.Y.3300]

[libreswan]

[netconf-vpn]

, , 
, , , May 2017, 

. 

, , , , and , 

, 
, , October 2017, 

. 

, , and , 
, , , August 2017, 

. 

, , , and , 

, , , September 2017, 
. 

 and , , , , 
, March 2018, . 

 and , , 
, , , March 2018, 

. 

, , , , and , 
, , ,

March 2018, . 

, , ,
, August 2018, . 

8.2. Informative References 

 and , , 
, , 10

March 2019, 
. 

, 
, June 2014, . 

, , . 

, , January 2014, 
. 

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Wouters, P. Migault, D. Mattsson, J. Nir, Y. T. Kivinen "Cryptographic
Algorithm Implementation Requirements and Usage Guidance for
Encapsulating Security Payload (ESP) and Authentication Header (AH)" RFC
8221 DOI 10.17487/RFC8221 <https://www.rfc-editor.org/info/
rfc8221>

Pauly, T. Touati, S. R. Mantha "TCP Encapsulation of IKE and IPsec
Packets" RFC 8229 DOI 10.17487/RFC8229 <https://www.rfc-
editor.org/info/rfc8229>

Nir, Y. Kivinen, T. Wouters, P. D. Migault "Algorithm Implementation
Requirements and Usage Guidance for the Internet Key Exchange Protocol
Version 2 (IKEv2)" RFC 8247 DOI 10.17487/RFC8247 <https://
www.rfc-editor.org/info/rfc8247>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-
editor.org/info/rfc8341>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Carrel, D. B. Weis "IPsec Key Exchange using a Controller"
Work in Progress Internet-Draft, draft-carrel-ipsecme-controller-ike-01

<https://datatracker.ietf.org/doc/html/draft-carrel-ipsecme-
controller-ike-01>

International Telecommunications Union "Y.3300: Framework of software-
defined networking" <https://www.itu.int/rec/T-REC-Y.3300/en>

The Libreswan Project "Libreswan VPN software" <https://libreswan.org/>

Stefan Wallin "Tutorial: NETCONF and YANG" <https://
ripe68.ripe.net/presentations/181-NETCONF-YANG-tutorial-43.pdf>

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 73

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8221
https://www.rfc-editor.org/info/rfc8221
https://www.rfc-editor.org/info/rfc8229
https://www.rfc-editor.org/info/rfc8229
https://www.rfc-editor.org/info/rfc8247
https://www.rfc-editor.org/info/rfc8247
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/draft-carrel-ipsecme-controller-ike-01
https://datatracker.ietf.org/doc/html/draft-carrel-ipsecme-controller-ike-01
https://www.itu.int/rec/T-REC-Y.3300/en
https://libreswan.org/
https://ripe68.ripe.net/presentations/181-NETCONF-YANG-tutorial-43.pdf
https://ripe68.ripe.net/presentations/181-NETCONF-YANG-tutorial-43.pdf


[ONF-OpenFlow]

[ONF-SDN-Architecture]

[RFC2367]

[RFC3688]

[RFC6040]

[RFC6071]

[RFC6437]

[RFC7149]

[RFC7426]

[RFC8192]

[RFC8329]

[SDNSecServ]

, , 
, October 2013, 

. 

, , , June 2014,

. 

, , and , , 
, , July 1998, 
. 

, , , , , 
January 2004, . 

, , , 
, November 2010, . 

 and , 
, , , February 2011, 

. 

, , , and , 
, , , November 2011, 

. 

 and , 
, , , 

March 2014, . 

, , , , , and 
, 

, , , January 2015, 
. 

, , , , , and , 
, 

, , July 2017, 
. 

, , , , and , 
, , , 

February 2018, . 

, , and , , 
, 

, November 2013, 
. 

Open Networking Foundation "OpenFlow Switch Specification" Version 1.4.0
(Wire Protocol 0x05) <https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-spec-v1.4.0.pdf>

Open Networking Foundation "SDN architecture" Issue 1
<https://www.opennetworking.org/wp-content/uploads/2013/02/
TR_SDN_ARCH_1.0_06062014.pdf>

McDonald, D. Metz, C. B. Phan "PF_KEY Key Management API, Version 2"
RFC 2367 DOI 10.17487/RFC2367 <https://www.rfc-editor.org/info/
rfc2367>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Briscoe, B. "Tunnelling of Explicit Congestion Notification" RFC 6040 DOI
10.17487/RFC6040 <https://www.rfc-editor.org/info/rfc6040>

Frankel, S. S. Krishnan "IP Security (IPsec) and Internet Key Exchange (IKE)
Document Roadmap" RFC 6071 DOI 10.17487/RFC6071 <https://
www.rfc-editor.org/info/rfc6071>

Amante, S. Carpenter, B. Jiang, S. J. Rajahalme "IPv6 Flow Label
Specification" RFC 6437 DOI 10.17487/RFC6437 <https://
www.rfc-editor.org/info/rfc6437>

Boucadair, M. C. Jacquenet "Software-Defined Networking: A Perspective
from within a Service Provider Environment" RFC 7149 DOI 10.17487/RFC7149

<https://www.rfc-editor.org/info/rfc7149>

Haleplidis, E., Ed. Pentikousis, K., Ed. Denazis, S. Hadi Salim, J. Meyer, D.
O. Koufopavlou "Software-Defined Networking (SDN): Layers and Architecture
Terminology" RFC 7426 DOI 10.17487/RFC7426 <https://www.rfc-
editor.org/info/rfc7426>

Hares, S. Lopez, D. Zarny, M. Jacquenet, C. Kumar, R. J. Jeong "Interface to
Network Security Functions (I2NSF): Problem Statement and Use Cases" RFC
8192 DOI 10.17487/RFC8192 <https://www.rfc-editor.org/info/
rfc8192>

Lopez, D. Lopez, E. Dunbar, L. Strassner, J. R. Kumar "Framework for
Interface to Network Security Functions" RFC 8329 DOI 10.17487/RFC8329

<https://www.rfc-editor.org/info/rfc8329>

Scott-Hayward, S. O'Callaghan, G. P. Sezer "Sdn Security: A Survey" 2013
IEEE SDN for Future Networks and Services (SDN4FNS), pp. 1-7 DOI 10.1109/
SDN4FNS.2013.6702553 <https://doi.org/10.1109/
SDN4FNS.2013.6702553>

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 74

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://www.rfc-editor.org/info/rfc2367
https://www.rfc-editor.org/info/rfc2367
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6040
https://www.rfc-editor.org/info/rfc6071
https://www.rfc-editor.org/info/rfc6071
https://www.rfc-editor.org/info/rfc6437
https://www.rfc-editor.org/info/rfc6437
https://www.rfc-editor.org/info/rfc7149
https://www.rfc-editor.org/info/rfc7426
https://www.rfc-editor.org/info/rfc7426
https://www.rfc-editor.org/info/rfc8192
https://www.rfc-editor.org/info/rfc8192
https://www.rfc-editor.org/info/rfc8329
https://doi.org/10.1109/SDN4FNS.2013.6702553
https://doi.org/10.1109/SDN4FNS.2013.6702553


[SDNSecurity]

[strongswan]

[TRAN-IPSECME-YANG]

, , and , 
, 

, 
, August 2013, 

. 

, , 
. 

, , , and , 
, , 

, 18 March 2016, 
. 

Kreutz, D. Ramos, F. P. Verissimo "Towards secure and dependable
software-defined networks" Proceedings of the second ACM SIGCOMM
workshop on Hot Topics in software defined networking, pp. 55-60 DOI
10.1145/2491185.2491199 <https://
doi.org/10.1145/2491185.2491199>

CESNET "strongSwan: the OpenSource IPsec-based VPN Solution" <https://
www.strongswan.org/>

Tran, K. Wang, H. Nagaraj, V. K. X. Chen "Yang Data Model for
Internet Protocol Security (IPsec)" Work in Progress Internet-Draft, draft-tran-
ipsecme-yang-01 <https://datatracker.ietf.org/doc/html/draft-
tran-ipsecme-yang-01>

Appendix A. XML Configuration Example for IKE Case
(Gateway-to-Gateway) 
This example shows an XML configuration file sent by the I2NSF Controller to establish an IPsec
SA between two NSFs (see Figure 3) in tunnel mode (gateway-to-gateway) with ESP, with
authentication based on X.509 certificates (simplified for brevity with "base64encodedvalue==")
and applying the IKE case.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 75

https://doi.org/10.1145/2491185.2491199
https://doi.org/10.1145/2491185.2491199
https://www.strongswan.org/
https://www.strongswan.org/
https://datatracker.ietf.org/doc/html/draft-tran-ipsecme-yang-01
https://datatracker.ietf.org/doc/html/draft-tran-ipsecme-yang-01


Figure 3: IKE Case, Tunnel Mode, X.509 Certificate Authentication 

                          +------------------+
                          | I2NSF Controller |
                          +------------------+
                   I2NSF NSF-Facing |
                          Interface |
                  /-----------------+---------------\
                 /                                   \
                /                                     \
   +----+  +--------+                            +--------+  +----+
   | h1 |--| nsf_h1 |== IPsec_ESP_Tunnel_mode == | nsf_h2 |--| h2 |
   +----+  +--------+                            +--------+  +----+
          :1        :100                       :200       :1

(2001:db8:1:/64)          (2001:db8:123:/64)       (2001:db8:2:/64)

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 76



<ipsec-ike xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
  <pad>
    <pad-entry>
      <name>nsf_h1_pad</name>
      <ipv6-address>2001:db8:123::100</ipv6-address>
      <peer-authentication>
         <auth-method>digital-signature</auth-method>
         <digital-signature>
            <cert-data>base64encodedvalue==</cert-data>
            <private-key>base64encodedvalue==</private-key>
            <ca-data>base64encodedvalue==</ca-data>
         </digital-signature>
      </peer-authentication>
    </pad-entry>
    <pad-entry>
      <name>nsf_h2_pad</name>
      <ipv6-address>2001:db8:123::200</ipv6-address>
      <auth-protocol>ikev2</auth-protocol>
      <peer-authentication>
        <auth-method>digital-signature</auth-method>
        <digital-signature>
          <!-- RSA Digital Signature -->
          <ds-algorithm>1</ds-algorithm>
          <cert-data>base64encodedvalue==</cert-data>
          <ca-data>base64encodedvalue==</ca-data>
        </digital-signature>
      </peer-authentication>
    </pad-entry>
  </pad>
  <conn-entry>
     <name>nsf_h1-nsf_h2</name>
     <autostartup>start</autostartup>
     <version>ikev2</version>
     <initial-contact>false</initial-contact>
     <fragmentation><enabled>false</enabled></fragmentation>
     <ike-sa-lifetime-soft>
        <rekey-time>60</rekey-time>
        <reauth-time>120</reauth-time>
     </ike-sa-lifetime-soft>
     <ike-sa-lifetime-hard>
        <over-time>3600</over-time>
     </ike-sa-lifetime-hard>
     <!--AUTH_HMAC_SHA2_512_256-->
     <ike-sa-intr-alg>14</ike-sa-intr-alg>
     <!--ENCR_AES_CBC - 128 bits-->
     <ike-sa-encr-alg>
        <id>1</id>
     </ike-sa-encr-alg>
     <!--8192-bit MODP Group-->
     <dh-group>18</dh-group>
     <half-open-ike-sa-timer>30</half-open-ike-sa-timer>
     <half-open-ike-sa-cookie-threshold>
        15
     </half-open-ike-sa-cookie-threshold>
     <local>
         <local-pad-entry-name>nsf_h1_pad</local-pad-entry-name>

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 77



     </local>
     <remote>
         <remote-pad-entry-name>nsf_h2_pad</remote-pad-entry-name>
     </remote>
     <spd>
       <spd-entry>
          <name>nsf_h1-nsf_h2</name>
          <ipsec-policy-config>
            <anti-replay-window-size>64</anti-replay-window-size>
            <traffic-selector>
               <local-prefix>2001:db8:1::0/64</local-prefix>
               <remote-prefix>2001:db8:2::0/64</remote-prefix>
               <inner-protocol>any</inner-protocol>
            </traffic-selector>
            <processing-info>
               <action>protect</action>
               <ipsec-sa-cfg>
                  <pfp-flag>false</pfp-flag>
                  <ext-seq-num>true</ext-seq-num>
                  <seq-overflow>false</seq-overflow>
                  <stateful-frag-check>false</stateful-frag-check>
                  <mode>tunnel</mode>
                  <protocol-parameters>esp</protocol-parameters>
                  <esp-algorithms>
                     <!-- AUTH_HMAC_SHA1_96 -->
                     <integrity>2</integrity>
                      <encryption>
                          <!-- ENCR_AES_CBC -->
                          <id>1</id>
                          <algorithm-type>12</algorithm-type>
                          <key-length>128</key-length>
                      </encryption>
                      <encryption>
                          <!-- ENCR_3DES-->
                          <id>2</id>
                          <algorithm-type>3</algorithm-type>
                      </encryption>
                     <tfc-pad>false</tfc-pad>
                  </esp-algorithms>
                  <tunnel>
                     <local>2001:db8:123::100</local>
                     <remote>2001:db8:123::200</remote>
                     <df-bit>clear</df-bit>
                     <bypass-dscp>true</bypass-dscp>
                 </tunnel>
               </ipsec-sa-cfg>
            </processing-info>
          </ipsec-policy-config>
       </spd-entry>
     </spd>
     <child-sa-info>
        <!--8192-bit MODP Group -->
        <fs-groups>18</fs-groups>
        <child-sa-lifetime-soft>
           <bytes>1000000</bytes>
           <packets>1000</packets>
           <time>30</time>
           <idle>60</idle>

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 78



           <action>replace</action>
        </child-sa-lifetime-soft>
        <child-sa-lifetime-hard>
           <bytes>2000000</bytes>
           <packets>2000</packets>
           <time>60</time>
           <idle>120</idle>
        </child-sa-lifetime-hard>
     </child-sa-info>
   </conn-entry>
</ipsec-ike>

Appendix B. XML Configuration Example for IKE-less Case
(Host-to-Host) 
This example shows an XML configuration file sent by the I2NSF Controller to establish an IPsec
SA between two NSFs (see Figure 4) in transport mode (host-to-host) with ESP in the IKE-less case.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 79



Figure 4: IKE-less Case, Transport Mode 

                   +------------------+
                   | I2NSF Controller |
                   +------------------+
           I2NSF NSF-Facing |
                  Interface |
       /--------------------+-------------------\
      /                                          \
     /                                            \
+--------+                                    +--------+
| nsf_h1 |===== IPsec_ESP_Transport_mode =====| nsf_h2 |
+--------+                                    +--------+
        :100        (2001:db8:123:/64)       :200

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 80



<ipsec-ikeless
  xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless"
  xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
  <spd>
    <spd-entry>
        <name>
           in/trans/2001:db8:123::200/2001:db8:123::100
        </name>
        <direction>inbound</direction>
        <reqid>1</reqid>
        <ipsec-policy-config>
           <traffic-selector>
             <local-prefix>2001:db8:123::200/128</local-prefix>
             <remote-prefix>2001:db8:123::100/128</remote-prefix>
             <inner-protocol>any</inner-protocol>
           </traffic-selector>
           <processing-info>
              <action>protect</action>
              <ipsec-sa-cfg>
                <ext-seq-num>true</ext-seq-num>
                <seq-overflow>false</seq-overflow>
                <mode>transport</mode>
                <protocol-parameters>esp</protocol-parameters>
                <esp-algorithms>
                   <!--AUTH_HMAC_SHA1_96-->
                   <integrity>2</integrity>
                   <!--ENCR_AES_CBC -->
                   <encryption>
                     <id>1</id>
                     <algorithm-type>12</algorithm-type>
                      <key-length>128</key-length>
                   </encryption>
                   <encryption>
                     <id>2</id>
                     <algorithm-type>3</algorithm-type>
                   </encryption>
                </esp-algorithms>
              </ipsec-sa-cfg>
            </processing-info>
          </ipsec-policy-config>
        </spd-entry>
        <spd-entry>
          <name>out/trans/2001:db8:123::100/2001:db8:123::200</name>
          <direction>outbound</direction>
          <reqid>1</reqid>
          <ipsec-policy-config>
            <traffic-selector>
              <local-prefix>2001:db8:123::100/128</local-prefix>
              <remote-prefix>2001:db8:123::200/128</remote-prefix>
              <inner-protocol>any</inner-protocol>
            </traffic-selector>
            <processing-info>
              <action>protect</action>
              <ipsec-sa-cfg>
                <ext-seq-num>true</ext-seq-num>
                <seq-overflow>false</seq-overflow>
                <mode>transport</mode>

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 81



                <protocol-parameters>esp</protocol-parameters>
                <esp-algorithms>
                  <!-- AUTH_HMAC_SHA1_96 -->
                  <integrity>2</integrity>
                  <!-- ENCR_AES_CBC -->
                  <encryption>
                     <id>1</id>
                     <algorithm-type>12</algorithm-type>
                     <key-length>128</key-length>
                  </encryption>
                  <encryption>
                     <id>2</id>
                     <algorithm-type>3</algorithm-type>
                  </encryption>
                </esp-algorithms>
               </ipsec-sa-cfg>
             </processing-info>
           </ipsec-policy-config>
        </spd-entry>
     </spd>
     <sad>
       <sad-entry>
         <name>out/trans/2001:db8:123::100/2001:db8:123::200</name>
         <reqid>1</reqid>
         <ipsec-sa-config>
            <spi>34501</spi>
            <ext-seq-num>true</ext-seq-num>
            <seq-overflow>false</seq-overflow>
            <anti-replay-window-size>64</anti-replay-window-size>
            <traffic-selector>
              <local-prefix>2001:db8:123::100/128</local-prefix>
              <remote-prefix>2001:db8:123::200/128</remote-prefix>
                 <inner-protocol>any</inner-protocol>
             </traffic-selector>
             <protocol-parameters>esp</protocol-parameters>
             <mode>transport</mode>
             <esp-sa>
               <encryption>
                  <!-- //ENCR_AES_CBC -->
                  <encryption-algorithm>12</encryption-algorithm>
                  <key>01:23:45:67:89:AB:CE:DF</key>
                  <iv>01:23:45:67:89:AB:CE:DF</iv>
               </encryption>
               <integrity>
                  <!-- //AUTH_HMAC_SHA1_96 -->
                  <integrity-algorithm>2</integrity-algorithm>
                  <key>01:23:45:67:89:AB:CE:DF</key>
               </integrity>
             </esp-sa>
         </ipsec-sa-config>
       </sad-entry>
       <sad-entry>
          <name>in/trans/2001:db8:123::200/2001:db8:123::100</name>
          <reqid>1</reqid>
          <ipsec-sa-config>
              <spi>34502</spi>
              <ext-seq-num>true</ext-seq-num>
              <seq-overflow>false</seq-overflow>

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 82



              <anti-replay-window-size>64</anti-replay-window-size>
              <traffic-selector>
                 <local-prefix>2001:db8:123::200/128</local-prefix>
                 <remote-prefix>2001:db8:123::100/128</remote-prefix>
                 <inner-protocol>any</inner-protocol>
              </traffic-selector>
              <protocol-parameters>esp</protocol-parameters>
              <mode>transport</mode>
              <esp-sa>
                 <encryption>
                    <!-- //ENCR_AES_CBC -->
                    <encryption-algorithm>12</encryption-algorithm>
                    <key>01:23:45:67:89:AB:CE:DF</key>
                    <iv>01:23:45:67:89:AB:CE:DF</iv>
                 </encryption>
                 <integrity>
                    <!-- //AUTH_HMAC_SHA1_96 -->
                    <integrity-algorithm>2</integrity-algorithm>
                    <key>01:23:45:67:89:AB:CE:DF</key>
                 </integrity>
               </esp-sa>
               <sa-lifetime-hard>
                  <bytes>2000000</bytes>
                  <packets>2000</packets>
                  <time>60</time>
                  <idle>120</idle>
               </sa-lifetime-hard>
               <sa-lifetime-soft>
                  <bytes>1000000</bytes>
                  <packets>1000</packets>
                  <time>30</time>
                  <idle>60</idle>
                  <action>replace</action>
               </sa-lifetime-soft>
         </ipsec-sa-config>
       </sad-entry>
    </sad>
</ipsec-ikeless>

Appendix C. XML Notification Examples 
In the following, several XML files are shown to illustrate different types of notifications defined
in the IKE-less YANG data model, which are sent by the NSF to the I2NSF Controller. The
notifications happen in the IKE-less case.

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 83



Figure 5: Example of the sadb-expire Notification 

<sadb-expire xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
<ipsec-sa-name>in/trans/2001:db8:123::200/2001:db8:123::100
</ipsec-sa-name>
    <soft-lifetime-expire>true</soft-lifetime-expire>
       <lifetime-current>
          <bytes>1000000</bytes>
          <packets>1000</packets>
          <time>30</time>
          <idle>60</idle>
       </lifetime-current>
</sadb-expire>

Figure 6: Example of the sadb-acquire Notification 

<sadb-acquire xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
    <ipsec-policy-name>in/trans/2001:db8:123::200/2001:db8:123::100
    </ipsec-policy-name>
    <traffic-selector>
        <local-prefix>2001:db8:123::200/128</local-prefix>
        <remote-prefix>2001:db8:123::100/128</remote-prefix>
        <inner-protocol>any</inner-protocol>
         <local-ports>
              <start>0</start>
              <end>0</end>
         </local-ports>
         <remote-ports>
              <start>0</start>
              <end>0</end>
         </remote-ports>
    </traffic-selector>
</sadb-acquire>

Figure 7: Example of the sadb-seq-overflow Notification 

<sadb-seq-overflow
    xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
      <ipsec-sa-name>in/trans/2001:db8:123::200/2001:db8:123::100
      </ipsec-sa-name>
</sadb-seq-overflow>

Figure 8: Example of the sadb-bad-spi Notification 

<sadb-bad-spi
         xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
        <spi>666</spi>
</sadb-bad-spi>

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 84



Appendix D. Operational Use Case Examples 

D.1. Example of IPsec SA Establishment 
This appendix exemplifies the applicability of the IKE case and IKE-less case to traditional IPsec
configurations, that is, host-to-host and gateway-to-gateway. The following examples assume the
existence of two NSFs needing to establish an end-to-end IPsec SA to protect their
communications. Both NSFs could be two hosts that exchange traffic (host-to-host) or gateways
(gateway-to-gateway), for example, within an enterprise that needs to protect the traffic between
the networks of two branch offices.

Applicability of these configurations appear in current and new networking scenarios. For
example, SD-WAN technologies are providing dynamic and on-demand VPN connections
between branch offices or between branches and Software as a Service (SaaS) cloud services.
Besides, Infrastructure as a Service (IaaS) services providing virtualization environments are
deployments that often rely on IPsec to provide secure channels between virtual instances (host-
to-host) and providing VPN solutions for virtualized networks (gateway-to-gateway).

As can be observed in the following, the I2NSF-based IPsec management system (for IKE and IKE-
less cases) exhibits various advantages:

It allows creating IPsec SAs among two NSFs, based only on the application of general flow-
based protection policies at the I2NSF User. Thus, administrators can manage all security
associations in a centralized point with an abstracted view of the network. 
Any NSF deployed in the system does not need manual configuration, therefore, allowing its
deployment in an automated manner. 

1. 

2. 

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 85



D.1.1. IKE Case 

Figure 9 describes the application of the IKE case when a data packet needs to be protected in the
path between NSF A and NSF B:

The I2NSF User defines a general flow-based protection policy (e.g., protect data traffic
between NSF A and B). The I2NSF Controller looks for the NSFs involved (NSF A and NSF B). 
The I2NSF Controller generates IKEv2 credentials for them and translates the policies into
SPD and PAD entries. 
The I2NSF Controller inserts an IKEv2 configuration that includes the SPD and PAD entries in
both NSF A and NSF B. If some of operations with NSF A and NSF B fail, the I2NSF Controller
will stop the process and perform a rollback operation by deleting any IKEv2, SPD, and PAD
configuration that had been successfully installed in NSF A or B. 

If the previous steps are successful, the flow is protected by means of the IPsec SA established
with IKEv2 between NSF A and NSF B.

Figure 9: Host-to-Host/Gateway-to-Gateway for the IKE Case 

          +----------------------------------------+
          |  I2NSF User  (IPsec Management System) |
          +----------------------------------------+
                    |
           (1)    Flow-based    I2NSF Consumer-Facing
               Protection Policy       Interface
                    |
          +---------|------------------------------+
          |         |                              |
          |         |   I2NSF Controller           |
          |         V                              |
          |   +--------------+ (2)+--------------+ |
          |   |Translate into|--->|   NETCONF/   | |
          |   |IPsec Policies|    |   RESTCONF   | |
          |   +--------------+    +--------------+ |
          |                          |     |       |
          |                          |     |       |
          +--------------------------|-----|-------+
                                     |     |
         I2NSF NSF-Facing Interface  |     |
                                     | (3) |
           |-------------------------+     +---|
           V                                   V
   +----------------------+         +----------------------+
   |       NSF A          |         |        NSF B         |
   | IKEv2/IPsec(SPD/PAD) |         | IKEv2/IPsec(SPD/PAD) |
   +----------------------+         +----------------------+

1. 

2. 

3. 

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 86



D.1.2. IKE-less Case 

Figure 10 describes the application of the IKE-less case when a data packet needs to be protected
in the path between NSF A and NSF B:

The I2NSF User establishes a general flow-based protection policy, and the I2NSF Controller
looks for the involved NSFs. 
The I2NSF Controller translates the flow-based security policies into IPsec SPD and SAD
entries. 
The I2NSF Controller inserts these entries in both NSF A and NSF B IPsec databases (i.e., SPD
and SAD). The following text describes how this would happen:

The I2NSF Controller chooses two random values as SPIs, for example, SPIa1 for the
inbound IPsec SA in NSF A and SPIb1 for the inbound IPsec SA in NSF B. The value of the
SPIa1  be the same as any inbound SPI in A. In the same way, the value of the
SPIb1  be the same as any inbound SPI in B. Moreover, the SPIa1  be used
in B for the outbound IPsec SA to A, while SPIb1  be used in A for the outbound IPsec
SA to B. It also generates fresh cryptographic material for the new inbound/outbound IPsec
SAs and their parameters. 
After that, the I2NSF Controller simultaneously sends the new inbound IPsec SA with SPIa1
and new outbound IPsec SA with SPIb1 to NSF A and the new inbound IPsec SA with SPIb1

Figure 10: Host-to-Host/Gateway-to-Gateway for the IKE-less Case 

        +----------------------------------------+
        | I2NSF User  (IPsec Management System)  |
        +----------------------------------------+
                  |
       (1)   Flow-based       I2NSF Consumer-Facing
          Protection Policy      Interface
                  |
        +---------|------------------------------+
        |         |                              |
        |         |   I2NSF Controller           |
        |         V                              |
        |  +--------------+ (2) +--------------+ |
        |  |Translate into|---->|   NETCONF/   | |
        |  |IPsec Policies|     |   RESTCONF   | |
        |  +--------------+     +--------------+ |
        |                         |     |        |
        +-------------------------|-----|--------+
                                  |     |
       I2NSF NSF-Facing Interface |     |
                                  | (3) |
           |----------------------+     +--|
           V                               V
  +----------------+             +----------------+
  |     NSF A      |             |     NSF B      |
  | IPsec(SPD/SAD) |             | IPsec(SPD/SAD) |
  +----------------+             +----------------+

1. 

2. 

3. 

◦ 

MUST NOT
MUST NOT MUST

MUST

◦ 

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 87



and new outbound IPsec SA with SPIa1 to B, together with the corresponding IPsec
policies. 
Once the I2NSF Controller receives confirmation from NSF A and NSF B, it knows that the
IPsec SAs are correctly installed and ready. 

Another alternative to this operation is the I2NSF Controller first sends the IPsec policies and
new inbound IPsec SAs to A and B. Once it obtains a successful confirmation of these
operations from NSF A and NSF B, it proceeds with installing the new outbound IPsec SAs.
Even though this procedure may increase the latency to complete the process, no traffic is
sent over the network until the IPsec SAs are completely operative. In any case, other
alternatives  be possible to implement step 3.
If some of the operations described above fail (e.g., NSF A reports an error when the I2NSF
Controller is trying to install the SPD entry, the new inbound or outbound IPsec SAs), the
I2NSF Controller  perform rollback operations by deleting any new inbound or
outbound IPsec SA and SPD entry that had been successfully installed in any of the NSFs (e.g.,
NSF B) and stop the process. Note that the I2NSF Controller  retry several times before
giving up. 
Otherwise, if the steps 1 to 3 are successful, the flow between NSF A and NSF B is protected
by means of the IPsec SAs established by the I2NSF Controller. It is worth mentioning that
the I2NSF Controller associates a lifetime to the new IPsec SAs. When this lifetime expires,
the NSF will send a sadb-expire notification to the I2NSF Controller in order to start the
rekeying process. 

Instead of installing IPsec policies (in the SPD) and IPsec SAs (in the SAD) in step 3 (proactive
mode), it is also possible that the I2NSF Controller only installs the SPD entries in step 3 (reactive
mode). In such a case, when a data packet requires to be protected with IPsec, the NSF that first
saw the data packet will send a sadb-acquire notification that informs the I2NSF Controller that
needs SAD entries with the IPsec SAs to process the data packet. Again, if some of the operations
installing the new inbound/outbound IPsec SAs fail, the I2NSF Controller stops the process and
performs a rollback operation by deleting any new inbound/outbound SAs that had been
successfully installed.

◦ 

MAY
4. 

MUST

MAY

5. 

D.2. Example of the Rekeying Process in IKE-less Case 
To explain an example of the rekeying process between two IPsec NSFs, A and B, assume that
SPIa1 identifies the inbound IPsec SA in A and SPIb1 identifies the inbound IPsec SA in B. The
rekeying process will take the following steps:

The I2NSF Controller chooses two random values as SPI for the new inbound IPsec SAs, for
example, SPIa2 for the inbound IPsec SA in A and SPIb2 for the inbound IPsec SA in B. The
value of the SPIa1  be the same as any inbound SPI in A. In the same way, the value
of the SPIb1  be the same as any inbound SPI in B. Then, the I2NSF Controller
creates an inbound IPsec SA with SPIa2 in A and another inbound IPsec SA in B with SPIb2. It
can send this information simultaneously to A and B. 
Once the I2NSF Controller receives confirmation from A and B, the controller knows that the
inbound IPsec SAs are correctly installed. Then, it proceeds to send, in parallel to A and B,

1. 

MUST NOT
MUST NOT

2. 

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 88



the outbound IPsec SAs: the outbound IPsec SA to A with SPIb2 and the outbound IPsec SA to
B with SPIa2. At this point, the new IPsec SAs are ready. 
Once the I2NSF Controller receives confirmation from A and B that the outbound IPsec SAs
have been installed, the I2NSF Controller, in parallel, deletes the old IPsec SAs from A
(inbound SPIa1 and outbound SPIb1) and B (outbound SPIa1 and inbound SPIb1). 

If some of the operations in step 1 fail (e.g., NSF A reports an error when the I2NSF Controller is
trying to install a new inbound IPsec SA), the I2NSF Controller  perform rollback operations
by removing any new inbound SA that had been successfully installed during step 1.

If step 1 is successful but some of the operations in step 2 fail (e.g., NSF A reports an error when
the I2NSF Controller is trying to install the new outbound IPsec SA), the I2NSF Controller 
perform a rollback operation by deleting any new outbound SA that had been successfully
installed during step 2 and by deleting the inbound SAs created in step 1, in that order.

If the steps 1 and 2 are successful but the step 3 fails, the I2NSF Controller will avoid any rollback
of the operations carried out in steps 1 and 2, since new and valid IPsec SAs were created and are
functional. The I2NSF Controller  reattempt to remove the old inbound and outbound IPsec
SAs in NSF A and NSF B several times until it receives a success or it gives up. In the last case, the
old IPsec SAs will be removed when their corresponding hard lifetime is reached.

3. 

MUST

MUST

MAY

D.3. Example of Managing NSF State Loss in the IKE-less Case 
In the IKE-less case, if the I2NSF Controller detects that an NSF has lost the IPsec state, it could
follow the next steps:

The I2NSF Controller  delete the old IPsec SAs on the non-failed nodes, established
with the failed node. This prevents the non-failed nodes from leaking plaintext. 
If the affected node restarts, the I2NSF Controller configures the new inbound IPsec SAs
between the affected node and all the nodes it was talking to. 
After these inbound IPsec SAs have been established, the I2NSF Controller configures the
outbound IPsec SAs in parallel. 

Steps 2 and 3 can be performed at the same time at the cost of a potential packet loss. If this is not
critical, then it is an optimization since the number of exchanges between the I2NSF Controller
and NSFs is lower.

1. SHOULD

2. 

3. 

Acknowledgements 
Authors want to thank , , , , ,

, , , , , , 
, , , , , 

, , , , and all IESG members that
have reviewed this document for their valuable comments.

Paul Wouters Valery Smyslov Sowmini Varadhan David Carrel Yoav Nir
Tero Kivinen Martin Bjorklund Graham Bartlett Sandeep Kampati Linda Dunbar Mohit Sethi
Martin Bjorklund Tom Petch Christian Hopps Rob Wilton Carlos J. Bernardos Alejandro Perez-
Mendez Alejandro Abad-Carrascosa Ignacio Martinez Ruben Ricart

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 89



Authors' Addresses 
Rafa Marin-Lopez
University of Murcia
Faculty of Computer Science
Campus de Espinardo S/N

  30100 Murcia
Spain

 +34 868 88 85 01 Phone:
 rafa@um.es Email:

Gabriel Lopez-Millan
University of Murcia
Faculty of Computer Science
Campus de Espinardo S/N

  30100 Murcia
Spain

 +34 868 88 85 04 Phone:
 gabilm@um.es Email:

Fernando Pereniguez-Garcia
University Defense Center
Spanish Air Force Academy
MDE-UPCT

   30720 San Javier Murcia
Spain

 +34 968 18 99 46 Phone:
 fernando.pereniguez@cud.upct.es Email:

RFC 9061 IPsec Flow Protection Based on SDN July 2021

Marin-Lopez, et al. Standards Track Page 90

tel:+34%20868%2088%2085%2001
mailto:rafa@um.es
tel:+34%20868%2088%2085%2004
mailto:gabilm@um.es
tel:+34%20968%2018%2099%2046
mailto:fernando.pereniguez@cud.upct.es

	RFC 9061
	A YANG Data Model for IPsec Flow Protection Based on Software‑Defined Networking (SDN)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Requirements Language

	3. SDN-Based IPsec Management Description
	3.1. IKE Case: IKEv2/IPsec in the NSF
	3.2. IKE-less Case: IPsec (No IKEv2) in the NSF

	4. IKE Case vs. IKE-less Case
	4.1. Rekeying Process
	4.2. NSF State Loss
	4.3. NAT Traversal
	4.4. NSF Registration and Discovery

	5. YANG Configuration Data Models
	5.1. The 'ietf-i2nsf-ikec' Module
	5.1.1. Data Model Overview
	5.1.2. YANG Module

	5.2. The 'ietf-i2nsf-ike' Module
	5.2.1. Data Model Overview
	5.2.2. Example Usage
	5.2.3. YANG Module

	5.3. The 'ietf-i2nsf-ikeless' Module
	5.3.1. Data Model Overview
	5.3.2. Example Usage
	5.3.3. YANG Module


	6. IANA Considerations
	7. Security Considerations
	7.1. IKE Case
	7.2. IKE-less Case
	7.3. YANG Modules

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. XML Configuration Example for IKE Case (Gateway-to-Gateway)
	Appendix B. XML Configuration Example for IKE-less Case (Host-to-Host)
	Appendix C. XML Notification Examples
	Appendix D. Operational Use Case Examples
	D.1. Example of IPsec SA Establishment
	D.1.1. IKE Case
	D.1.2. IKE-less Case

	D.2. Example of the Rekeying Process in IKE-less Case
	D.3. Example of Managing NSF State Loss in the IKE-less Case

	Acknowledgements
	Authors' Addresses



 
   
   
   
   
     A YANG Data Model for IPsec Flow Protection Based on Software‑Defined Networking (SDN)
     
     
       University of Murcia
       
         
           Faculty of Computer Science
           Campus de Espinardo S/N
           Murcia
           30100
           Spain
        
         +34 868 88 85 01
         rafa@um.es
      
    
     
       University of Murcia
       
         
           Faculty of Computer Science
           Campus de Espinardo S/N
           Murcia
           30100
           Spain
        
         +34 868 88 85 04
         gabilm@um.es
      
    
     
       University Defense Center
       
         
           Spanish Air Force Academy
           MDE-UPCT
           San Javier
           Murcia
           30720
           Spain
        
         +34 968 18 99 46
         fernando.pereniguez@cud.upct.es
      
    
     
     General
     I2NSF
     NSF
     SDN
     IPsec
     
       This document describes how to provide IPsec-based
            flow protection (integrity and confidentiality) by means
            of an Interface to Network Security Function (I2NSF)
            Controller.  It considers two main well-known scenarios
            in IPsec: gateway-to-gateway and host-to-host. 
            The service described in this document allows the
            configuration and monitoring of IPsec Security
            Associations (IPsec SAs) from an I2NSF Controller to one
            or several flow-based Network Security Functions (NSFs)
            that rely on IPsec to protect data traffic.         
      
        This document focuses on the I2NSF NSF-Facing
            Interface by providing YANG data models for configuring
            the IPsec databases, namely Security Policy Database
            (SPD), Security Association Database (SAD), Peer
            Authorization Database (PAD), and Internet Key Exchange 
	    Version 2 (IKEv2). This allows IPsec SA establishment
            with minimal intervention by the network administrator. 
	    This document defines three YANG modules, but it does not define any new protocol.
      
    
     
       
         Status of This Memo
         
            This is an Internet Standards Track document.
        
         
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further
            information on Internet Standards is available in Section 2 of 
            RFC 7841.
        
         
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
             .
        
      
       
         Copyright Notice
         
            Copyright (c) 2021 IETF Trust and the persons identified as the
            document authors. All rights reserved.
        
         
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            ( ) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.
        
      
    
     
       
         Table of Contents
         
           
              .   Introduction
          
           
              .   Terminology
             
               
                  .   Requirements Language
              
            
          
           
              .   SDN-Based IPsec Management Description
             
               
                  .   IKE Case: IKEv2/IPsec in the NSF
              
               
                  .   IKE-less Case: IPsec (No IKEv2) in the NSF
              
            
          
           
              .   IKE Case vs. IKE-less Case
             
               
                  .   Rekeying Process
              
               
                  .   NSF State Loss
              
               
                  .   NAT Traversal
              
               
                  .   NSF Registration and Discovery
              
            
          
           
              .   YANG Configuration Data Models
             
               
                  .   The 'ietf-i2nsf-ikec' Module
                 
                   
                      .   Data Model Overview
                  
                   
                      .   YANG Module
                  
                
              
               
                  .   The 'ietf-i2nsf-ike' Module
                 
                   
                      .   Data Model Overview
                  
                   
                      .   Example Usage
                  
                   
                      .   YANG Module
                  
                
              
               
                  .   The 'ietf-i2nsf-ikeless' Module
                 
                   
                      .   Data Model Overview
                  
                   
                      .   Example Usage
                  
                   
                      .   YANG Module
                  
                
              
            
          
           
              .   IANA Considerations
          
           
              .   Security Considerations
             
               
                  .   IKE Case
              
               
                  .   IKE-less Case
              
               
                  .   YANG Modules
              
            
          
           
              .   References
             
               
                  .   Normative References
              
               
                  .   Informative References
              
            
          
           
              .   XML Configuration Example for IKE Case (Gateway-to-Gateway)
          
           
              .   XML Configuration Example for IKE-less Case (Host-to-Host)
          
           
              .   XML Notification Examples
          
           
              .   Operational Use Case Examples
             
               
                  .   Example of IPsec SA Establishment
                 
                   
                      .   IKE Case
                  
                   
                      .   IKE-less Case
                  
                
              
               
                  .   Example of the Rekeying Process in IKE-less Case
              
               
                  .   Example of Managing NSF State Loss in the IKE-less Case
              
            
          
           
               Acknowledgements
          
           
               Authors' Addresses
          
        
      
    
  
   
     
       Introduction
       
                Software-Defined Networking (SDN) is an architecture
                that enables administrators to directly program,
                orchestrate, control, and manage network resources
                through software.
                The SDN paradigm relocates the control of network 
                resources to a centralized entity, namely the SDN 
                Controller.
                SDN Controllers configure and manage distributed
                network
                resources and provide an abstracted view of the
                network
                resources to SDN applications.
                SDN applications can customize and automate the
                operations
                (including management) of the abstracted network
                resources in a programmable manner via this interface  
         
         
         .
      
       
                Recently, several network scenarios now demand a centralized
                way of managing different security aspects, for example,
                Software-Defined WANs (SD-WANs). SD-WANs are SDN extensions
                providing software abstractions to create secure network
                overlays over traditional WAN and branch networks. SD-WANs
                utilize IPsec   as an underlying
                security protocol. The goal of SD-WANs is to provide flexible
                and automated deployment from a centralized point to enable
                on-demand network security services, such as IPsec Security
                Association (IPsec SA) management. 
                Additionally, Section  "Client-Specific Security Policy in Cloud
                VPNs" of  
                describes another example use case for a cloud data center
                scenario. The use case in   states that "dynamic key
                management is critical for securing the VPN and the
                distribution of policies".  These VPNs can be established using
                IPsec.  The management of IPsec SAs in data centers using a
                centralized entity is a scenario where the current
                specification may be applicable.
      
       
                Therefore, with the growth of SDN-based scenarios where
                network resources are deployed in an autonomous manner,
                a mechanism to manage IPsec SAs from a centralized entity
                becomes more relevant in the industry. 
      
        In response to this need, the Interface to Network Security
                Functions (I2NSF) charter states that the goal of this 
                working group is "to define a set of software interfaces and 
                data models for controlling and monitoring aspects of 
                physical and virtual NSFs". As defined 
                in  , a Network Security Function (NSF) is "a function 
                that is used to ensure integrity, confidentiality, or 
                availability of  network communication; to detect 
                unwanted network activity; or to block, or at least 
                mitigate, the effects of unwanted activity". This document 
                pays special attention to flow-based NSFs that ensure 
                integrity and confidentiality by means of IPsec.
        In fact,   states that
                "there is a need for a controller to create, manage, 
                and distribute various keys to distributed NSFs"; however, 
                "there is a lack of a standard interface to provision 
                and manage security associations". Inspired by the SDN
                paradigm, the I2NSF framework   
                defines a centralized entity, the I2NSF Controller, 
                which manages one or multiple NSFs through an 
                I2NSF NSF-Facing Interface. In this 
                document, an architecture is defined for allowing the I2NSF Controller to 
                carry out the key management procedures. More specifically, 
                three YANG data models are defined for the I2NSF NSF-Facing Interface, which
                allows the I2NSF Controller to configure
                and monitor IPsec-enabled, flow-based NSFs.
       The IPsec architecture   defines
                a clear separation between the processing to provide
                security services to IP packets and the key management
                procedures to establish the IPsec SAs, 
                which allows centralizing the key management procedures 
                in the I2NSF Controller.
                This document considers two typical scenarios to 
                autonomously manage IPsec SAs: gateway-to-gateway and
                host-to-host  . In these cases,
                hosts, gateways, or both may act as NSFs. Due to its
                complexity, consideration for the host-to-gateway
                scenario is out of scope. The source of this
                complexity comes from the fact that, in this
                scenario,  the host may not be under the control of
                the I2NSF Controller and, therefore, it is not
                configurable. Nevertheless, the I2NSF interfaces
                defined in this document can be considered as a
                 starting
                point to analyze and provide a solution for the
                host-to-gateway scenario.
        For the definition of the YANG data models for the I2NSF 
                NSF-Facing Interface, this document considers 
                two general cases, namely:
       
	  IKE case. The NSF
                        implements the Internet Key Exchange Version 2 (IKEv2)
                        protocol and the IPsec databases: the Security
                        Policy Database (SPD), the Security Association
                        Database (SAD), and the Peer Authorization Database
                        (PAD). The I2NSF Controller is in charge of
                        provisioning the NSF with the required information 
                        in the SPD and PAD (e.g., IKE credentials) and the 
            IKE protocol itself (e.g., parameters for the IKE_SA_INIT
                        negotiation).
          IKE-less case. The NSF only implements the IPsec
                        databases (no IKE implementation).
                        The I2NSF Controller will provide the required
                        parameters to create valid entries in the SPD and
                        the SAD of the NSF. Therefore, the NSF will only have
                        support for IPsec whereas key management
                        functionality is moved to the I2NSF Controller.
      
        In both cases, a YANG data model for the I2NSF NSF-Facing 
                Interface is required to carry out this provisioning 
                in a secure manner between the I2NSF Controller and the NSF.  
                Using YANG data modeling language version 1.1   and 
                based on YANG data models defined in   and 
                  and the data structures defined 
		in   and
                 , this document defines the
                required interfaces with a YANG data model for configuration
                and state data for IKE, PAD, SPD, and SAD 
                (see Sections  , 
                 , and 
                 ). 
                The proposed YANG data model conforms to the Network Management 
                Datastore Architecture (NMDA) defined in  .              
                Examples of the usage of these data models can be found in Appendices  ,
                 ,
                and  .
      
        In summary, the objectives of this document are:
       
          To describe the architecture for I2NSF-based
                        IPsec management, which allows for the
            establishment and management of IPsec
            Security Associations from the I2NSF
            Controller in order to protect specific data
            flows between two flow-based NSFs
            implementing IPsec.
         To map this architecture to the I2NSF
          framework.
         To define the interfaces required to manage
          and monitor the IPsec SAs in the NSF from an
          I2NSF Controller. YANG data models are
                    defined for configuration and state data for
          IPsec and IKEv2 management through the I2NSF
          NSF-Facing Interface. The YANG data models can be
          used via existing protocols, such as the Network Configuration Protocol (NETCONF) 
                      or RESTCONF 
                     . Thus, this
                    document defines three YANG modules (see 
           ) but does not define any new
          protocol.
      
    
     
       Terminology
       
                This document uses the terminology described in 
		 ,  , 
		 ,  , 
		 ,  , and
		 . 
       The following term is defined in  :
       
         Software-Defined Networking (SDN)
      
       The following terms are defined in  :
       
         Network Security Function (NSF)
         flow-based NSF
      
       The following terms are defined in  :
       
         Peer Authorization Database (PAD)
         Security Association Database (SAD)
         Security Policy Database (SPD)
      
       The following two terms are related or 
         have identical definition/usage in  :
       
         flow
         traffic flow
      
       The following term is defined in  :
       
         Internet Key Exchange Version 2 (IKEv2)
      
       The following terms are defined in  : 
       
         configuration data
         configuration datastore
         state data
         startup configuration datastore
         running configuration datastore
      
       
         Requirements Language
         
    The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
    " MAY", and " OPTIONAL" in this document are to be interpreted as
    described in BCP 14     
    when, and only when, they appear in all capitals, as shown here.
        
      
    
     
       SDN-Based IPsec Management Description
        As mentioned in  , two cases are
            considered, depending on whether the NSF implements IKEv2
            or not: the IKE case and the IKE-less case. 
       
         IKE Case: IKEv2/IPsec in the NSF
          In this case, the NSF implements IPsec with
                    IKEv2 support. The I2NSF Controller is in
                    charge of managing and applying IPsec connection
                    information (determining which nodes need to start an
                    IKEv2/IPsec session, identifying the type of traffic to be
                    protected, and deriving and delivering IKEv2 credentials, such
                    as a pre-shared key (PSK), certificates, etc.) and applying
                    other IKEv2 configuration parameters
                    (e.g.,  cryptographic algorithms for establishing an IKEv2
                    SA) to the NSF necessary for the IKEv2 negotiation.
        
          With these entries, the IKEv2 implementation can operate
                    to establish the IPsec SAs. The I2NSF User
                    establishes the IPsec requirements and information about 
                    the endpoints (through the I2NSF 
                    Consumer-Facing Interface
                     ), and the I2NSF Controller
                    translates these requirements into IKEv2, SPD, and PAD
                    entries that will be installed into the NSF (through the
                    I2NSF NSF-Facing Interface). With that information, 
                    the NSF can just run IKEv2 to establish the required 
                    IPsec SA (when the traffic flow needs protection). 
                     
                    shows the different layers and corresponding functionality.
        
         
           IKE Case: IKE/IPsec in the NSF
                                   
            +-------------------------------------------+
            |          IPsec Management System          | I2NSF User
            +-------------------------------------------+
                                    |
                                    |  I2NSF Consumer-Facing 
                                    |  Interface
            +-------------------------------------------+
            | IKEv2 Configuration, PAD and SPD Entries  | I2NSF
            |               Distribution                | Controller
            +-------------------------------------------+
                                    |
                                    |  I2NSF NSF-Facing 
                                    |  Interface
            +-------------------------------------------+ 
            |   IKEv2  |      IPsec(PAD, SPD)           | Network
            |-------------------------------------------| Security
            |    IPsec Data Protection and Forwarding   | Function
            +-------------------------------------------+

        
         
                    I2NSF-based IPsec flow protection services provide
                    dynamic and flexible management of IPsec SAs in
                    flow-based NSFs. In order to support this capability
                    in the IKE case, a YANG data model for IKEv2, SPD, and PAD
                    configuration data and for IKEv2 state data 
                    needs to be defined for 
                    the I2NSF NSF-Facing Interface (see  ).
      
       
         IKE-less Case: IPsec (No IKEv2) in the NSF
         
                    In this case, the NSF does not deploy IKEv2 and,
                    therefore, the I2NSF Controller has to perform the
                    IKEv2 security functions and management of IPsec SAs by
                    populating and managing the SPD and the SAD.
        
         
                    As shown in  ,
                    when an I2NSF User enforces flow-based 
                    protection policies through the Consumer-Facing
                    Interface, the I2NSF Controller translates these
                    requirements into SPD and SAD entries, which are
                    installed in the NSF. PAD entries are not required, since
                    there is no IKEv2 in the NSF.
        
         
           IKE-less Case: IPsec (No IKEv2) in the NSF
                                   
         +-----------------------------------------+
         |         IPsec Management System         | I2NSF User
         +-----------------------------------------+
                             |
                             |  I2NSF Consumer-Facing Interface
                             |
         +-----------------------------------------+
         |           SPD and SAD Entries           | I2NSF
         |              Distribution               | Controller
         +-----------------------------------------+
                             |
                             |  I2NSF NSF-Facing Interface
                             |
         +-----------------------------------------+
         |             IPsec (SPD, SAD)            | Network
         |-----------------------------------------| Security
         |   IPsec Data Protection and Forwarding  | Function 
         +-----------------------------------------+

        
         
                    In order to support the IKE-less case, a YANG data model
                    for SPD and SAD configuration data and SAD state data  MUST 
                    be defined for the NSF-Facing Interface (see  ).
        
          Specifically, the IKE-less case assumes that the I2NSF
                    Controller has to perform some security functions that
                    IKEv2 typically does, namely (non-exhaustive list):
         
           Initialization Vector (IV) generation
           prevention of counter resets for the same key
           generation of pseudorandom cryptographic
                            keys for the IPsec SAs
           generation of the IPsec SAs when required
                            based on notifications (i.e., sadb-acquire) from
                            the NSF
           rekey of the IPsec SAs based on notifications
                            from the NSF (i.e., expire)
           NAT traversal discovery and management
        
         Additionally to these functions, another set of tasks
                    must be performed by the I2NSF Controller
                    (non-exhaustive list):
         
           IPsec SA's Security Parameter Index (SPI) random generation
           cryptographic algorithm selection
           usage of extended sequence numbers
           establishment of proper Traffic Selectors
        
      
    
     
       IKE Case vs. IKE-less Case
       In principle, the IKE case is easier to deploy than the IKE-less
            case because current flow-based NSFs (either hosts or gateways)
            have access to IKEv2 implementations. While gateways typically
            deploy an IKEv2/IPsec implementation, hosts can easily install it.
            As a downside, the NSF needs more resources to use IKEv2, such as
            memory for the IKEv2 implementation and computation, since each
            IPsec Security Association rekeying  MAY involve a Diffie-Hellman (DH)
            exchange.
      
       Alternatively, the IKE-less case benefits the
            deployment in resource-constrained NSFs. Moreover, IKEv2 does not need to be
                performed in gateway-to-gateway and host-to-host scenarios
                under the same I2NSF Controller (see 
                 ). On the contrary,
                the complexity of creating and managing IPsec SAs is shifted
                to the I2NSF Controller since IKEv2 is not in the
                NSF. As a consequence, this may result in a more complex
                implementation in the controller side in comparison with the
                IKE case.  For example, the I2NSF Controller has to
                deal with the latency existing in the path between the
                I2NSF Controller and the NSF (in order to solve tasks, 
                such as rekey) or creation and installation of new IPsec
                SAs. However, this is not specific to this 
                contribution but a general aspect in any SDN-based
                network. In summary, this complexity may create some
                scalability and performance issues when the number of NSFs
                is high.
      
       Nevertheless, literature around SDN-based network management
                using a centralized controller (like the I2NSF Controller)
                is aware of scalability and performance issues, and solutions
                have been already provided and discussed (e.g., hierarchical
                controllers, having multiple replicated controllers, dedicated
                high-speed management networks, etc.). In the context of
                I2NSF-based IPsec management, one way to reduce the latency and
                alleviate some performance issues can be to install the
                IPsec policies and IPsec SAs at the same time (proactive mode,
                as described in  )
                instead of waiting for notifications (e.g., a 
                sadb-acquire notification received from an NSF requiring a new IPsec SA) 
                to proceed with the IPsec SA installation (reactive mode).
                Another way to reduce the overhead and the potential scalability
                and performance issues in the I2NSF Controller is to apply the
                IKE case described in this document since the IPsec SAs are 
                managed between NSFs without the involvement of the I2NSF
                Controller at all, except by the initial configuration (i.e.,
                IKEv2, PAD, and SPD entries) provided by the I2NSF Controller. 
                Other solutions, such as Controller-IKE 
                 , 
                have proposed that NSFs provide their DH public keys to the 
                I2NSF Controller so that the I2NSF Controller
                distributes all public keys to all peers. All peers can
                calculate a unique pairwise secret for each other peer, and
                there is no inter-NSF messages. A rekey mechanism is 
                further described in 
                 .
      
       In terms of security, the IKE case provides better
            security properties than the IKE-less case, as discussed in 
             . The main reason is that the
            NSFs generate the session keys and not the
            I2NSF Controller.
       
         Rekeying Process
         Performing a rekey for IPsec SAs is an important
                   operation during the IPsec SAs management. With
                   the YANG data models defined in this
                   document the I2NSF Controller can configure
                   parameters of the rekey process (IKE case) or
                   conduct the rekey process (IKE-less case). 
                   Indeed, depending on the case, the rekey process
                   is different.
         For the IKE case, the rekeying process is carried
                   out by IKEv2, following the information defined
                   in the SPD and SAD (i.e., based on the IPsec SA 
                   lifetime established by the I2NSF Controller using the YANG 
                   data model defined in this document). 
                   Therefore, IPsec connections will live unless something
                   different is required by the I2NSF User or the I2NSF
                   Controller detects something wrong.
         For the IKE-less case, the
                    I2NSF Controller  MUST take care
                    of the rekeying process. When the IPsec SA is
                    going to expire (e.g., IPsec SA soft lifetime),
                    it  MUST create a new IPsec SA and it  MAY remove the
                    old one (e.g., when the lifetime of the old IPsec SA has not been defined). 
                    This rekeying process starts when the
                    I2NSF Controller receives a sadb-expire
                    notification or, on the I2NSF Controller's initiative, 
          based on lifetime state data obtained from the NSF. 
          How the I2NSF Controller implements an algorithm for 
          the rekey process is out of the scope of this document. 
          Nevertheless, an example of how this rekey could be 
          performed is described in  .
      
       
         NSF State Loss
         If one of the NSF restarts, it will lose the
                    IPsec state (affected NSF). By default, the
                    I2NSF Controller can assume that all the
                    state has been lost and, therefore, it will have
                    to send IKEv2, SPD, and PAD information to the
                    NSF in the IKE case and SPD and SAD information
                    in the IKE-less case.
          In both cases, the I2NSF Controller is aware of
                    the affected NSF (e.g., the NETCONF/TCP connection is
                    broken with the affected NSF, the I2NSF Controller is
                    receiving a sadb-bad-spi notification from a particular
                    NSF, etc.). Moreover, the I2NSF Controller keeps 
                    a list of NSFs that have IPsec SAs with the
                    affected NSF. Therefore, it knows the affected IPsec
                    SAs.
         In the IKE case, the I2NSF Controller may need
                to configure the affected NSF with the new IKEv2,
                SPD, and PAD information.  Alternatively, IKEv2
                 configuration  MAY be made
                  permanent between NSF reboots without
                  compromising security by means of the startup
                  configuration datastore in the NSF. This
                  way, each time an NSF reboots, it will use that
                  configuration for each rebooting. It would imply
                  avoiding contact with the I2NSF Controller. 
                  Finally, the I2NSF Controller 
                  may also need to send new parameters
                (e.g., a new fresh PSK for authentication) to the NSFs
                that had IKEv2 SAs and IPsec SAs with the affected
                NSF.
         In the IKE-less case, the I2NSF Controller  SHOULD delete
                   the old IPsec SAs in the non-failed nodes established with
                   the affected NSF. Once the affected node restarts, the I2NSF
                   Controller  MUST take the necessary actions to reestablish
                   IPsec-protected communication between the failed node and
                   those others having IPsec SAs with the affected NSF. 
                   How the I2NSF Controller implements an algorithm for
                   managing a potential NSF state loss is out of the scope of
                   this document. Nevertheless, an example of how this could be
                   performed is described in  .
        
      
       
         NAT Traversal
         In the IKE case, IKEv2 already provides a mechanism
                    to detect whether some of the peers or both are located
                    behind a NAT. In this case, UDP or TCP
encapsulation for Encapsulating Security Payload (ESP) packets     is required.
          Note that IPsec transport mode  MUST NOT be used in this specification
          when NAT is required.
        
         In the IKE-less case, the NSF does not have the assistance
                   of the IKEv2 implementation to detect if it is located
                   behind a NAT. If the NSF does not have any other mechanism
                   to detect this situation, the I2NSF Controller  SHOULD
                   implement a mechanism to detect that case. The SDN paradigm
                   generally assumes the I2NSF Controller has a view of the
                   network under its control. This view is built either by
                   requesting information from the NSFs under its control or
                   information pushed from the NSFs to the I2NSF Controller.
                   Based on this information, the I2NSF Controller  MAY guess 
                   if there is a NAT configured between two hosts and apply
                   the required policies to both NSFs besides activating the
                   usage of UDP or TCP encapsulation of ESP packets 
                      . 
                   The interface for discovering if the NSF 
                   is behind a NAT is out of scope of this document.
         If the I2NSF Controller does not have any mechanism to know 
                    whether a host is behind a NAT or not, then the IKE case
                     MUST be used and not the IKE-less case.
      
       
         NSF Registration and Discovery
         NSF registration refers to the process of providing the
                   I2NSF Controller information about a valid NSF, such as
                   certificate, IP address, etc. This information is
                   incorporated in a list of NSFs under its control.
         The assumption in this document is that, for both
                   cases, before an NSF can operate in this system, it  MUST
                   be registered in the I2NSF Controller. In this way, when 
                   the NSF starts and establishes a connection to the I2NSF
                   Controller, it knows that the NSF is valid for joining the
                   system.
         Either during this registration process or when the
                   NSF connects with the I2NSF Controller, the I2NSF
                   Controller  MUST discover certain capabilities of this
                   NSF, such as what are the cryptographic suites supported,
                   the authentication method, the support of the IKE case and/or
                   the IKE-less case, etc.
         The registration and discovery processes are out of
                   the scope of this document.
      
    
     
       YANG Configuration Data Models
        In order to support the IKE and IKE-less cases,
              models are provided for the different parameters and
              values that must be configured to manage IPsec SAs.
              Specifically, the IKE case requires modeling IKEv2
              configuration parameters, SPD and PAD, 
                while the IKE-less case requires configuration
                YANG data models for the
                SPD and SAD. Three modules have been defined: ietf-i2nsf-ikec 
                ( , common to both cases),
                ietf-i2nsf-ike  ( , IKE case), and
                ietf-i2nsf-ikeless ( , IKE-less case).
                Since the module ietf-i2nsf-ikec has only typedef and
                groupings common to the other modules, a
                simplified view of the ietf-i2nsf-ike and ietf-i2nsf-ikeless
                modules is shown.
       
         The 'ietf-i2nsf-ikec' Module
         
           Data Model Overview
           The module ietf-i2nsf-ikec only has definitions of
                data types (typedef) and groupings that are common
                to the other modules.
        
         
           YANG Module
           
                      This module has normative references to  ,  ,  ,  ,  ,  ,   ,  ,  ,  ,  , and  .
          
           

module ietf-i2nsf-ikec {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikec";
  prefix nsfikec;

  import ietf-inet-types {
    prefix inet;
    reference
      "RFC 6991: Common YANG Data Types.";
  }

  organization
    "IETF I2NSF Working Group";
  contact
    "WG Web:  <https://datatracker.ietf.org/wg/i2nsf/>
     WG List: <mailto:i2nsf@ietf.org>

     Author: Rafael Marin-Lopez
               <mailto:rafa@um.es>

     Author: Gabriel Lopez-Millan
               <mailto:gabilm@um.es>

     Author: Fernando Pereniguez-Garcia
               <mailto:fernando.pereniguez@cud.upct.es>
    ";
  description
    "Common data model for the IKE and IKE-less cases
     defined by the SDN-based IPsec flow protection service.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
     document are to be interpreted as described in BCP 14
     (RFC 2119) (RFC 8174) when, and only when, they appear
     in all capitals, as shown here.

     Copyright (c) 2021 IETF Trust and the persons
     identified as authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9061; see
     the RFC itself for full legal notices.";

  revision 2021-07-14 {
    description
      "Initial version.";
    reference
      "RFC 9061: A YANG Data Model for IPsec Flow Protection
                 Based on Software-Defined Networking (SDN).";
  }

  typedef encr-alg-t {
    type uint16;
    description
      "The encryption algorithm is specified with a 16-bit
       number extracted from the IANA registry.  The acceptable
       values MUST follow the requirement levels for
       encryption algorithms for ESP and IKEv2.";
    reference
      "IANA: Internet Key Exchange Version 2 (IKEv2) Parameters,
             IKEv2 Transform Attribute Types, Transform Type 1 -
             Encryption Algorithm Transform IDs
       RFC 8221: Cryptographic Algorithm Implementation
                 Requirements and Usage Guidance for Encapsulating
                 Security Payload (ESP) and Authentication Header
                 (AH)
       RFC 8247: Algorithm Implementation Requirements and Usage
                 Guidance for the Internet Key Exchange Protocol
                 Version 2 (IKEv2).";
  }

  typedef intr-alg-t {
    type uint16;
    description
      "The integrity algorithm is specified with a 16-bit
       number extracted from the IANA registry.
       The acceptable values MUST follow the requirement
       levels for integrity algorithms for ESP and IKEv2.";
    reference
      "IANA: Internet Key Exchange Version 2 (IKEv2) Parameters,
             IKEv2 Transform Attribute Types, Transform Type 3 -
             Integrity Algorithm Transform IDs
       RFC 8221: Cryptographic Algorithm Implementation
                 Requirements and Usage Guidance for Encapsulating
                 Security Payload (ESP) and Authentication Header
                 (AH)
       RFC 8247: Algorithm Implementation Requirements and Usage
                 Guidance for the Internet Key Exchange Protocol
                 Version 2 (IKEv2).";
  }

  typedef ipsec-mode {
    type enumeration {
      enum transport {
        description
          "IPsec transport mode.  No Network Address
           Translation (NAT) support.";
      }
      enum tunnel {
        description
          "IPsec tunnel mode.";
      }
    }
    description
      "Type definition of IPsec mode: transport or
       tunnel.";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 3.2.";
  }

  typedef esp-encap {
    type enumeration {
      enum espintcp {
        description
          "ESP in TCP encapsulation.";
        reference
          "RFC 8229: TCP Encapsulation of IKE and
                     IPsec Packets.";
      }
      enum espinudp {
        description
          "ESP in UDP encapsulation.";
        reference
          "RFC 3948: UDP Encapsulation of IPsec ESP
                     Packets.";
      }
      enum none {
        description
          "No ESP encapsulation.";
      }
    }
    description
      "Types of ESP encapsulation when Network Address
       Translation (NAT) may be present between two NSFs.";
    reference
      "RFC 8229: TCP Encapsulation of IKE and IPsec Packets
       RFC 3948: UDP Encapsulation of IPsec ESP Packets.";
  }

  typedef ipsec-protocol-params {
    type enumeration {
      enum esp {
        description
          "IPsec ESP protocol.";
      }
    }
    description
      "Only the Encapsulation Security Protocol (ESP) is
       supported, but it could be extended in the future.";
    reference
      "RFC 4303: IP Encapsulating Security Payload (ESP).";
  }

  typedef lifetime-action {
    type enumeration {
      enum terminate-clear {
        description
          "Terminates the IPsec SA and allows the
           packets through.";
      }
      enum terminate-hold {
        description
          "Terminates the IPsec SA and drops the
           packets.";
      }
      enum replace {
        description
          "Replaces the IPsec SA with a new one:
           rekey.";
      }
    }
    description
      "When the lifetime of an IPsec SA expires, an action
       needs to be performed for the IPsec SA that
       reached the lifetime.  There are three possible
       options: terminate-clear, terminate-hold, and
       replace.";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.5.";
  }

  typedef ipsec-traffic-direction {
    type enumeration {
      enum inbound {
        description
          "Inbound traffic.";
      }
      enum outbound {
        description
          "Outbound traffic.";
      }
    }
    description
      "IPsec traffic direction is defined in
       two directions: inbound and outbound.
       From an NSF perspective, inbound and
       outbound are defined as mentioned
       in Section 3.1 in RFC 4301.";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 3.1.";
  }

  typedef ipsec-spd-action {
    type enumeration {
      enum protect {
        description
          "PROTECT the traffic with IPsec.";
      }
      enum bypass {
        description
          "BYPASS the traffic.  The packet is forwarded
           without IPsec protection.";
      }
      enum discard {
        description
          "DISCARD the traffic.  The IP packet is
           discarded.";
      }
    }
    description
      "The action when traffic matches an IPsec security
       policy.  According to RFC 4301, there are three
       possible values: BYPASS, PROTECT, and DISCARD.";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.4.1.";
  }

  typedef ipsec-inner-protocol {
    type union {
      type uint8;
      type enumeration {
        enum any {
          value 256;
          description
            "Any IP protocol number value.";
        }
      }
    }
    default "any";
    description
      "IPsec protection can be applied to specific IP
       traffic and Layer 4 traffic (TCP, UDP, SCTP, etc.)
       or ANY protocol in the IP packet payload.
       The IP protocol number is specified with a uint8
       or ANY defining an enumerate with value 256 to
       indicate the protocol number.  Note that in case
       of IPv6, the protocol in the IP packet payload
       is indicated in the Next Header field of the IPv6
       packet.";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.4.1.1
       IANA: Protocol Numbers.";
  }

  grouping encap {
    description
      "This group of nodes allows defining of the type of
       encapsulation in case NAT traversal is
       required and includes port information.";
    leaf espencap {
      type esp-encap;
      default "none";
      description
        "ESP in TCP, ESP in UDP, or ESP in TLS.";
    }
    leaf sport {
      type inet:port-number;
      default "4500";
      description
        "Encapsulation source port.";
    }
    leaf dport {
      type inet:port-number;
      default "4500";
      description
        "Encapsulation destination port.";
    }
    leaf-list oaddr {
      type inet:ip-address;
      description
        "If required, this is the original address that
         was used before NAT was applied over the packet.";
    }
    reference
      "RFC 3947: Negotiation of NAT-Traversal in the IKE
       RFC 8229: TCP Encapsulation of IKE and IPsec Packets.";
  }

  grouping lifetime {
    description
      "Different lifetime values limited to an IPsec SA.";
    leaf time {
      type uint32;
      units "seconds";
      default "0";
      description
        "Time in seconds since the IPsec SA was added.
         For example, if this value is 180 seconds, it
         means the IPsec SA expires in 180 seconds since
         it was added.  The value 0 implies infinite.";
    }
    leaf bytes {
      type uint64;
      default "0";
      description
        "If the IPsec SA processes the number of bytes
         expressed in this leaf, the IPsec SA expires and
         SHOULD be rekeyed.  The value 0 implies
         infinite.";
    }
    leaf packets {
      type uint32;
      default "0";
      description
        "If the IPsec SA processes the number of packets
         expressed in this leaf, the IPsec SA expires and
         SHOULD be rekeyed.  The value 0 implies
         infinite.";
    }
    leaf idle {
      type uint32;
      units "seconds";
      default "0";
      description
        "When an NSF stores an IPsec SA, it
         consumes system resources.  For an idle IPsec SA, this
         is a waste of resources.  If the IPsec SA is idle
         during this number of seconds, the IPsec SA
         SHOULD be removed.  The value 0 implies
         infinite.";
    }
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.4.2.1.";
  }

  grouping port-range {
    description
      "This grouping defines a port range, such as that
       expressed in RFC 4301, for example, 1500 (Start
       Port Number)-1600 (End Port Number).
       A port range is used in the Traffic Selector.";
    leaf start {
      type inet:port-number;
      description
        "Start port number.";
    }
    leaf end {
      type inet:port-number;
      must '. >= ../start' {
        error-message
          "The end port number MUST be equal or greater
           than the start port number.";
      }
      description
        "End port number.  To express a single port, set
         the same value as start and end.";
    }
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.4.1.2.";
  }

  grouping tunnel-grouping {
    description
      "The parameters required to define the IP tunnel
       endpoints when IPsec SA requires tunnel mode.  The
       tunnel is defined by two endpoints: the local IP
       address and the remote IP address.";
    leaf local {
      type inet:ip-address;
      mandatory true;
      description
        "Local IP address' tunnel endpoint.";
    }
    leaf remote {
      type inet:ip-address;
      mandatory true;
      description
        "Remote IP address' tunnel endpoint.";
    }
    leaf df-bit {
      type enumeration {
        enum clear {
          description
            "Disable the Don't Fragment (DF) bit
             in the outer header.  This is the
             default value.";
        }
        enum set {
          description
            "Enable the DF bit in the outer header.";
        }
        enum copy {
          description
            "Copy the DF bit to the outer header.";
        }
      }
      default "clear";
      description
        "Allow configuring the DF bit when encapsulating
         tunnel mode IPsec traffic.  RFC 4301 describes
         three options to handle the DF bit during
         tunnel encapsulation: clear, set, and copy from
         the inner IP header.  This MUST be ignored or
         has no meaning when the local/remote
         IP addresses are IPv6 addresses.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 8.1.";
    }
    leaf bypass-dscp {
      type boolean;
      default "true";
      description
        "If true, to copy the Differentiated Services Code
         Point (DSCP) value from inner header to outer header.
         If false, to map DSCP values
         from an inner header to values in an outer header
         following ../dscp-mapping.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.2.";
    }
    list dscp-mapping {
      must '../bypass-dscp = "false"';
      key "id";
      ordered-by user;
      leaf id {
        type uint8;
        description
          "The index of list with the
           different mappings.";
      }
      leaf inner-dscp {
        type inet:dscp;
        description
          "The DSCP value of the inner IP packet.  If this
           leaf is not defined, it means ANY inner DSCP value.";
      }
      leaf outer-dscp {
        type inet:dscp;
        default "0";
        description
          "The DSCP value of the outer IP packet.";
      }
      description
        "A list that represents an array with the mapping from the
         inner DSCP value to outer DSCP value when bypass-dscp is
         false.  To express a default mapping in the list where any
         other inner dscp value is not matching a node in the list,
         a new node has to be included at the end of the list where
         the leaf inner-dscp is not defined (ANY) and the leaf
         outer-dscp includes the value of the mapping.  If there is
         no value set in the leaf outer-dscp, the default value for
         this leaf is 0.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.2 and Appendix C.";
    }
  }

  grouping selector-grouping {
    description
      "This grouping contains the definition of a Traffic
       Selector, which is used in the IPsec policies and
       IPsec SAs.";
    leaf local-prefix {
      type inet:ip-prefix;
      mandatory true;
      description
        "Local IP address prefix.";
    }
    leaf remote-prefix {
      type inet:ip-prefix;
      mandatory true;
      description
        "Remote IP address prefix.";
    }
    leaf inner-protocol {
      type ipsec-inner-protocol;
      default "any";
      description
        "Inner protocol that is going to be
         protected with IPsec.";
    }
    list local-ports {
      key "start end";
      uses port-range;
      description
        "List of local ports. When the inner
         protocol is ICMP, this 16-bit value
         represents code and type.
         If this list is not defined,
         it is assumed that start and
         end are 0 by default (any port).";
    }
    list remote-ports {
      key "start end";
      uses port-range;
      description
        "List of remote ports. When the upper layer
         protocol is ICMP, this 16-bit value represents
         code and type.  If this list is not defined,
         it is assumed that start and end are 0 by
         default (any port).";
    }
    reference
      "RFC 4301: Security Architecture for the Internet Protocol,
                 Section 4.4.1.2.";
  }

  grouping ipsec-policy-grouping {
    description
      "Holds configuration information for an IPsec SPD
       entry.";
    leaf anti-replay-window-size {
      type uint32;
      default "64";
      description
        "To set the anti-replay window size.
         The default value is set
         to 64, following the recommendation in RFC 4303.";
      reference
        "RFC 4303: IP Encapsulating Security Payload (ESP),
                   Section 3.4.3.";
    }
    container traffic-selector {
      description
        "Packets are selected for
         processing actions based on Traffic Selector
         values, which refer to IP and inner protocol
         header information.";
      uses selector-grouping;
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.4.1.";
    }
    container processing-info {
      description
        "SPD processing.  If the required processing
         action is protect, it contains the required
         information to process the packet.";
      leaf action {
        type ipsec-spd-action;
        default "discard";
        description
          "If bypass or discard, container
           ipsec-sa-cfg is empty.";
      }
      container ipsec-sa-cfg {
        when "../action = 'protect'";
        description
          "IPsec SA configuration included in the SPD
           entry.";
        leaf pfp-flag {
          type boolean;
          default "false";
          description
            "Each selector has a Populate From
             Packet (PFP) flag.  If asserted for a
             given selector X, the flag indicates
             that the IPsec SA to be created should
             take its value (local IP address,
             remote IP address, Next Layer
             Protocol, etc.) for X from the value
             in the packet.  Otherwise, the IPsec SA
             should take its value(s) for X from
             the value(s) in the SPD entry.";
        }
        leaf ext-seq-num {
          type boolean;
          default "false";
          description
            "True if this IPsec SA is using extended
             sequence numbers.  If true, the 64-bit
             extended sequence number counter is used;
             if false, the normal 32-bit sequence
             number counter is used.";
        }
        leaf seq-overflow {
          type boolean;
          default "false";
          description
            "The flag indicating whether
             overflow of the sequence number
             counter should prevent transmission
             of additional packets on the IPsec
             SA (false) and, therefore, needs to
             be rekeyed or whether rollover is
             permitted (true).  If Authenticated
             Encryption with Associated Data
             (AEAD) is used (leaf
             esp-algorithms/encryption/algorithm-type),
             this flag MUST be false.  Setting this
             flag to true is strongly discouraged.";
        }
        leaf stateful-frag-check {
          type boolean;
          default "false";
          description
            "Indicates whether (true) or not (false)
             stateful fragment checking applies to
             the IPsec SA to be created.";
        }
        leaf mode {
          type ipsec-mode;
          default "transport";
          description
            "IPsec SA has to be processed in
             transport or tunnel mode.";
        }
        leaf protocol-parameters {
          type ipsec-protocol-params;
          default "esp";
          description
            "Security protocol of the IPsec SA.
             Only ESP is supported, but it could be
             extended in the future.";
        }
        container esp-algorithms {
          when "../protocol-parameters = 'esp'";
          description
            "Configuration of Encapsulating
             Security Payload (ESP) parameters and
             algorithms.";
          leaf-list integrity {
            type intr-alg-t;
            default "0";
            ordered-by user;
            description
              "Configuration of ESP authentication
               based on the specified integrity
               algorithm.  With AEAD encryption
               algorithms, the integrity node is
               not used.";
            reference
              "RFC 4303: IP Encapsulating Security Payload (ESP),
                         Section 3.2.";
          }
          list encryption {
            key "id";
            ordered-by user;
            leaf id {
              type uint16;
              description
                "An identifier that unequivocally identifies each
                 entry of the list, i.e., an encryption algorithm
                 and its key length (if required).";
            }
            leaf algorithm-type {
              type encr-alg-t;
              default "20";
              description
                "Default value 20 (ENCR_AES_GCM_16).";
            }
            leaf key-length {
              type uint16;
              default "128";
              description
                "By default, key length is 128
                 bits.";
            }
            description
              "Encryption or AEAD algorithm for the
               IPsec SAs.  This list is ordered
               following from the higher priority to
               lower priority.  First node of the
               list will be the algorithm with
               higher priority.  In case the list
               is empty, then no encryption algorithm
               is applied (NULL).";
            reference
              "RFC 4303: IP Encapsulating Security Payload (ESP),
                         Section 3.2.";
          }
          leaf tfc-pad {
            type boolean;
            default "false";
            description
              "If Traffic Flow Confidentiality
               (TFC) padding for ESP encryption
               can be used (true) or not (false).";
            reference
              "RFC 4303: IP Encapsulating Security Payload (ESP),
                         Section 2.7.";
          }
          reference
            "RFC 4303: IP Encapsulating Security Payload (ESP).";
        }
        container tunnel {
          when "../mode = 'tunnel'";
          uses tunnel-grouping;
          description
            "IPsec tunnel endpoints definition.";
        }
      }
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.2.";
    }
  }
}

        
      
       
         The 'ietf-i2nsf-ike' Module
         In this section, the YANG module for the IKE case is described.
         
           Data Model Overview
           The model related to IKEv2 has been extracted from
                  reading the IKEv2 standard in 
                    and observing some open
                  source implementations, such as strongSwan 
                    or Libreswan 
                   .
           The definition of the PAD model has been
                extracted from the specification in 
                 . (Note that many 
                implementations integrate PAD configuration as part
                of the IKEv2 configuration.)
            The definition of the SPD model has been
                mainly extracted from the specification in Section
                  and Appendix   of  .
          
            The YANG data model for the IKE case is defined by the module "ietf-i2nsf-ike". Its structure is depicted in the following diagram, using the notation syntax for YANG tree diagrams  .
          
           
module: ietf-i2nsf-ike
  +--rw ipsec-ike
    +--rw pad
    |  +--rw pad-entry* [name]
    |     +--rw name                           string
    |     +--rw (identity)
    |     |  +--:(ipv4-address)
    |     |  |  +--rw ipv4-address?            inet:ipv4-address
    |     |  +--:(ipv6-address)
    |     |  |  +--rw ipv6-address?            inet:ipv6-address
    |     |  +--:(fqdn-string)
    |     |  |  +--rw fqdn-string?             inet:domain-name
    |     |  +--:(rfc822-address-string)
    |     |  |  +--rw rfc822-address-string?   string
    |     |  +--:(dnx509)
    |     |  |  +--rw dnx509?                  binary
    |     |  +--:(gnx509)
    |     |  |  +--rw gnx509?                  binary
    |     |  +--:(id-key)
    |     |  |  +--rw id-key?                  binary
    |     |  +--:(id-null)
    |     |     +--rw id-null?                 empty
    |     +--rw auth-protocol?                 auth-protocol-type
    |     +--rw peer-authentication
    |        +--rw auth-method?         auth-method-type
    |        +--rw eap-method
    |        |  +--rw eap-type    uint64
    |        +--rw pre-shared
    |        |  +--rw secret?   yang:hex-string
    |        +--rw digital-signature
    |           +--rw ds-algorithm?           uint8
    |           +--rw (public-key)?
    |           |  +--:(raw-public-key)
    |           |  |  +--rw raw-public-key?   binary
    |           |  +--:(cert-data)
    |           |     +--rw cert-data?        binary
    |           +--rw private-key?            binary
    |           +--rw ca-data*                binary
    |           +--rw crl-data?               binary
    |           +--rw crl-uri?                inet:uri
    |           +--rw oscp-uri?               inet:uri
    +--rw conn-entry* [name]
    |  +--rw name                             string
    |  +--rw autostartup?                     autostartup-type
    |  +--rw initial-contact?                 boolean
    |  +--rw version?                         auth-protocol-type
    |  +--rw fragmentation
    |  |  +--rw enabled?   boolean
    |  |  +--rw mtu?      uint16
    |  +--rw ike-sa-lifetime-soft
    |  |  +--rw rekey-time?    uint32
    |  |  +--rw reauth-time?   uint32
    |  +--rw ike-sa-lifetime-hard
    |  |  +--rw over-time?   uint32
    |  +--rw ike-sa-intr-alg*  nsfikec:intr-alg-t
    |  +--rw ike-sa-encr-alg* [id]
    |  |  +--rw id                uint16
    |  |  +--rw algorithm-type?   nsfikec:encr-alg-t
    |  |  +--rw key-length?       uint16
    |  +--rw dh-group?                            fs-group
    |  +--rw half-open-ike-sa-timer?              uint32
    |  +--rw half-open-ike-sa-cookie-threshold?   uint32
    |  +--rw local
    |  |  +--rw local-pad-entry-name    string
    |  +--rw remote
    |  |  +--rw remote-pad-entry-name    string
    |  +--rw encapsulation-type
    |  |  +--rw espencap?   esp-encap
    |  |  +--rw sport?      inet:port-number
    |  |  +--rw dport?      inet:port-number
    |  |  +--rw oaddr*      inet:ip-address
    |  +--rw spd
    |  |  +--rw spd-entry* [name]
    |  |    +--rw name                   string
    |  |    +--rw ipsec-policy-config
    |  |      +--rw anti-replay-window-size?   uint32
    |  |      +--rw traffic-selector
    |  |      |  +--rw local-prefix      inet:ip-prefix
    |  |      |  +--rw remote-prefix     inet:ip-prefix
    |  |      |  +--rw inner-protocol?   ipsec-inner-protocol
    |  |      |  +--rw local-ports* [start end]
    |  |      |  |  +--rw start    inet:port-number
    |  |      |  |  +--rw end      inet:port-number
    |  |      |  +--rw remote-ports* [start end]
    |  |      |     +--rw start    inet:port-number
    |  |      |     +--rw end      inet:port-number
    |  |      +--rw processing-info
    |  |        +--rw action?         ipsec-spd-action
    |  |        +--rw ipsec-sa-cfg
    |  |         +--rw pfp-flag?              boolean
    |  |         +--rw ext-seq-num?           boolean
    |  |         +--rw seq-overflow?          boolean
    |  |         +--rw stateful-frag-check?   boolean
    |  |         +--rw mode?                  ipsec-mode
    |  |         +--rw protocol-parameters? ipsec-protocol-params
    |  |              +--rw esp-algorithms
    |  |              |  +--rw integrity*    intr-alg-t
    |  |              |  +--rw encryption* [id]
    |  |              |  |  +--rw id                uint16
    |  |              |  |  +--rw algorithm-type?   encr-alg-t
    |  |              |  |  +--rw key-length?       uint16
    |  |              |  +--rw tfc-pad?      boolean
    |  |              +--rw tunnel
    |  |                 +--rw local           inet:ip-address
    |  |                 +--rw remote          inet:ip-address
    |  |                 +--rw df-bit?         enumeration
    |  |                 +--rw bypass-dscp?    boolean
    |  |                 +--rw dscp-mapping* [id]
    |  |                    +--rw id            uint8
    |  |                    +--rw inner-dscp?   inet:dscp
    |  |                    +--rw outer-dscp?   inet:dscp
    |  +--rw child-sa-info
    |  |  +--rw fs-groups*                fs-group
    |  |  +--rw child-sa-lifetime-soft
    |  |  |  +--rw time?      uint32
    |  |  |  +--rw bytes?     yang:counter64
    |  |  |  +--rw packets?   uint32
    |  |  |  +--rw idle?      uint32
    |  |  |  +--rw action?    nsfikec:lifetime-action
    |  |  +--rw child-sa-lifetime-hard
    |  |     +--rw time?      uint32
    |  |     +--rw bytes?     yang:counter64
    |  |     +--rw packets?   uint32
    |  |     +--rw idle?      uint32
    |  +--ro state
    |     +--ro initiator?             boolean
    |     +--ro initiator-ikesa-spi?   ike-spi
    |     +--ro responder-ikesa-spi?   ike-spi
    |     +--ro nat-local?             boolean
    |     +--ro nat-remote?            boolean
    |     +--ro encapsulation-type
    |     |  +--ro espencap?   esp-encap
    |     |  +--ro sport?      inet:port-number
    |     |  +--ro dport?      inet:port-number
    |     |  +--ro oaddr*      inet:ip-address
    |     +--ro established?           uint64
    |     +--ro current-rekey-time?    uint64
    |     +--ro current-reauth-time?   uint64
    +--ro number-ike-sas
        +--ro total?               yang:gauge64
        +--ro half-open?           yang:gauge64
        +--ro half-open-cookies?   yang:gauge64

           
                     The YANG data model consists of a unique
                    "ipsec-ike"
                     container defined as follows. Firstly, it
                     contains a "pad" container that serves to
                     configure the Peer Authentication Database 
                     with authentication information about local 
                     and remote peers (NSFs). More precisely, it
                     consists of a list of entries, each one
                     indicating the identity, authentication method,
                     and credentials that a particular peer (local or
                     remote) will use. Therefore, each entry contains
                     identity, authentication information, and
                     credentials of either the local NSF or the
                     remote NSF. As a consequence, the I2NF Controller can
                     store identity, authentication information, and
                     credentials for the local NSF and the remote
                     NSF.
          
            Next, a list "conn-entry" is defined with
                     information about the different IKE connections
                     a peer can maintain with others. Each connection
                     entry is composed of a wide number of parameters
                     to configure different aspects of a particular
                     IKE connection between two peers: local and
                     remote peer authentication information, IKE SA
                     configuration (soft and hard lifetimes,
                     cryptographic algorithms, etc.), a list of IPsec
                     policies describing the type of network traffic
                     to be secured (local/remote subnet and ports,
                     etc.) and how it must be protected (ESP,
                     tunnel/transport, cryptographic algorithms,
                     etc.), Child SA configuration (soft and hard
                     lifetimes), and state information of the IKE
                     connection (SPIs, usage of NAT, current
                     expiration times, etc.). 
          
           Lastly, the "ipsec-ike" container declares a
                    "number-ike-sas" container to specify state
                    information reported by the IKE software related
                    to the amount of IKE connections established.
          
        
         
           Example Usage
             shows an example
               of IKE case configuration for an NSF, in tunnel
               mode (gateway-to-gateway), with NSF
               authentication based on X.509 certificates.
        
         
           YANG Module
           This YANG module has normative references to  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , and  .
          
           

module ietf-i2nsf-ike {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike";
  prefix nsfike;

  import ietf-inet-types {
    prefix inet;
    reference
      "RFC 6991: Common YANG Data Types.";
  }
  import ietf-yang-types {
    prefix yang;
    reference
      "RFC 6991: Common YANG Data Types.";
  }
  import ietf-i2nsf-ikec {
    prefix nsfikec;
    reference
      "RFC 9061: A YANG Data Model for IPsec Flow Protection
                 Based on Software-Defined Networking (SDN).";
  }
  import ietf-netconf-acm {
    prefix nacm;
    reference
      "RFC 8341: Network Configuration Access Control
                 Model.";
  }

  organization
    "IETF I2NSF Working Group";
  contact
    "WG Web:  <https://datatracker.ietf.org/wg/i2nsf/>
     WG List: <mailto:i2nsf@ietf.org>

     Author: Rafael Marin-Lopez
               <mailto:rafa@um.es>

     Author: Gabriel Lopez-Millan
               <mailto:gabilm@um.es>

     Author: Fernando Pereniguez-Garcia
               <mailto:fernando.pereniguez@cud.upct.es>
    ";
  description
    "This module contains the IPsec IKE case model for the SDN-based
     IPsec flow protection service.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
     document are to be interpreted as described in BCP 14
     (RFC 2119) (RFC 8174) when, and only when, they appear
     in all capitals, as shown here.

     Copyright (c) 2021 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (http://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9061; see
     the RFC itself for full legal notices.";

  revision 2021-07-14 {
    description
      "Initial version.";
    reference
      "RFC 9061: A YANG Data Model for IPsec Flow Protection
                 Based on Software-Defined Networking (SDN).";
  }

  typedef ike-spi {
    type uint64 {
      range "0..max";
    }
    description
      "Security Parameter Index (SPI)'s IKE SA.";
    reference
      "RFC 7296: Internet Key Exchange Protocol Version 2
                 (IKEv2), Section 2.6.";
  }

  typedef autostartup-type {
    type enumeration {
      enum add {
        description
          "IKE/IPsec configuration is only loaded into
           IKE implementation, but IKE/IPsec SA is not
           started.";
      }
      enum on-demand {
        description
          "IKE/IPsec configuration is loaded
           into IKE implementation.  The IPsec policies
           are transferred to the NSF, but the
           IPsec SAs are not established immediately.
           The IKE implementation will negotiate the
           IPsec SAs when they are required
           (i.e., through an ACQUIRE notification).";
      }
      enum start {
        description
          "IKE/IPsec configuration is loaded
           and transferred to the NSF's kernel, and the
           IKEv2-based IPsec SAs are established
           immediately without waiting for any packet.";
      }
    }
    description
      "Different policies to set IPsec SA configuration
       into NSF's kernel when IKEv2 implementation has
       started.";
  }

  typedef fs-group {
    type uint16;
    description
      "DH groups for IKE and IPsec SA rekey.";
    reference
      "IANA: Internet Key Exchange Version 2 (IKEv2) Parameters,
             IKEv2 Transform Attribute Types, Transform Type 4 -
             Diffie-Hellman Group Transform IDs
       RFC 7296: Internet Key Exchange Protocol Version 2
                 (IKEv2), Section 3.3.2.";
  }

  typedef auth-protocol-type {
    type enumeration {
      enum ikev2 {
        value 2;
        description
          "IKEv2 authentication protocol.  It is the
           only one defined right now.  An enum is
           used for further extensibility.";
      }
    }
    description
      "IKE authentication protocol version specified in the
       Peer Authorization Database (PAD).  It is defined as
       enumerated to allow new IKE versions in the
       future.";
    reference
      "RFC 7296: Internet Key Exchange Protocol Version 2
                 (IKEv2).";
  }

  typedef auth-method-type {
    type enumeration {
      enum pre-shared {
        description
          "Select pre-shared key as the
           authentication method.";
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2).";
      }
      enum eap {
        description
          "Select the Extensible Authentication Protocol (EAP) as
           the authentication method.";
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2).";
      }
      enum digital-signature {
        description
          "Select digital signature as the authentication method.";
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2)
           RFC 7427: Signature Authentication in the Internet Key
                     Exchange Version 2 (IKEv2).";
      }
      enum null {
        description
          "Null authentication.";
        reference
          "RFC 7619: The NULL Authentication Method in the Internet
                     Key Exchange Protocol Version 2 (IKEv2).";
      }
    }
    description
      "Peer authentication method specified in the Peer
       Authorization Database (PAD).";
  }

  container ipsec-ike {
    description
      "IKE configuration for an NSF.  It includes PAD
       parameters, IKE connection information, and state
       data.";
    container pad {
      description
        "Configuration of the Peer Authorization Database
         (PAD).  Each entry of PAD contains authentication
         information of either the local peer or the remote peer.
         Therefore, the I2NSF Controller stores authentication
         information (and credentials) not only for the remote NSF
         but also for the local NSF.  The local NSF MAY use the
         same identity for different types of authentication
         and credentials.  Pointing to the entry for a local NSF
         (e.g., A) and the entry for remote NSF (e.g., B)
         is possible to specify all the required information to
         carry out the authentication between A and B (see
         ../conn-entry/local and ../conn-entry/remote).";
      list pad-entry {
        key "name";
        ordered-by user;
        description
          "Peer Authorization Database (PAD) entry.  It
           is a list of PAD entries ordered by the
           I2NSF Controller, and each entry is
           unequivocally identified by a name.";
        leaf name {
          type string;
          description
            "PAD-unique name to identify this
             entry.";
        }
        choice identity {
          mandatory true;
          description
            "A particular IKE peer will be
             identified by one of these identities.
             This peer can be a remote peer or local
             peer (this NSF).";
          reference
            "RFC 4301: Security Architecture for the Internet
                       Protocol, Section 4.4.3.1.";
          case ipv4-address {
            leaf ipv4-address {
              type inet:ipv4-address;
              description
                "Specifies the identity as
                 a single 4-octet IPv4 address.";
            }
          }
          case ipv6-address {
            leaf ipv6-address {
              type inet:ipv6-address;
              description
                "Specifies the identity as a
                 single 16-octet IPv6
                 address.  An example is
                 2001:db8::8:800:200c:417a.";
            }
          }
          case fqdn-string {
            leaf fqdn-string {
              type inet:domain-name;
              description
                "Specifies the identity as a
                 Fully Qualified Domain Name
                 (FQDN) string.  An example is
                 example.com.  The string MUST
                 NOT contain any terminators
                 (e.g., NULL, Carriage Return
                 (CR), etc.).";
            }
          }
          case rfc822-address-string {
            leaf rfc822-address-string {
              type string;
              description
                "Specifies the identity as a
                 fully qualified  email address
                 string (RFC 5322).  An example is
                 jsmith@example.com.  The string
                 MUST NOT contain any
                 terminators (e.g., NULL, CR,
                 etc.).";
              reference
                "RFC 5322: Internet Message Format.";
            }
          }
          case dnx509 {
            leaf dnx509 {
              type binary;
              description
                "The binary
                 Distinguished Encoding Rules (DER)
                 encoding of an ASN.1 X.500
                 Distinguished Name, as specified in IKEv2.";
              reference
                "RFC 5280: Internet X.509 Public Key Infrastructure
                           Certificate and Certificate Revocation
                           List (CRL) Profile
                 RFC 7296: Internet Key Exchange Protocol Version 2
                           (IKEv2), Section 3.5.";
            }
          }
          case gnx509 {
            leaf gnx509 {
              type binary;
              description
                "ASN.1 X.509 GeneralName structure,
                 as specified in RFC 5280, encoded
                 using ASN.1 Distinguished Encoding Rules
                 (DER), as specified in ITU-T X.690.";
              reference
                "RFC 5280: Internet X.509 Public Key Infrastructure
                           Certificate and Certificate Revocation
                           List (CRL) Profile.";
            }
          }
          case id-key {
            leaf id-key {
              type binary;
              description
                "Opaque octet stream that may be
                 used to pass vendor-specific
                 information for proprietary
                 types of identification.";
              reference
                "RFC 7296: Internet Key Exchange Protocol Version 2
                           (IKEv2), Section 3.5.";
            }
          }
          case id-null {
            leaf id-null {
              type empty;
              description
                "The ID_NULL identification is used
                 when the IKE identification payload
                 is not used.";
              reference
                "RFC 7619: The NULL Authentication Method in the
                           Internet Key Exchange Protocol Version 2
                           (IKEv2).";
            }
          }
        }
        leaf auth-protocol {
          type auth-protocol-type;
          default "ikev2";
          description
            "Only IKEv2 is supported right now, but
             other authentication protocols may be
             supported in the future.";
        }
        container peer-authentication {
          description
            "This container allows the security
             controller to configure the
             authentication method (pre-shared key,
             eap, digital-signature, null) that
             will be used with a particular peer and
             the credentials to use, which will
             depend on the selected authentication
             method.";
          leaf auth-method {
            type auth-method-type;
            default "pre-shared";
            description
              "Type of authentication method
               (pre-shared key, eap, digital signature,
               null).";
            reference
              "RFC 7296: Internet Key Exchange Protocol Version 2
                         (IKEv2), Section 2.15.";
          }
          container eap-method {
            when "../auth-method = 'eap'";
            leaf eap-type {
              type uint32 {
                range "1 .. 4294967295";
              }
              mandatory true;
              description
                "EAP method type specified with
                 a value extracted from the
                 IANA registry.  This
                 information provides the
                 particular EAP method to be
                 used.  Depending on the EAP
                 method, pre-shared keys or
                 certificates may be used.";
            }
            description
              "EAP method description used when
               authentication method is 'eap'.";
            reference
              "IANA: Extensible Authentication Protocol (EAP)
                     Registry, Method Types
               RFC 7296: Internet Key Exchange Protocol Version 2
                         (IKEv2), Section 2.16.";
          }
          container pre-shared {
            when "../auth-method[.='pre-shared' or
                  .='eap']";
            leaf secret {
              nacm:default-deny-all;
              type yang:hex-string;
              description
                "Pre-shared secret value.  The
                 NSF has to prevent read access
                 to this value for security
                 reasons.  This value MUST be
                 set if the EAP method uses a
                 pre-shared key or pre-shared
                 authentication has been chosen.";
            }
            description
              "Shared secret value for PSK or
               EAP method authentication based on
               PSK.";
          }
          container digital-signature {
            when "../auth-method[.='digital-signature'
                  or .='eap']";
            leaf ds-algorithm {
              type uint8;
              default "14";
              description
                "The digital signature
                 algorithm is specified with a
                 value extracted from the IANA
                 registry.  Default is the generic
                 digital signature method.  Depending
                 on the algorithm, the following leafs
                 MUST contain information.  For
                 example, if digital signature or the
                 EAP method involves a certificate,
                 then leaves 'cert-data' and 'private-key'
                 will contain this information.";
              reference
                "IANA: Internet Key Exchange Version 2 (IKEv2)
                       Parameters, IKEv2 Authentication Method.";
            }
            choice public-key {
              leaf raw-public-key {
                type binary;
                description
                  "A binary that contains the
                   value of the public key.  The
                   interpretation of the content
                   is defined by the digital
                   signature algorithm.  For
                   example, an RSA key is
                   represented as RSAPublicKey, as
                   defined in RFC 8017, and an
                   Elliptic Curve Cryptography
                   (ECC) key is represented
                   using the 'publicKey'
                   described in RFC 5915.";
                reference
                  "RFC 5915: Elliptic Curve Private Key
                             Structure
                   RFC 8017: PKCS #1: RSA Cryptography
                             Specifications Version 2.2.";
              }
              leaf cert-data {
                type binary;
                description
                  "X.509 certificate data in DER
                   format.  If raw-public-key is
                   defined, this leaf is empty.";
                reference
                  "RFC 5280: Internet X.509 Public Key
                             Infrastructure Certificate
                             and Certificate Revocation
                             List (CRL) Profile.";
              }
              description
                "If the I2NSF Controller
                 knows that the NSF
                 already owns a private key
                 associated to this public key
                 (e.g., the NSF generated the pair
                 public key/private key out of
                 band), it will only configure
                 one of the leaves of this
                 choice but not the leaf
                 private-key.  The NSF, based on
                 the public key value, can know
                 the private key to be used.";
            }
            leaf private-key {
              nacm:default-deny-all;
              type binary;
              description
                "A binary that contains the
                 value of the private key.  The
                 interpretation of the content
                 is defined by the digital
                 signature algorithm.  For
                 example, an RSA key is
                 represented as RSAPrivateKey, as
                 defined in RFC 8017, and an
                 Elliptic Curve Cryptography
                 (ECC) key is represented as
                 ECPrivateKey, as defined in RFC
                 5915.  This value is set
                 if public key is defined and the
                 I2NSF Controller is in charge
                 of configuring the
                 private key.  Otherwise, it is
                 not set and the value is
                 kept in secret.";
              reference
                "RFC 5915: Elliptic Curve Private Key
                           Structure
                 RFC 8017: PKCS #1: RSA Cryptography
                           Specifications Version 2.2.";
            }
            leaf-list ca-data {
              type binary;
              description
                "List of trusted Certification
                 Authorities (CAs) certificates
                 encoded using ASN.1
                 Distinguished Encoding Rules
                 (DER).  If it is not defined,
                 the default value is empty.";
            }
            leaf crl-data {
              type binary;
              description
                "A CertificateList structure, as
                 specified in RFC 5280,
                 encoded using ASN.1
                 Distinguished Encoding Rules
                 (DER), as specified in ITU-T
                 X.690.  If it is not defined,
                 the default value is empty.";
              reference
                "RFC 5280: Internet X.509 Public Key Infrastructure
                           Certificate and Certificate Revocation
                           List (CRL) Profile.";
            }
            leaf crl-uri {
              type inet:uri;
              description
                "X.509 Certificate Revocation List
                 (CRL) certificate URI.
                 If it is not defined,
                 the default value is empty.";
              reference
                "RFC 5280: Internet X.509 Public Key Infrastructure
                           Certificate and Certificate Revocation
                           List (CRL) Profile.";
            }
            leaf oscp-uri {
              type inet:uri;
              description
                "Online Certificate Status Protocol
                 (OCSP) URI.  If it is not defined,
                 the default value is empty.";
              reference
                "RFC 6960: X.509 Internet Public Key Infrastructure
                           Online Certificate Status Protocol - OCSP
                 RFC 5280: Internet X.509 Public Key Infrastructure
                           Certificate and Certificate Revocation
                           List (CRL) Profile.";
            }
            description
              "digital-signature container.";
          } /*container digital-signature*/
        } /*container peer-authentication*/
      }
    }
    list conn-entry {
      key "name";
      description
        "IKE peer connection information.  This list
         contains the IKE connection for this peer
         with other peers.  This will create, in
         real time, IKE Security Associations
         established with these nodes.";
      leaf name {
        type string;
        description
          "Identifier for this connection
           entry.";
      }
      leaf autostartup {
        type autostartup-type;
        default "add";
        description
          "By default, only add configuration
           without starting the security
           association.";
      }
      leaf initial-contact {
        type boolean;
        default "false";
        description
          "The goal of this value is to deactivate the
           usage of INITIAL_CONTACT notification
           (true).  If this flag remains set to false, it
           means the usage of the INITIAL_CONTACT
           notification will depend on the IKEv2
           implementation.";
      }
      leaf version {
        type auth-protocol-type;
        default "ikev2";
        description
          "IKE version.  Only version 2 is supported.";
      }
      container fragmentation {
        leaf enabled {
          type boolean;
          default "false";
          description
            "Whether or not to enable IKEv2
             fragmentation (true or false).";
          reference
            "RFC 7383: Internet Key Exchange Protocol Version 2
                       (IKEv2) Message Fragmentation.";
        }
        leaf mtu {
          when "../enabled='true'";
          type uint16 {
            range "68..65535";
          }
          description
            "MTU that IKEv2 can use
             for IKEv2 fragmentation.";
          reference
            "RFC 7383: Internet Key Exchange Protocol Version 2
                       (IKEv2) Message Fragmentation.";
        }
        description
          "IKEv2 fragmentation, as per RFC 7383.  If the
           IKEv2 fragmentation is enabled, it is possible
           to specify the MTU.";
      }
      container ike-sa-lifetime-soft {
        description
          "IKE SA lifetime soft.  Two lifetime values
           can be configured: either rekey time of the
           IKE SA or reauth time of the IKE SA.  When
           the rekey lifetime expires, a rekey of the
           IKE SA starts.  When reauth lifetime
           expires, an IKE SA reauthentication starts.";
        leaf rekey-time {
          type uint32;
          units "seconds";
          default "0";
          description
            "Time in seconds between each IKE SA
             rekey.  The value 0 means infinite.";
        }
        leaf reauth-time {
          type uint32;
          units "seconds";
          default "0";
          description
            "Time in seconds between each IKE SA
             reauthentication.  The value 0 means
             infinite.";
        }
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2), Section 2.8.";
      }
      container ike-sa-lifetime-hard {
        description
          "Hard IKE SA lifetime.  When this
           time is reached, the IKE SA is removed.";
        leaf over-time {
          type uint32;
          units "seconds";
          default "0";
          description
            "Time in seconds before the IKE SA is
             removed.  The value 0 means infinite.";
        }
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2).";
      }
      leaf-list ike-sa-intr-alg {
        type nsfikec:intr-alg-t;
        default "12";
        ordered-by user;
        description
          "Integrity algorithm for establishing
           the IKE SA.  This list is ordered following
           from the higher priority to lower priority.
           The first node of the list will be the
           algorithm with higher priority.
           Default value 12 (AUTH_HMAC_SHA2_256_128).";
      }
      list ike-sa-encr-alg {
        key "id";
        min-elements 1;
        ordered-by user;
        leaf id {
          type uint16;
          description
            "An identifier that unequivocally
             identifies each entry of the list,
             i.e., an encryption algorithm and
             its key length (if required).";
        }
        leaf algorithm-type {
          type nsfikec:encr-alg-t;
          default "12";
          description
            "Default value 12 (ENCR_AES_CBC).";
        }
        leaf key-length {
          type uint16;
          default "128";
          description
            "By default, key length is 128 bits.";
        }
        description
          "Encryption or AEAD algorithm for the IKE
           SAs.  This list is ordered following
           from the higher priority to lower priority.
           The first node of the list will be the
           algorithm with higher priority.";
      }
      leaf dh-group {
        type fs-group;
        default "14";
        description
          "Group number for Diffie-Hellman
           Exponentiation used during IKE_SA_INIT
           for the IKE SA key exchange.";
      }
      leaf half-open-ike-sa-timer {
        type uint32;
        units "seconds";
        default "0";
        description
          "Set the half-open IKE SA timeout
           duration.  The value 0 implies infinite.";
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2), Section 2.";
      }
      leaf half-open-ike-sa-cookie-threshold {
        type uint32;
        default "0";
        description
          "Number of half-open IKE SAs that activate
           the cookie mechanism.  The value 0 implies
           infinite.";
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2), Section 2.6.";
      }
      container local {
        leaf local-pad-entry-name {
          type string;
          mandatory true;
          description
            "Local peer authentication information.
             This node points to a specific entry in
             the PAD where the authorization
             information about this particular local
             peer is stored.  It MUST match a
             pad-entry-name.";
        }
        description
          "Local peer authentication information.";
      }
      container remote {
        leaf remote-pad-entry-name {
          type string;
          mandatory true;
          description
            "Remote peer authentication information.
             This node points to a specific entry in
             the PAD where the authorization
             information about this particular
             remote peer is stored.  It MUST match a
             pad-entry-name.";
        }
        description
          "Remote peer authentication information.";
      }
      container encapsulation-type {
        uses nsfikec:encap;
        description
          "This container carries configuration
           information about the source and destination
           ports of encapsulation that IKE should use
           and the type of encapsulation that
           should be used when NAT traversal is required.
           However, this is just a best effort since
           the IKE implementation may need to use a
           different encapsulation, as described in
           RFC 8229.";
        reference
          "RFC 8229: TCP Encapsulation of IKE and IPsec
                     Packets.";
      }
      container spd {
        description
          "Configuration of the Security Policy
           Database (SPD).  This main information is
           placed in the grouping
           ipsec-policy-grouping.";
        list spd-entry {
          key "name";
          ordered-by user;
          leaf name {
            type string;
            description
              "SPD-entry-unique name to identify
               the IPsec policy.";
          }
          container ipsec-policy-config {
            description
              "This container carries the
               configuration of an IPsec policy.";
            uses nsfikec:ipsec-policy-grouping;
          }
          description
            "List of entries that will constitute
             the representation of the SPD.  In this
             case, since the NSF implements IKE, it
             is only required to send an IPsec policy
             from this NSF where 'local' is this NSF
             and 'remote' the other NSF.  The IKE
             implementation will install IPsec
             policies in the NSF's kernel in both
             directions (inbound and outbound) and
             their corresponding IPsec SAs based on
             the information in this SPD entry.";
        }
        reference
          "RFC 7296: Internet Key Exchange Protocol Version 2
                     (IKEv2), Section 2.9.";
      }
      container child-sa-info {
        leaf-list fs-groups {
          type fs-group;
          default "0";
          ordered-by user;
          description
            "If non-zero, forward secrecy is
             required when a new IPsec SA is being
             created, the (non-zero) value indicates
             the group number to use for the key
             exchange process used to achieve forward
             secrecy.
             This list is ordered following from the
             higher priority to lower priority.  The
             first node of the list will be the
             algorithm with higher priority.";
        }
        container child-sa-lifetime-soft {
          description
            "Soft IPsec SA lifetime.
             After the lifetime, the action is
             defined in this container
             in the leaf action.";
          uses nsfikec:lifetime;
          leaf action {
            type nsfikec:lifetime-action;
            default "replace";
            description
              "When the lifetime of an IPsec SA
               expires, an action needs to be
               performed over the IPsec SA that
               reached the lifetime.  There are
               three possible options:
               terminate-clear, terminate-hold, and
               replace.";
            reference
              "RFC 4301: Security Architecture for the Internet
                         Protocol, Section 4.5
               RFC 7296: Internet Key Exchange Protocol Version 2
                         (IKEv2), Section 2.8.";
          }
        }
        container child-sa-lifetime-hard {
          description
            "IPsec SA lifetime hard.  The action will
             be to terminate the IPsec SA.";
          uses nsfikec:lifetime;
          reference
            "RFC 7296: Internet Key Exchange Protocol Version 2
                       (IKEv2), Section 2.8.";
        }
        description
          "Specific information for IPsec SAs.
           It includes the Perfect Forward Secrecy (PFS)
           group and IPsec SAs rekey lifetimes.";
      }
      container state {
        config false;
        leaf initiator {
          type boolean;
          description
            "It is acting as an initiator for this
             connection.";
        }
        leaf initiator-ikesa-spi {
          type ike-spi;
          description
            "Initiator's IKE SA SPI.";
        }
        leaf responder-ikesa-spi {
          type ike-spi;
          description
            "Responder's IKE SA SPI.";
        }
        leaf nat-local {
          type boolean;
          description
            "True if local endpoint is behind a
             NAT.";
        }
        leaf nat-remote {
          type boolean;
          description
            "True if remote endpoint is behind
             a NAT.";
        }
        container encapsulation-type {
          uses nsfikec:encap;
          description
            "This container provides information
             about the source and destination
             ports of encapsulation that IKE is
             using and the type of encapsulation
             when NAT traversal is required.";
          reference
            "RFC 8229: TCP Encapsulation of IKE and IPsec Packets.";
        }
        leaf established {
          type uint64;
          units "seconds";
          description
            "Seconds since this IKE SA has been
             established.";
        }
        leaf current-rekey-time {
          type uint64;
          units "seconds";
          description
            "Seconds before IKE SA is rekeyed.";
        }
        leaf current-reauth-time {
          type uint64;
          units "seconds";
          description
            "Seconds before IKE SA is
             reauthenticated.";
        }
        description
          "IKE state data for a particular
           connection.";
      } /* ike-sa-state */
    } /* ike-conn-entries */
    container number-ike-sas {
      config false;
      leaf total {
        type yang:gauge64;
        description
          "Total number of active IKE SAs.";
      }
      leaf half-open {
        type yang:gauge64;
        description
          "Number of half-open active IKE SAs.";
      }
      leaf half-open-cookies {
        type yang:gauge64;
        description
          "Number of half-open active IKE SAs with
           cookie activated.";
      }
      description
        "General information about the IKE SAs.  In
         particular, it provides the current number of
         IKE SAs.";
    }
  } /* container ipsec-ike */
}

        
      
       
         The 'ietf-i2nsf-ikeless' Module
         In this section, the YANG module for the IKE-less case is described.
         
           Data Model Overview
            For this case, the definition of the SPD model has been
                        mainly extracted from the specification in Section
                          and Appendix   in  ,
                        though with some changes, namely:
           
             For simplicity, each IPsec policy (spd-entry) contains one
                            Traffic Selector, instead of a list of them. The
                            reason is that actual kernel
                            implementations only admit a single Traffic
                            Selector per IPsec policy.
             Each IPsec policy contains an identifier (reqid)
                            to relate the policy with the IPsec SA. This is
                            common in Linux-based systems.
             Each IPsec policy has only one name and not a
                            list of names.
             Combined algorithms have been removed because
                            encryption algorithms  MAY include Authenticated
                            Encryption with Associated Data (AEAD).
             Tunnel information has been extended
                            with information about DSCP mapping. 
                            The reason is that certain kernel
                            implementations accept configuration of
                            these values.
          
           The definition of the SAD model has been mainly
             extracted from the specification in
              , 
             though with some changes, namely:
           
             For simplicity, each IPsec SA
                            (sad-entry) contains one Traffic
                            Selector, instead of a list of them. The
                            reason is that actual kernel
                            implementations
                            only admit a single Traffic Selector per
                            IPsec SA.
             Each IPsec SA contains an identifier (reqid) to
                            relate the IPsec SA with the IPsec policy. The reason
                            is that real kernel implementations allow
              this value to be included.
             Each IPsec SA is also named in the same way as
                            IPsec policies.
             The model allows specifying the
                            algorithm for encryption. This can be
                            Authenticated Encryption with Associated
                            Data (AEAD) or non-AEAD. If an AEAD algorithm is
                            specified, the integrity algorithm is not
                            required. If a non-AEAD algorithm is
                            specified, the integrity algorithm is
                            required  .
             Tunnel information has been extended
                            with information about Differentiated
                            Services Code Point (DSCP) mapping. It
                            is assumed that
                            NSFs involved in this document provide
                            ECN full functionality to prevent
                            discarding of ECN congestion
                            indications  .
             The lifetime of the IPsec SAs also
                            includes idle time
                            and the number of IP packets as a threshold to trigger
                            the lifetime. The reason is that 
                            actual kernel implementations allow for setting these
                            types of lifetimes.
             Information to configure the type of  
                            encapsulation (encapsulation-type) for IPsec ESP
                            packets in UDP  
                            or TCP   has been included.
          
            The notifications model has been defined using, as
                        reference, the PF_KEYv2 specification in 
                         .
            The YANG data model for the IKE-less case is defined by the module "ietf-i2nsf-ikeless". Its structure is depicted in the following diagram, using the notation syntax for YANG tree diagrams  .
          
           
module: ietf-i2nsf-ikeless
  +--rw ipsec-ikeless
    +--rw spd
    |  +--rw spd-entry* [name]
    |     +--rw name  string
    |     +--rw direction nsfikec:ipsec-traffic-direction
    |     +--rw reqid? uint64
    |     +--rw ipsec-policy-config
    |        +--rw anti-replay-window-size?   uint32
    |        +--rw traffic-selector
    |        |  +--rw local-prefix      inet:ip-prefix
    |        |  +--rw remote-prefix     inet:ip-prefix
    |        |  +--rw inner-protocol?   ipsec-inner-protocol
    |        |  +--rw local-ports* [start end]
    |        |  |  +--rw start    inet:port-number
    |        |  |  +--rw end      inet:port-number
    |        |  +--rw remote-ports* [start end]
    |        |     +--rw start    inet:port-number
    |        |     +--rw end      inet:port-number
    |        +--rw processing-info
    |           +--rw action?         ipsec-spd-action
    |           +--rw ipsec-sa-cfg
    |             +--rw pfp-flag?              boolean
    |             +--rw ext-seq-num?           boolean
    |             +--rw seq-overflow?          boolean
    |             +--rw stateful-frag-check?   boolean
    |             +--rw mode?                  ipsec-mode
    |             +--rw protocol-parameters? ipsec-protocol-params
    |              +--rw esp-algorithms
    |              |  +--rw integrity*    intr-alg-t
    |              |  +--rw encryption* [id]
    |              |  |  +--rw id                uint16
    |              |  |  +--rw algorithm-type?   encr-alg-t
    |              |  |  +--rw key-length?       uint16
    |              |  +--rw tfc-pad?      boolean
    |              +--rw tunnel
    |                 +--rw local           inet:ip-address
    |                 +--rw remote          inet:ip-address
    |                 +--rw df-bit?         enumeration
    |                 +--rw bypass-dscp?    boolean
    |                 +--rw dscp-mapping* [id]
    |                    +--rw id            uint8
    |                    +--rw inner-dscp?   inet:dscp
    |                    +--rw outer-dscp?   inet:dscp
    +--rw sad
      +--rw sad-entry* [name]
       +--rw name               string
       +--rw reqid?             uint64
       +--rw ipsec-sa-config
       |  +--rw spi                        uint32
       |  +--rw ext-seq-num?               boolean
       |  +--rw seq-overflow?              boolean
       |  +--rw anti-replay-window-size?   uint32
       |  +--rw traffic-selector
       |  |  +--rw local-prefix      inet:ip-prefix
       |  |  +--rw remote-prefix     inet:ip-prefix
       |  |  +--rw inner-protocol?   ipsec-inner-protocol
       |  |  +--rw local-ports* [start end]
       |  |  |  +--rw start    inet:port-number
       |  |  |  +--rw end      inet:port-number
       |  |  +--rw remote-ports* [start end]
       |  |     +--rw start    inet:port-number
       |  |     +--rw end      inet:port-number
       |  +--rw protocol-parameters? nsfikec:ipsec-protocol-params
       |  +--rw mode?                      nsfikec:ipsec-mode
       |  +--rw esp-sa
       |  |  +--rw encryption
       |  |  |  +--rw encryption-algorithm?   nsfikec:encr-alg-t
       |  |  |  +--rw key?                    yang:hex-string
       |  |  |  +--rw iv?                     yang:hex-string
       |  |  +--rw integrity
       |  |     +--rw integrity-algorithm?   nsfikec:intr-alg-t
       |  |     +--rw key?                   yang:hex-string
       |  +--rw sa-lifetime-hard
       |  |  +--rw time?      uint32
       |  |  +--rw bytes?     yang:counter64
       |  |  +--rw packets?   uint32
       |  |  +--rw idle?      uint32
       |  +--rw sa-lifetime-soft
       |  |  +--rw time?      uint32
       |  |  +--rw bytes?     yang:counter64
       |  |  +--rw packets?   uint32
       |  |  +--rw idle?      uint32
       |  |  +--rw action?    nsfikec:lifetime-action
       |  +--rw tunnel
       |  |  +--rw local           inet:ip-address
       |  |  +--rw remote          inet:ip-address
       |  |  +--rw df-bit?         enumeration
       |  |  +--rw bypass-dscp?    boolean
       |  |  +--rw dscp-mapping* [id]
       |  |  |  +--rw id            uint8
       |  |  |  +--rw inner-dscp?   inet:dscp
       |  |  |  +--rw outer-dscp?   inet:dscp
       |  |  +--rw dscp-values*    inet:dscp
       |  +--rw encapsulation-type
       |     +--rw espencap?   esp-encap
       |     +--rw sport?      inet:port-number
       |     +--rw dport?      inet:port-number
       |     +--rw oaddr*      inet:ip-address
       +--ro ipsec-sa-state
          +--ro sa-lifetime-current
          |  +--ro time?      uint32
          |  +--ro bytes?     yang:counter64
          |  +--ro packets?   uint32
          |  +--ro idle?      uint32
          +--ro replay-stats
             +--ro replay-window
             |  +--ro w?   uint32
             |  +--ro t?   uint64
             |  +--ro b?   uint64
             +--ro packet-dropped?       yang:counter64
             +--ro failed?               yang:counter64
             +--ro seq-number-counter?   uint64

   notifications:
     +---n sadb-acquire {ikeless-notification}?
     |  +--ro ipsec-policy-name    string
     |  +--ro traffic-selector
     |     +--ro local-prefix      inet:ip-prefix
     |     +--ro remote-prefix     inet:ip-prefix
     |     +--ro inner-protocol?   ipsec-inner-protocol
     |     +--ro local-ports* [start end]
     |     |  +--ro start    inet:port-number
     |     |  +--ro end      inet:port-number
     |     +--ro remote-ports* [start end]
     |        +--ro start    inet:port-number
     |        +--ro end      inet:port-number
     +---n sadb-expire {ikeless-notification}?
     |  +--ro ipsec-sa-name           string
     |  +--ro soft-lifetime-expire?   boolean
     |  +--ro lifetime-current
     |     +--ro time?      uint32
     |     +--ro bytes?     yang:counter64
     |     +--ro packets?   uint32
     |     +--ro idle?      uint32
     +---n sadb-seq-overflow {ikeless-notification}?
     |  +--ro ipsec-sa-name    string
     +---n sadb-bad-spi {ikeless-notification}?
        +--ro spi    uint32

            The YANG data model consists of a unique
                    "ipsec-ikeless" container, which, in turn, is
                    composed of two additional containers: "spd" and
                    "sad". The "spd" container consists of a list of
                    entries that form the Security Policy Database.
                    Compared to the IKE case YANG data model, this
                    part specifies a few additional parameters
                    necessary due to the absence of an IKE software
                    in the NSF: traffic direction to apply the IPsec
                    policy and a "reqid" value to link an IPsec
                    policy with its associated IPsec SAs since it is
                    otherwise a little hard to find by searching. 
                    The "sad" container is a list of entries that form the Security Association Database. In general, each entry allows specifying both configuration information (SPI, Traffic Selectors, tunnel/transport mode, cryptographic algorithms and keying material, soft/hard lifetimes, etc.) as well as stating information (time to expire, replay statistics, etc.) of a concrete IPsec SA. 
          
           In addition, the module defines a set of notifications to allow 
	  the NSF to inform the I2NSF Controller about relevant events, such 
	  as IPsec SA expiration, sequence number overflow, or bad SPI in a received packet.
          
        
         
           Example Usage
           
                          shows an example
                        of an IKE-less case configuration for an NSF in
                        transport mode (host-to-host). Additionally,
                          shows examples
                        of IPsec SA expire, acquire, sequence number
                        overflow, and bad SPI notifications.
          
        
         
           YANG Module
           
                      This YANG module has normative references to
                       , 
		       ,
                       , 
                        and 
                       . 
          
           

module ietf-i2nsf-ikeless {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless";
  prefix nsfikels;

  import ietf-inet-types {
    prefix inet;
    reference
      "RFC 6991: Common YANG Data Types.";
  }
  import ietf-yang-types {
    prefix yang;
    reference
      "RFC 6991: Common YANG Data Types.";
  }
  import ietf-i2nsf-ikec {
    prefix nsfikec;
    reference
      "RFC 9061: A YANG Data Model for IPsec Flow Protection
                 Based on Software-Defined Networking (SDN).";
  }
  import ietf-netconf-acm {
    prefix nacm;
    reference
      "RFC 8341: Network Configuration Access Control
                 Model.";
  }

  organization
    "IETF I2NSF Working Group";
  contact
    "WG Web:  <https://datatracker.ietf.org/wg/i2nsf/>
     WG List: <mailto:i2nsf@ietf.org>

     Author: Rafael Marin-Lopez
              <mailto:rafa@um.es>

     Author: Gabriel Lopez-Millan
              <mailto:gabilm@um.es>

     Author: Fernando Pereniguez-Garcia
              <mailto:fernando.pereniguez@cud.upct.es>
    ";
  description
    "Data model for IKE-less case in the SDN-based IPsec flow
     protection service.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
     document are to be interpreted as described in BCP 14
     (RFC 2119) (RFC 8174) when, and only when, they appear
     in all capitals, as shown here.

     Copyright (c) 2021 IETF Trust and the persons
     identified as authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9061; see
     the RFC itself for full legal notices.";

  revision 2021-07-14 {
    description
      "Initial version.";
    reference
      "RFC 9061: A YANG Data Model for IPsec Flow Protection
                 Based on Software-Defined Networking (SDN).";
  }

  feature ikeless-notification {
    description
      "This feature indicates that the server supports
       generating notifications in the ikeless module.

       To ensure broader applicability of this module,
       the notifications are marked as a feature.
       For the implementation of the IKE-less case,
       the NSF is expected to implement this
       feature.";
  }

  container ipsec-ikeless {
    description
      "Container for configuration of the IKE-less
       case. The container contains two additional
       containers: 'spd' and 'sad'.  The first allows the
       I2NSF Controller to configure IPsec policies in
       the Security Policy Database (SPD), and the second
       allows the I2NSF Controller to configure IPsec
       Security Associations (IPsec SAs) in the Security
       Association Database (SAD).";
    reference
      "RFC 4301: Security Architecture for the Internet Protocol.";
    container spd {
      description
        "Configuration of the Security Policy Database
         (SPD).";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.2.";
      list spd-entry {
        key "name";
        ordered-by user;
        leaf name {
          type string;
          description
            "SPD-entry-unique name to identify this
             entry.";
        }
        leaf direction {
          type nsfikec:ipsec-traffic-direction;
          mandatory true;
          description
            "Inbound traffic or outbound
             traffic.  In the IKE-less case, the
             I2NSF Controller needs to
             specify the policy direction to be
             applied in the NSF.  In the IKE case,
             this direction does not need to be
             specified, since IKE
             will determine the direction that the
             IPsec policy will require.";
        }
        leaf reqid {
          type uint64;
          default "0";
          description
            "This value allows linking this
             IPsec policy with IPsec SAs with the
             same reqid.  It is only required in
             the IKE-less model since, in the IKE
             case, this link is handled internally
             by IKE.";
        }
        container ipsec-policy-config {
          description
            "This container carries the
             configuration of an IPsec policy.";
          uses nsfikec:ipsec-policy-grouping;
        }
        description
          "The SPD is represented as a list of SPD
           entries, where each SPD entry represents an
           IPsec policy.";
      } /*list spd-entry*/
    } /*container spd*/
    container sad {
      description
        "Configuration of the IPsec Security Association
         Database (SAD).";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.2.1.";
      list sad-entry {
        key "name";
        ordered-by user;
        leaf name {
          type string;
          description
            "SAD-entry-unique name to identify this
             entry.";
        }
        leaf reqid {
          type uint64;
          default "0";
          description
            "This value allows linking this
             IPsec SA with an IPsec policy with
             the same reqid.";
        }
        container ipsec-sa-config {
          description
            "This container allows configuring
             details of an IPsec SA.";
          leaf spi {
            type uint32 {
              range "0..max";
            }
            mandatory true;
            description
              "IPsec SA of Security Parameter Index (SPI).";
          }
          leaf ext-seq-num {
            type boolean;
            default "true";
            description
              "True if this IPsec SA is using extended
               sequence numbers.  If true, the 64-bit
               extended sequence number counter is used;
               if false, the normal 32-bit sequence
               number counter is used.";
          }
          leaf seq-overflow {
            type boolean;
            default "false";
            description
              "The flag indicating whether
               overflow of the sequence number
               counter should prevent transmission
               of additional packets on the IPsec
               SA (false) and, therefore, needs to
               be rekeyed or whether rollover is
               permitted (true).  If Authenticated
               Encryption with Associated Data
               (AEAD) is used (leaf
               esp-algorithms/encryption/algorithm-type),
               this flag MUST BE false. Setting this
               flag to true is strongly discouraged.";
          }
          leaf anti-replay-window-size {
            type uint32;
            default "64";
            description
              "To set the anti-replay window size.
               The default value is set to 64,
               following the recommendation in RFC 4303.";
            reference
              "RFC 4303: IP Encapsulating Security Payload (ESP),
                         Section 3.4.3.";
          }
          container traffic-selector {
            uses nsfikec:selector-grouping;
            description
              "The IPsec SA Traffic Selector.";
          }
          leaf protocol-parameters {
            type nsfikec:ipsec-protocol-params;
            default "esp";
            description
              "Security protocol of IPsec SA, only
               ESP so far.";
          }
          leaf mode {
            type nsfikec:ipsec-mode;
            default "transport";
            description
              "Tunnel or transport mode.";
          }
          container esp-sa {
            when "../protocol-parameters = 'esp'";
            description
              "In case the IPsec SA is an
               Encapsulation Security Payload
               (ESP), it is required to specify
               encryption and integrity
               algorithms and key materials.";
            container encryption {
              description
                "Configuration of encryption or
                 AEAD algorithm for IPsec
                 Encapsulation Security Payload
                 (ESP).";
              leaf encryption-algorithm {
                type nsfikec:encr-alg-t;
                default "12";
                description
                  "Configuration of ESP
                   encryption.  With AEAD
                   algorithms, the integrity-algorithm
                   leaf is not used.";
              }
              leaf key {
                nacm:default-deny-all;
                type yang:hex-string;
                description
                  "ESP encryption key value.
                   If this leaf is not defined,
                   the key is not defined
                   (e.g., encryption is NULL).
                   The key length is
                   determined by the
                   length of the key set in
                   this leaf.  By default, it is
                   128 bits.";
              }
              leaf iv {
                nacm:default-deny-all;
                type yang:hex-string;
                description
                  "ESP encryption IV value.  If
                   this leaf is not defined, the
                   IV is not defined (e.g.,
                   encryption is NULL).";
              }
            }
            container integrity {
              description
                "Configuration of integrity for
                 IPsec Encapsulation Security
                 Payload (ESP).  This container
                 allows configuration of integrity
                 algorithms when no AEAD
                 algorithms are used and
                 integrity is required.";
              leaf integrity-algorithm {
                type nsfikec:intr-alg-t;
                default "12";
                description
                  "Message Authentication Code
                   (MAC) algorithm to provide
                   integrity in ESP (default
                   AUTH_HMAC_SHA2_256_128).
                   With AEAD algorithms,
                   the integrity leaf is not
                   used.";
              }
              leaf key {
                nacm:default-deny-all;
                type yang:hex-string;
                description
                  "ESP integrity key value.
                   If this leaf is not defined,
                   the key is not defined (e.g.,
                   AEAD algorithm is chosen and
                   integrity algorithm is not
                   required).  The key length is
                   determined by the length of
                   the key configured.";
              }
            }
          } /*container esp-sa*/
          container sa-lifetime-hard {
            description
              "IPsec SA hard lifetime.  The action
               associated is terminate and hold.";
            uses nsfikec:lifetime;
          }
          container sa-lifetime-soft {
            description
              "IPsec SA soft lifetime.";
            uses nsfikec:lifetime;
            leaf action {
              type nsfikec:lifetime-action;
              description
                "Action lifetime: terminate-clear,
                 terminate-hold, or replace.";
            }
          }
          container tunnel {
            when "../mode = 'tunnel'";
            uses nsfikec:tunnel-grouping;
            leaf-list dscp-values {
              type inet:dscp;
              description
                "DSCP values allowed for ingress packets carried
                 over this IPsec SA.  If no values are specified, no
                 DSCP-specific filtering is applied.  When
                 ../bypass-dscp is false and a dscp-mapping is
                 defined, each value here would be the same as the
                 'inner' DSCP value for the DSCP mapping (list
                 dscp-mapping).";
              reference
                "RFC 4301: Security Architecture for the Internet
                           Protocol, Section 4.4.2.1.";
            }
            description
              "Endpoints of the IPsec tunnel.";
          }
          container encapsulation-type {
            uses nsfikec:encap;
            description
              "This container carries
               configuration information about
               the source and destination ports
               that will be used for ESP
               encapsulation of ESP packets and
               the type of encapsulation when NAT
               traversal is in place.";
          }
        } /*ipsec-sa-config*/
        container ipsec-sa-state {
          config false;
          description
            "Container describing IPsec SA state
             data.";
          container sa-lifetime-current {
            uses nsfikec:lifetime;
            description
              "SAD lifetime current.";
          }
          container replay-stats {
            description
              "State data about the anti-replay
               window.";
            container replay-window {
              leaf w {
                type uint32;
                description
                  "Size of the replay window.";
              }
              leaf t {
                type uint64;
                description
                  "Highest sequence number
                   authenticated so far,
                   upper bound of window.";
              }
              leaf b {
                type uint64;
                description
                  "Lower bound of window.";
              }
              description
                "This container contains three
                 parameters that define the state
                 of the replay window: window size (w),
                 highest sequence number authenticated (t),
                 and lower bound of the window (b), according
                 to Appendix A2.1 in RFC 4303 (w = t - b + 1).";
              reference
                "RFC 4303: IP Encapsulating Security Payload (ESP),
                           Appendix A.";
            }
            leaf packet-dropped {
              type yang:counter64;
              description
                "Packets dropped
                 because they are
                 replay packets.";
            }
            leaf failed {
              type yang:counter64;
              description
                "Number of packets detected out
                 of the replay window.";
            }
            leaf seq-number-counter {
              type uint64;
              description
                "A 64-bit counter when this
                 IPsec SA is using Extended
                 Sequence Number or 32-bit
                 counter when it is not.
                 Current value of sequence
                 number.";
            }
          } /* container replay-stats*/
        } /*ipsec-sa-state*/
        description
          "List of SAD entries that form the SAD.";
      } /*list sad-entry*/
    } /*container sad*/
  } /*container ipsec-ikeless*/

  /* Notifications */

  notification sadb-acquire {
    if-feature "ikeless-notification";
    description
      "The NSF detects and notifies that
       an IPsec SA is required for an
       outbound IP packet that has matched an SPD entry.
       The traffic-selector container in this
       notification contains information about
       the IP packet that triggered this
       notification.";
    leaf ipsec-policy-name {
      type string;
      mandatory true;
      description
        "It contains the SPD entry name (unique) of
         the IPsec policy that hits the IP-packet-required
         IPsec SA.  It is assumed the
         I2NSF Controller will have a copy of the
         information of this policy so it can
         extract all the information with this
         unique identifier.  The type of IPsec SA is
         defined in the policy so the security
         controller can also know the type of IPsec
         SA that MUST be generated.";
    }
    container traffic-selector {
      description
        "The IP packet that triggered the acquire
         and requires an IPsec SA.  Specifically, it
         will contain the IP source/mask and IP
         destination/mask, protocol (udp, tcp,
         etc.), and source and destination
         ports.";
      uses nsfikec:selector-grouping;
    }
  }

  notification sadb-expire {
    if-feature "ikeless-notification";
    description
      "An IPsec SA expiration (soft or hard).";
    leaf ipsec-sa-name {
      type string;
      mandatory true;
      description
        "It contains the SAD entry name (unique) of
         the IPsec SA that is about to expire.  It is assumed
         the I2NSF Controller will have a copy of the
         IPsec SA information (except the cryptographic
         material and state data) indexed by this name
         (unique identifier) so it can know all the
         information (crypto algorithms, etc.) about
         the IPsec SA that has expired in order to
         perform a rekey (soft lifetime) or delete it
         (hard lifetime) with this unique identifier.";
    }
    leaf soft-lifetime-expire {
      type boolean;
      default "true";
      description
        "If this value is true, the lifetime expired is
         soft.  If it is false, the lifetime is hard.";
    }
    container lifetime-current {
      description
        "IPsec SA current lifetime.  If
         soft-lifetime-expired is true,
         this container is set with the
         lifetime information about current
         soft lifetime.
         It can help the NSF Controller
         to know which of the (soft) lifetime
         limits raised the event: time, bytes,
         packets, or idle.";
      uses nsfikec:lifetime;
    }
  }

  notification sadb-seq-overflow {
    if-feature "ikeless-notification";
    description
      "Sequence overflow notification.";
    leaf ipsec-sa-name {
      type string;
      mandatory true;
      description
        "It contains the SAD entry name (unique) of
         the IPsec SA that is about to have a sequence
         number overflow, and rollover is not permitted.
         When the NSF issues this event before reaching
         a sequence number, overflow is implementation
         specific and out of scope of this specification.
         It is assumed the I2NSF Controller will have a
         copy of the IPsec SA information (except the
         cryptographic material and state data) indexed
         by this name (unique identifier) so it can
         know all the information (crypto algorithms,
         etc.) about the IPsec SA in
         order to perform a rekey of the IPsec SA.";
    }
  }

  notification sadb-bad-spi {
    if-feature "ikeless-notification";
    description
      "Notify when the NSF receives a packet with an
       incorrect SPI (i.e., not present in the SAD).";
    leaf spi {
      type uint32 {
        range "0..max";
      }
      mandatory true;
      description
        "SPI number contained in the erroneous IPsec
         packet.";
    }
  }
}

        
      
    
     
       IANA Considerations
       IANA has registered the following namespaces in the "ns"
                   subregistry within the "IETF XML Registry" 
                    :
       
         URI:
         urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikec
         Registrant Contact:
         The IESG.
         XML:
         N/A, the requested URI is an XML namespace.
      
       
         URI:
         urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike
         Registrant Contact:
         The IESG.
         XML:
         N/A, the requested URI is an XML namespace.
      
       
         URI:
         urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless
         Registrant Contact:
         The IESG.
         XML:
         N/A, the requested URI is an XML namespace.
      
       IANA has registered the following YANG modules in the "YANG
                    Module Names" registry  :
       
         Name:
         ietf-i2nsf-ikec
         Maintained by IANA:
         N
         Namespace:
         urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikec
         Prefix:
         nsfikec
         Reference:
         RFC 9061
      
       
         Name:
         ietf-i2nsf-ike
         Maintained by IANA:
         N
         Namespace:
         urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike
         Prefix:
         nsfike
         Reference:
         RFC 9061
      
       
         Name:
         ietf-i2nsf-ikeless
         Maintained by IANA:
         N
         Namespace:
         urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless
         Prefix:
         nsfikels
         Reference:
         RFC 9061
      
    
     
       Security Considerations
       
                    First of all, this document shares all the security
                    issues of SDN that are specified in the Security
                    Considerations sections of  
                    and  . 
       On the one hand, it is important to note that
                   there  MUST
                    exist a security association between the I2NSF
                    Controller and the NSFs to protect the critical
                    information (cryptographic keys, configuration
                    parameter, etc.) exchanged between these
                    entities. The nature of and means to create that
                    security association is out of the scope of this
                    document (i.e., it is part of device
                    provisioning or onboarding).
       On the other hand, if encryption is mandatory for all
                    traffic of an NSF, its default policy  MUST be to drop
                    (DISCARD) packets to prevent cleartext packet leaks.
                    This default policy  MUST be preconfigured in the startup 
                    configuration datastore in the NSF 
                    before the NSF contacts the
                    I2NSF Controller. Moreover, the startup configuration
                    datastore  MUST be also preconfigured with the required
                    ALLOW policies that allow the NSF to communicate with the
                    I2NSF Controller once the NSF is deployed. This
                    preconfiguration step is not carried out by the
                    I2NSF Controller but by some other entity before the
                    NSF deployment. In this manner, when the NSF
                    starts/reboots, it will always first apply the
                    configuration in the startup configuration before
                    contacting the I2NSF Controller.
       Finally, this section is divided in two
                    parts in order to analyze different security
                    considerations for both cases: NSF with IKEv2
                    (IKE case) and NSF without IKEv2 (IKE-less
                    case). In general, the
                    I2NSF Controller, as typically in the SDN
                    paradigm, is a target for different type of
                    attacks; see 
                      and 
                     . Thus, the
                    I2NSF Controller is a key entity in the
                    infrastructure and  MUST be protected accordingly. 
                    In particular, the I2NSF Controller will handle
                    cryptographic material; thus, the attacker may try to access
                    this information. The impact is different depending on the IKE
                    case or the IKE-less case.
       
         IKE Case
         In the IKE case, the I2NSF Controller sends IKEv2
                       credentials (PSK, public/private keys, certificates,
                       etc.) to the NSFs using the security association
                       between the I2NSF Controller and NSFs. The I2NSF 
                       Controller  MUST NOT store the IKEv2 credentials after 
                       distributing them. Moreover, the NSFs  MUST NOT allow 
                       the reading of these values once they have been applied 
                       by the I2NSF Controller (i.e., write-only operations). 
                       One option is to always return the same value (i.e., all
                       0s) if a read operation is carried out.
         If the attacker has access to the I2NSF Controller
                        during the period of time that key material is
                        generated, it might have access to the key material.
                        Since these values are used during NSF authentication in
                        IKEv2, it may impersonate the affected NSFs. Several
                        recommendations are important. 
         
            IKEv2 configurations  SHOULD adhere to the 
                        recommendations in  . 
            If PSK authentication is
                        used in IKEv2, the I2NSF Controller  MUST remove the
                        PSK immediately after generating and distributing it.
                       
           When public/private keys are used, the I2NSF
                        Controller  MAY generate both public key and private
                        key. In such a case, the I2NSF Controller  MUST remove
                        the associated private key immediately after
                        distributing them to the NSFs.
                        Alternatively, the NSF
                         MAY generate the private key and export only
                        the public key to the I2NSF Controller. How
                        the NSF generates these
                        cryptographic materials (public key/ private
                        keys) and
                        exports the public key is out of scope of
                        this document.
                      
           If certificates are used, the NSF  MAY generate the
                        private key and export the public key for certification
                        to the I2NSF Controller. How the NSF generates these
                        cryptographic material (public key/ private keys) and
                        exports the public key is out of scope of this
                        document.
        
      
       
         IKE-less Case
         
                        In the IKE-less case, the I2NSF Controller sends
                        the IPsec SA information to the NSF's SAD that
                        includes the private session keys required for
                        integrity and encryption. The I2NSF Controller
                         MUST NOT store the keys after 
                        distributing them. Moreover, the NSFs receiving
                        private key material  MUST NOT allow the reading of
                        these values by any other entity (including the
                        I2NSF Controller itself) once they have been
                        applied (i.e., write-only operations) into the NSFs.
                        Nevertheless, if the attacker has access to the
                        I2NSF Controller during the period of time that
                        key material is generated, it may obtain these
                        values. In other words, the attacker might be able to
                        observe the IPsec traffic and decrypt, or even
                        modify and re-encrypt, the traffic between peers.
        
         Finally, the security association between the
                    I2NSF Controller and the NSFs  MUST provide, at
                    least, the same degree of protection as the one
                    achieved by the IPsec SAs configured in the
                    NSFs. In particular, the security association
                    between the I2NSF Controller and the NSFs  MUST
                    provide forward secrecy if this property is to
                    be achieved in the IPsec SAs that the I2NSF
                    Controller configures in the NSFs. Similarly,
                    the encryption algorithms used in the security
                    association between the I2NSF Controller and the NSF
                     MUST have, at least, the same strength (minimum
                    strength of a 128-bit key) as the algorithms
                    used to establish the IPsec SAs.
        
      
       
         YANG Modules
         The YANG modules specified in this document define a
                        schema for data that is designed to be accessed via
                        network management protocols such as NETCONF 
                          or RESTCONF 
                         . The lowest NETCONF layer
                        is the secure transport layer, and the
                        mandatory-to-implement secure transport is Secure Shell
                        (SSH)  . The lowest RESTCONF
                        layer is HTTPS, and the mandatory-to-implement secure
                        transport is TLS  .
         The Network Configuration Access Control Model (NACM) 
                          provides the means to restrict
                        access for particular NETCONF or RESTCONF users to a
                        preconfigured subset of all available NETCONF or
                        RESTCONF protocol operations and content.
         There are a number of data nodes defined in these YANG
                        modules that are writable/creatable/deletable (i.e.,
                        config true, which is the default). These data nodes
                        may be considered sensitive or vulnerable in some
                        network environments. Write operations 
                        (e.g., edit-config) to these data nodes without 
                        proper protection can have a negative
                        effect on network operations. These are the subtrees and
                        data nodes and their sensitivity/vulnerability:
         
           For the IKE case (ietf-i2nsf-ike):
           
             
               /ipsec-ike:
               The entire container in this module
                            is sensitive to write operations. An attacker may
                            add/modify the credentials to be used for the
                            authentication (e.g., to impersonate an NSF), for the
                            trust root (e.g., changing the trusted CA
                            certificates), for the cryptographic algorithms
                            (allowing a downgrading attack), for the IPsec
                            policies (e.g., by allowing leaking of data traffic
                            by changing to an allow policy), and in general,
                            changing the IKE SA conditions and credentials
                            between any NSF.
            
          
            For the IKE-less case (ietf-i2nsf-ikeless):
           
             
               /ipsec-ikeless: 
               The entire container in this
                            module is sensitive to write operations. An
                            attacker may add/modify/delete any IPsec policies
                            (e.g., by allowing leaking of data traffic by
                            changing to an allow policy) in the   
                            /ipsec-ikeless/spd container,
                            add/modify/delete any IPsec SAs between 
                            two NSF by means of /ipsec-ikeless/sad container,
                            and, in general, change any IPsec SAs and IPsec
                            policies between any NSF.
            
          
        
         Some of the readable data nodes in these YANG modules may
                        be considered sensitive or vulnerable in some network
                        environments. It is thus important to control read
                        access (e.g., via get, get-config, or notification) to
                        these data nodes. These are the subtrees and data nodes
                        and their sensitivity/vulnerability:
         
            For the IKE case (ietf-i2nsf-ike):
           
             
               /ipsec-ike/pad:
               This container includes sensitive
                                information to read operations. This information
                                 MUST NOT be returned to a client. For
                                example, cryptographic material configured in
                                the NSFs (peer-authentication/pre-shared/secret and  peer-authentication/digital-signature/private-key) 
                                are already protected by the NACM
                                extension "default-deny-all" in this
                                document.
            
          
            For the IKE-less case (ietf-i2nsf-ikeless):
           
             
               /ipsec-ikeless/sad/sad-entry/ipsec-sa-config/esp-sa:
               This
                                container includes symmetric keys for the IPsec
                                SAs. For example, encryption/key contains an ESP
                                encryption key value and encryption/iv contains
                                an Initialization Vector value. Similarly,
                                integrity/key has an ESP
                                integrity key value. Those values  MUST NOT be
                                read by anyone and are protected by the NACM
                                extension "default-deny-all" in this document.
                             
            
          
        
      
    
  
   
     
     
     
       References
       
         Normative References
         
           
             Method Type
             
               IANA
            
          
        
         
           
             Protocol Numbers
             
               IANA
            
          
        
         
           
             IKEv2 Authentication Method
             
               IANA
            
          
        
         
           
             Internet Key Exchange Version 2 (IKEv2) Parameters
             
               IANA
            
          
        
         
           
             Transform Type 1 - Encryption Algorithm Transform IDs
             
               IANA
            
          
        
         
           
             Transform Type 3 - Integrity Algorithm Transform IDs
             
               IANA
            
          
        
         
           
             Transform Type 4 - Diffie-Hellman Group Transform IDs
             
               IANA
            
          
        
         
           
             Information Technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)
             
               International Telecommunication Union
            
             
          
           ITU-T Recommendation X.690
           ISO/IEC 8825-1
        
         
           
             Key words for use in RFCs to Indicate Requirement Levels
             
               
            
             
             
               In many standards track documents several words are used to signify the requirements in the specification.  These words are often capitalized. This document defines these words as they should be interpreted in IETF documents.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
            
          
           
           
           
        
         
           
             Negotiation of NAT-Traversal in the IKE
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document describes how to detect one or more network address translation devices (NATs) between IPsec hosts, and how to negotiate the use of UDP encapsulation of IPsec packets through NAT boxes in Internet Key Exchange (IKE).  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             UDP Encapsulation of IPsec ESP Packets
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This protocol specification defines methods to encapsulate and decapsulate IP Encapsulating Security Payload (ESP) packets inside UDP packets for traversing Network Address Translators.  ESP encapsulation, as defined in this document, can be used in both IPv4 and IPv6 scenarios.  Whenever negotiated, encapsulation is used with Internet Key Exchange (IKE).  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Security Architecture for the Internet Protocol
             
               
            
             
               
            
             
             
               This document describes an updated version of the "Security Architecture for IP", which is designed to provide security services for traffic at the IP layer.  This document obsoletes RFC 2401 (November 1998).  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             IP Encapsulating Security Payload (ESP)
             
               
            
             
             
               This document describes an updated version of the Encapsulating Security Payload (ESP) protocol, which is designed to provide a mix of security services in IPv4 and IPv6.  ESP is used to provide confidentiality, data origin authentication, connectionless integrity, an anti-replay service (a form of partial sequence integrity), and limited traffic flow confidentiality.  This document obsoletes RFC 2406 (November 1998).  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This memo profiles the X.509 v3 certificate and X.509 v2 certificate revocation list (CRL) for use in the Internet.  An overview of this approach and model is provided as an introduction.  The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of Internet name forms.  Standard certificate extensions are described and two Internet-specific extensions are defined.  A set of required certificate extensions is specified.  The X.509 v2 CRL format is described in detail along with standard and Internet-specific extensions.  An algorithm for X.509 certification path validation is described.  An ASN.1 module and examples are provided in the appendices.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Internet Message Format
             
               
            
             
             
               This document specifies the Internet Message Format (IMF), a syntax for text messages that are sent between computer users, within the framework of "electronic mail" messages.  This specification is a revision of Request For Comments (RFC) 2822, which itself superseded Request For Comments (RFC) 822, "Standard for the Format of ARPA Internet Text Messages", updating it to reflect current practice and incorporating incremental changes that were specified in other RFCs.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Elliptic Curve Private Key Structure
             
               
            
             
               
            
             
             
               This document specifies the syntax and semantics for conveying Elliptic Curve (EC) private key information.  The syntax and semantics defined herein are based on similar syntax and semantics defined by the Standards for Efficient Cryptography Group (SECG). This document is not an Internet Standards Track specification; it is published for informational purposes.
            
          
           
           
        
         
           
             YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)
             
               
            
             
             
               YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Network Configuration Protocol (NETCONF)
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices.  It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages.  The NETCONF protocol operations are realized as remote procedure calls (RPCs).  This document obsoletes RFC 4741.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Using the NETCONF Protocol over Secure Shell (SSH)
             
               
            
             
             
               This document describes a method for invoking and running the Network Configuration Protocol (NETCONF) within a Secure Shell (SSH) session as an SSH subsystem.  This document obsoletes RFC 4742.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document specifies a protocol useful in determining the current status of a digital certificate without requiring Certificate Revocation Lists (CRLs). Additional mechanisms addressing PKIX operational requirements are specified in separate documents.  This document obsoletes RFCs 2560 and 6277.  It also updates RFC 5912.
            
          
           
           
        
         
           
             Common YANG Data Types
             
               
            
             
             
               This document introduces a collection of common data types to be used with the YANG data modeling language.  This document obsoletes RFC 6021.
            
          
           
           
        
         
           
             Internet Key Exchange Protocol Version 2 (IKEv2)
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document describes version 2 of the Internet Key Exchange (IKE) protocol.  IKE is a component of IPsec used for performing mutual authentication and establishing and maintaining Security Associations (SAs).  This document obsoletes RFC 5996, and includes all of the errata for it.  It advances IKEv2 to be an Internet Standard.
            
          
           
           
           
        
         
           
             Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation
             
               
            
             
             
               This document describes a way to avoid IP fragmentation of large Internet Key Exchange Protocol version 2 (IKEv2) messages.  This allows IKEv2 messages to traverse network devices that do not allow IP fragments to pass through.
            
          
           
           
        
         
           
             Signature Authentication in the Internet Key Exchange Version 2 (IKEv2)
             
               
            
             
               
            
             
             
               The Internet Key Exchange Version 2 (IKEv2) protocol has limited support for the Elliptic Curve Digital Signature Algorithm (ECDSA). The current version only includes support for three Elliptic Curve groups, and there is a fixed hash algorithm tied to each group.  This document generalizes IKEv2 signature support to allow any signature method supported by PKIX and also adds signature hash algorithm negotiation.  This is a generic mechanism and is not limited to ECDSA; it can also be used with other signature algorithms.
            
          
           
           
        
         
           
             The NULL Authentication Method in the Internet Key Exchange Protocol Version 2 (IKEv2)
             
               
            
             
               
            
             
             
               This document specifies the NULL Authentication method and the ID_NULL Identification Payload ID Type for Internet Key Exchange Protocol version 2 (IKEv2).  This allows two IKE peers to establish single-side authenticated or mutual unauthenticated IKE sessions for those use cases where a peer is unwilling or unable to authenticate or identify itself.  This ensures IKEv2 can be used for Opportunistic Security (also known as Opportunistic Encryption) to defend against Pervasive Monitoring attacks without the need to sacrifice anonymity.
            
          
           
           
        
         
           
             The YANG 1.1 Data Modeling Language
             
               
            
             
             
               YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols.  This document describes the syntax and semantics of version 1.1 of the YANG language.  YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification.  There are a small number of backward incompatibilities from YANG version 1.  This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).
            
          
           
           
        
         
           
             PKCS #1: RSA Cryptography Specifications Version 2.2
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document provides recommendations for the implementation of public-key cryptography based on the RSA algorithm, covering cryptographic primitives, encryption schemes, signature schemes with appendix, and ASN.1 syntax for representing keys and for identifying the schemes.
               This document represents a republication of PKCS #1 v2.2 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series.  By publishing this RFC, change control is transferred to the IETF.
               This document also obsoletes RFC 3447.
            
          
           
           
        
         
           
             RESTCONF Protocol
             
               
            
             
               
            
             
               
            
             
             
               This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).
            
          
           
           
        
         
           
             Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words
             
               
            
             
             
               RFC 2119 specifies common key words that may be used in protocol  specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the  defined special meanings.
            
          
           
           
           
        
         
           
             Cryptographic Algorithm Implementation Requirements and Usage Guidance for Encapsulating Security Payload (ESP) and Authentication Header (AH)
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document replaces RFC 7321, "Cryptographic Algorithm Implementation         Requirements and Usage Guidance for Encapsulating Security Payload               (ESP) and Authentication Header (AH)".  The goal of this document is to enable ESP and AH to benefit from cryptography that is up to date while making IPsec interoperable.
            
          
           
           
        
         
           
             TCP Encapsulation of IKE and IPsec Packets
             
               
            
             
               
            
             
               
            
             
             
               This document describes a method to transport Internet Key Exchange Protocol (IKE) and IPsec packets over a TCP connection for traversing network middleboxes that may block IKE negotiation over UDP.  This method, referred to as "TCP encapsulation", involves sending both IKE packets for Security Association establishment and Encapsulating Security Payload (ESP) packets over a TCP connection.  This method is intended to be used as a fallback option when IKE cannot be negotiated over UDP.
            
          
           
           
        
         
           
             Algorithm Implementation Requirements and Usage Guidance for the Internet Key Exchange Protocol Version 2 (IKEv2)
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               The IPsec series of protocols makes use of various cryptographic algorithms in order to provide security services.  The Internet Key Exchange (IKE) protocol is used to negotiate the IPsec Security Association (IPsec SA) parameters, such as which algorithms should be used.  To ensure interoperability between different implementations, it is necessary to specify a set of algorithm implementation requirements and usage guidance to ensure that there is at least one algorithm that all implementations support.  This document updates RFC 7296 and obsoletes RFC 4307 in defining the current algorithm implementation requirements and usage guidance for IKEv2, and does minor cleaning up of the IKEv2 IANA registry.  This document does not update the algorithms used for packet encryption using IPsec Encapsulating Security Payload (ESP).
            
          
           
           
        
         
           
             YANG Tree Diagrams
             
               
            
             
               
            
             
             
               This document captures the current syntax used in YANG module tree diagrams.  The purpose of this document is to provide a single location for this definition.  This syntax may be updated from time to time based on the evolution of the YANG language.
            
          
           
           
           
        
         
           
             Network Configuration Access Control Model
             
               
            
             
               
            
             
             
               The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability.  There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.  This document defines such an access control model.
               This document obsoletes RFC 6536.
            
          
           
           
           
        
         
           
             Network Management Datastore Architecture (NMDA)
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model.  This document updates RFC 7950.
            
          
           
           
        
         
           
             The Transport Layer Security (TLS) Protocol Version 1.3
             
               
            
             
             
               This document specifies version 1.3 of the Transport Layer Security (TLS) protocol.  TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
               This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961.  This document also specifies new requirements for TLS 1.2 implementations.
            
          
           
           
        
      
       
         Informative References
         
           
             IPsec Key Exchange using a Controller
             
               Cisco Systems
            
             
               Independent
            
             
             
                  This document presents a key exchange method allowing devices managed
   by a controller (e.g., an SDN management station) to create private
   pair-wise IPsec SAs without IKEv2 or any other direct peer-to-peer
   session establishment messages.  The method can be used when a full
   mesh of IKEv2 sessions between IPsec devices is not appropriate.

              
            
          
           
           
           Work in Progress
        
         
           
             Y.3300: Framework of software-defined networking
             
               International Telecommunications Union
            
             
          
        
         
           
             Libreswan VPN software
             
               The Libreswan Project
            
          
        
         
           
             Tutorial: NETCONF and YANG
             
               Stefan Wallin
            
             
          
        
         
           
             OpenFlow Switch Specification
             
               Open Networking Foundation
            
             
          
           
        
         
           
             SDN architecture
             
               Open Networking Foundation
            
             
          
           
        
         
           
             PF_KEY Key Management API, Version 2
             
               
            
             
               
            
             
               
            
             
             
               A generic key management API that can be used not only for IP Security but also for other network security services is presented in this document.  This memo provides information for the Internet community. It does not specify an Internet standard of any kind.
            
          
           
           
        
         
           
             The IETF XML Registry
             
               
            
             
             
               This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.
            
          
           
           
           
        
         
           
             Tunnelling of Explicit Congestion Notification
             
               
            
             
             
               This document redefines how the explicit congestion notification (ECN) field of the IP header should be constructed on entry to and exit from any IP-in-IP tunnel.  On encapsulation, it updates RFC 3168 to bring all IP-in-IP tunnels (v4 or v6) into line with RFC 4301 IPsec ECN processing.  On decapsulation, it updates both RFC 3168 and RFC 4301 to add new behaviours for previously unused combinations of inner and outer headers.  The new rules ensure the ECN field is correctly propagated across a tunnel whether it is used to signal one or two severity levels of congestion; whereas before, only one severity level was supported.  Tunnel endpoints can be updated in any order without affecting pre-existing uses of the ECN field, thus ensuring backward compatibility.  Nonetheless, operators wanting to support two severity levels (e.g., for pre-congestion notification -- PCN) can require compliance with this new specification.  A thorough analysis of the reasoning for these changes and the implications is included.  In the unlikely event that the new rules do not meet a specific need, RFC 4774 gives guidance on designing alternate ECN semantics, and this document extends that to include tunnelling issues.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap
             
               
            
             
               
            
             
             
               Over the past few years, the number of RFCs that define and use IPsec and Internet Key Exchange (IKE) has greatly proliferated.  This is complicated by the fact that these RFCs originate from numerous IETF working groups: the original IPsec WG, its various spin-offs, and other WGs that use IPsec and/or IKE to protect their protocols' traffic.
               This document is a snapshot of IPsec- and IKE-related RFCs.  It includes a brief description of each RFC, along with background information explaining the motivation and context of IPsec's outgrowths and extensions.  It obsoletes RFC 2411, the previous  "IP Security Document Roadmap."
               The obsoleted IPsec roadmap (RFC 2411) briefly described the interrelationship of the various classes of base IPsec documents. The major focus of RFC 2411 was to specify the recommended contents of documents specifying additional encryption and authentication algorithms.  This document is not an Internet Standards Track  specification; it is published for informational purposes.
            
          
           
           
        
         
           
             IPv6 Flow Label Specification
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document specifies the IPv6 Flow Label field and the minimum requirements for IPv6 nodes labeling flows, IPv6 nodes forwarding labeled packets, and flow state establishment methods.  Even when mentioned as examples of possible uses of the flow labeling, more detailed requirements for specific use cases are out of the scope for this document.
               The usage of the Flow Label field enables efficient IPv6 flow classification based only on IPv6 main header fields in fixed positions.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Software-Defined Networking: A Perspective from within a Service Provider Environment
             
               
            
             
               
            
             
             
               Software-Defined Networking (SDN) has been one of the major buzz words of the networking industry for the past couple of years.  And yet, no clear definition of what SDN actually covers has been broadly admitted so far.  This document aims to clarify the SDN landscape by providing a perspective on requirements, issues, and other considerations about SDN, as seen from within a service provider environment.
               It is not meant to endlessly discuss what SDN truly means but rather to suggest a functional taxonomy of the techniques that can be used under an SDN umbrella and to elaborate on the various pending issues the combined activation of such techniques inevitably raises.  As such, a definition of SDN is only mentioned for the sake of clarification.
            
          
           
           
        
         
           
             Software-Defined Networking (SDN): Layers and Architecture Terminology
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               Software-Defined Networking (SDN) refers to a new approach for network programmability, that is, the capacity to initialize, control, change, and manage network behavior dynamically via open interfaces.  SDN emphasizes the role of software in running networks through the introduction of an abstraction for the data forwarding plane and, by doing so, separates it from the control plane.  This separation allows faster innovation cycles at both planes as experience has already shown.  However, there is increasing confusion as to what exactly SDN is, what the layer structure is in an SDN architecture, and how layers interface with each other.  This document, a product of the IRTF Software-Defined Networking Research Group (SDNRG), addresses these questions and provides a concise reference for the SDN research community based on relevant peer-reviewed literature, the RFC series, and relevant documents by other standards organizations.
            
          
           
           
        
         
           
             Interface to Network Security Functions (I2NSF): Problem Statement and Use Cases
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document sets out the problem statement for Interface to Network Security Functions (I2NSF) and outlines some companion use cases.
            
          
           
           
        
         
           
             Framework for Interface to Network Security Functions
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document describes the framework for Interface to Network Security Functions (I2NSF) and defines a reference model (including major functional components) for I2NSF.  Network Security Functions (NSFs) are packet-processing engines that inspect and optionally modify packets traversing networks, either directly or in the context of sessions to which the packet is associated.
            
          
           
           
        
         
           
             Sdn Security: A Survey
             
               
            
             
               
            
             
               
            
             
          
           2013 IEEE SDN for Future Networks and Services (SDN4FNS), pp. 1-7
           
        
         
           
             Towards secure and dependable software-defined networks
             
               
            
             
               
            
             
               
            
             
          
           Proceedings of the second ACM SIGCOMM workshop on Hot Topics in software defined networking, pp. 55-60
           
        
         
           
             strongSwan: the OpenSource IPsec-based VPN Solution
             
               CESNET
            
          
           
        
         
           
             Yang Data Model for Internet Protocol Security (IPsec)
             
	 
             
	 
             
	 
             
	 
             
             
                  This document defines a YANG data model that can be used to
   configure and manage Internet Protocol Security (IPsec).  The model
   covers the IPsec protocol operational state, remote procedural
   calls, and event notifications data.



              
            
          
           
           
           Work in Progress
        
      
    
     
       XML Configuration Example for IKE Case (Gateway-to-Gateway)
       This example shows an XML configuration file sent by the I2NSF Controller to establish an IPsec SA between two NSFs (see  ) in tunnel mode (gateway-to-gateway) with ESP, with authentication based on X.509 certificates (simplified for brevity with "base64encodedvalue==") and applying the IKE case.
       
         IKE Case, Tunnel Mode, X.509 Certificate Authentication
                                     
                          +------------------+ 
                          | I2NSF Controller |  
                          +------------------+               
                   I2NSF NSF-Facing |
                          Interface |
                  /-----------------+---------------\
                 /                                   \
                /                                     \ 
   +----+  +--------+                            +--------+  +----+
   | h1 |--| nsf_h1 |== IPsec_ESP_Tunnel_mode == | nsf_h2 |--| h2 |
   +----+  +--------+                            +--------+  +----+
          :1        :100                       :200       :1
          
(2001:db8:1:/64)          (2001:db8:123:/64)       (2001:db8:2:/64)

      
       
<ipsec-ike xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
  <pad>
    <pad-entry>
      <name>nsf_h1_pad</name>
      <ipv6-address>2001:db8:123::100</ipv6-address>
      <peer-authentication>
         <auth-method>digital-signature</auth-method>
         <digital-signature>
            <cert-data>base64encodedvalue==</cert-data>
            <private-key>base64encodedvalue==</private-key>
            <ca-data>base64encodedvalue==</ca-data>
         </digital-signature>
      </peer-authentication>
    </pad-entry>
    <pad-entry>
      <name>nsf_h2_pad</name>
      <ipv6-address>2001:db8:123::200</ipv6-address>
      <auth-protocol>ikev2</auth-protocol>
      <peer-authentication>
        <auth-method>digital-signature</auth-method>
        <digital-signature>
          <!-- RSA Digital Signature -->
          <ds-algorithm>1</ds-algorithm>
          <cert-data>base64encodedvalue==</cert-data>
          <ca-data>base64encodedvalue==</ca-data>
        </digital-signature>
      </peer-authentication>
    </pad-entry>
  </pad>
  <conn-entry>
     <name>nsf_h1-nsf_h2</name>
     <autostartup>start</autostartup>
     <version>ikev2</version>
     <initial-contact>false</initial-contact>
     <fragmentation><enabled>false</enabled></fragmentation>
     <ike-sa-lifetime-soft>
        <rekey-time>60</rekey-time>
        <reauth-time>120</reauth-time>
     </ike-sa-lifetime-soft>
     <ike-sa-lifetime-hard>
        <over-time>3600</over-time>
     </ike-sa-lifetime-hard>
     <!--AUTH_HMAC_SHA2_512_256-->
     <ike-sa-intr-alg>14</ike-sa-intr-alg>
     <!--ENCR_AES_CBC - 128 bits-->
     <ike-sa-encr-alg>
        <id>1</id>
     </ike-sa-encr-alg>
     <!--8192-bit MODP Group-->
     <dh-group>18</dh-group>
     <half-open-ike-sa-timer>30</half-open-ike-sa-timer>
     <half-open-ike-sa-cookie-threshold>
        15
     </half-open-ike-sa-cookie-threshold>
     <local>
         <local-pad-entry-name>nsf_h1_pad</local-pad-entry-name>
     </local>
     <remote>
         <remote-pad-entry-name>nsf_h2_pad</remote-pad-entry-name>
     </remote>
     <spd>
       <spd-entry>
          <name>nsf_h1-nsf_h2</name>
          <ipsec-policy-config>
            <anti-replay-window-size>64</anti-replay-window-size>
            <traffic-selector>
               <local-prefix>2001:db8:1::0/64</local-prefix>
               <remote-prefix>2001:db8:2::0/64</remote-prefix>
               <inner-protocol>any</inner-protocol>
            </traffic-selector>
            <processing-info>
               <action>protect</action>
               <ipsec-sa-cfg>
                  <pfp-flag>false</pfp-flag>
                  <ext-seq-num>true</ext-seq-num>
                  <seq-overflow>false</seq-overflow>
                  <stateful-frag-check>false</stateful-frag-check>
                  <mode>tunnel</mode>
                  <protocol-parameters>esp</protocol-parameters>
                  <esp-algorithms>
                     <!-- AUTH_HMAC_SHA1_96 -->
                     <integrity>2</integrity>
                      <encryption>
                          <!-- ENCR_AES_CBC -->
                          <id>1</id>
                          <algorithm-type>12</algorithm-type>
                          <key-length>128</key-length>
                      </encryption>
                      <encryption>
                          <!-- ENCR_3DES-->
                          <id>2</id>
                          <algorithm-type>3</algorithm-type>
                      </encryption>
                     <tfc-pad>false</tfc-pad>
                  </esp-algorithms>
                  <tunnel>
                     <local>2001:db8:123::100</local>
                     <remote>2001:db8:123::200</remote>
                     <df-bit>clear</df-bit>
                     <bypass-dscp>true</bypass-dscp>
                 </tunnel>
               </ipsec-sa-cfg>
            </processing-info>
          </ipsec-policy-config>
       </spd-entry>
     </spd>
     <child-sa-info>
        <!--8192-bit MODP Group -->
        <fs-groups>18</fs-groups>
        <child-sa-lifetime-soft>
           <bytes>1000000</bytes>
           <packets>1000</packets>
           <time>30</time>
           <idle>60</idle>
           <action>replace</action>
        </child-sa-lifetime-soft>
        <child-sa-lifetime-hard>
           <bytes>2000000</bytes>
           <packets>2000</packets>
           <time>60</time>
           <idle>120</idle>
        </child-sa-lifetime-hard>
     </child-sa-info>
   </conn-entry>
</ipsec-ike>

    
     
       XML Configuration Example for IKE-less Case (Host-to-Host)
       This example shows an XML configuration file sent by the I2NSF Controller to establish an IPsec SA between two NSFs (see  ) in transport mode (host-to-host) with ESP in the IKE-less case.
       
         IKE-less Case, Transport Mode
                                     
                   +------------------+ 
                   | I2NSF Controller |  
                   +------------------+               
           I2NSF NSF-Facing |
                  Interface |
       /--------------------+-------------------\
      /                                          \
     /                                            \
+--------+                                    +--------+
| nsf_h1 |===== IPsec_ESP_Transport_mode =====| nsf_h2 |
+--------+                                    +--------+
        :100        (2001:db8:123:/64)       :200

      
       
<ipsec-ikeless
  xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless"
  xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
  <spd>
    <spd-entry>
        <name>
           in/trans/2001:db8:123::200/2001:db8:123::100
        </name>
        <direction>inbound</direction>
        <reqid>1</reqid>
        <ipsec-policy-config>
           <traffic-selector>
             <local-prefix>2001:db8:123::200/128</local-prefix>
             <remote-prefix>2001:db8:123::100/128</remote-prefix>
             <inner-protocol>any</inner-protocol>
           </traffic-selector>
           <processing-info>
              <action>protect</action>
              <ipsec-sa-cfg>
                <ext-seq-num>true</ext-seq-num>
                <seq-overflow>false</seq-overflow>
                <mode>transport</mode>
                <protocol-parameters>esp</protocol-parameters>
                <esp-algorithms>
                   <!--AUTH_HMAC_SHA1_96-->
                   <integrity>2</integrity>
                   <!--ENCR_AES_CBC -->
                   <encryption>
                     <id>1</id>
                     <algorithm-type>12</algorithm-type>
                      <key-length>128</key-length>
                   </encryption>
                   <encryption>
                     <id>2</id>
                     <algorithm-type>3</algorithm-type>
                   </encryption>
                </esp-algorithms>
              </ipsec-sa-cfg>
            </processing-info>
          </ipsec-policy-config>
        </spd-entry>
        <spd-entry>
          <name>out/trans/2001:db8:123::100/2001:db8:123::200</name>
          <direction>outbound</direction>
          <reqid>1</reqid>
          <ipsec-policy-config>
            <traffic-selector>
              <local-prefix>2001:db8:123::100/128</local-prefix>
              <remote-prefix>2001:db8:123::200/128</remote-prefix>
              <inner-protocol>any</inner-protocol>
            </traffic-selector>
            <processing-info>
              <action>protect</action>
              <ipsec-sa-cfg>
                <ext-seq-num>true</ext-seq-num>
                <seq-overflow>false</seq-overflow>
                <mode>transport</mode>
                <protocol-parameters>esp</protocol-parameters>
                <esp-algorithms>
                  <!-- AUTH_HMAC_SHA1_96 -->
                  <integrity>2</integrity>
                  <!-- ENCR_AES_CBC -->
                  <encryption>
                     <id>1</id>
                     <algorithm-type>12</algorithm-type>
                     <key-length>128</key-length>
                  </encryption>
                  <encryption>
                     <id>2</id>
                     <algorithm-type>3</algorithm-type>
                  </encryption>
                </esp-algorithms>
               </ipsec-sa-cfg>
             </processing-info>
           </ipsec-policy-config>
        </spd-entry>
     </spd>
     <sad>
       <sad-entry>
         <name>out/trans/2001:db8:123::100/2001:db8:123::200</name>
         <reqid>1</reqid>
         <ipsec-sa-config>
            <spi>34501</spi>
            <ext-seq-num>true</ext-seq-num>
            <seq-overflow>false</seq-overflow>
            <anti-replay-window-size>64</anti-replay-window-size>
            <traffic-selector>
              <local-prefix>2001:db8:123::100/128</local-prefix>
              <remote-prefix>2001:db8:123::200/128</remote-prefix>
                 <inner-protocol>any</inner-protocol>
             </traffic-selector>
             <protocol-parameters>esp</protocol-parameters>
             <mode>transport</mode>
             <esp-sa>
               <encryption>
                  <!-- //ENCR_AES_CBC -->
                  <encryption-algorithm>12</encryption-algorithm>
                  <key>01:23:45:67:89:AB:CE:DF</key>
                  <iv>01:23:45:67:89:AB:CE:DF</iv>
               </encryption>
               <integrity>
                  <!-- //AUTH_HMAC_SHA1_96 -->
                  <integrity-algorithm>2</integrity-algorithm>
                  <key>01:23:45:67:89:AB:CE:DF</key>
               </integrity>
             </esp-sa>
         </ipsec-sa-config>
       </sad-entry>
       <sad-entry>
          <name>in/trans/2001:db8:123::200/2001:db8:123::100</name>
          <reqid>1</reqid>
          <ipsec-sa-config>
              <spi>34502</spi>
              <ext-seq-num>true</ext-seq-num>
              <seq-overflow>false</seq-overflow>
              <anti-replay-window-size>64</anti-replay-window-size>
              <traffic-selector>
                 <local-prefix>2001:db8:123::200/128</local-prefix>
                 <remote-prefix>2001:db8:123::100/128</remote-prefix>
                 <inner-protocol>any</inner-protocol>
              </traffic-selector>
              <protocol-parameters>esp</protocol-parameters>
              <mode>transport</mode>
              <esp-sa>
                 <encryption>
                    <!-- //ENCR_AES_CBC -->
                    <encryption-algorithm>12</encryption-algorithm>
                    <key>01:23:45:67:89:AB:CE:DF</key>
                    <iv>01:23:45:67:89:AB:CE:DF</iv>
                 </encryption>
                 <integrity>
                    <!-- //AUTH_HMAC_SHA1_96 -->
                    <integrity-algorithm>2</integrity-algorithm>
                    <key>01:23:45:67:89:AB:CE:DF</key>
                 </integrity>
               </esp-sa>
               <sa-lifetime-hard>
                  <bytes>2000000</bytes>
                  <packets>2000</packets>
                  <time>60</time>
                  <idle>120</idle>
               </sa-lifetime-hard>
               <sa-lifetime-soft>
                  <bytes>1000000</bytes>
                  <packets>1000</packets>
                  <time>30</time>
                  <idle>60</idle>
                  <action>replace</action>
               </sa-lifetime-soft>
         </ipsec-sa-config>
       </sad-entry>
    </sad>
</ipsec-ikeless>

    
     
       XML Notification Examples
       In the following, several XML files are shown to
                illustrate different types of notifications defined
                in the IKE-less YANG data model, which are sent by the
                NSF to the I2NSF Controller. The notifications
                happen in the IKE-less case.
       
         Example of the sadb-expire Notification
         
<sadb-expire xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
<ipsec-sa-name>in/trans/2001:db8:123::200/2001:db8:123::100
</ipsec-sa-name>
    <soft-lifetime-expire>true</soft-lifetime-expire>
       <lifetime-current>
          <bytes>1000000</bytes>
          <packets>1000</packets>
          <time>30</time>
          <idle>60</idle>
       </lifetime-current>
</sadb-expire>

      
       
         Example of the sadb-acquire Notification
         
<sadb-acquire xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
    <ipsec-policy-name>in/trans/2001:db8:123::200/2001:db8:123::100
    </ipsec-policy-name>
    <traffic-selector>
        <local-prefix>2001:db8:123::200/128</local-prefix>
        <remote-prefix>2001:db8:123::100/128</remote-prefix>
        <inner-protocol>any</inner-protocol>
         <local-ports>
              <start>0</start>
              <end>0</end>
         </local-ports>
         <remote-ports>
              <start>0</start>
              <end>0</end>
         </remote-ports>
    </traffic-selector>
</sadb-acquire>

      
       
         Example of the sadb-seq-overflow Notification
         
<sadb-seq-overflow
    xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
      <ipsec-sa-name>in/trans/2001:db8:123::200/2001:db8:123::100
      </ipsec-sa-name>
</sadb-seq-overflow>

      
       
         Example of the sadb-bad-spi Notification
         
<sadb-bad-spi
         xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
        <spi>666</spi>
</sadb-bad-spi>

      
    
     
       Operational Use Case Examples
       
         Example of IPsec SA Establishment
         This appendix exemplifies the applicability of the IKE case and
            IKE-less case to traditional IPsec configurations, that is,
            host-to-host and gateway-to-gateway. The following examples assume 
      the existence of two NSFs needing to establish an
            end-to-end IPsec SA to protect their communications. Both NSFs
            could be two hosts that exchange traffic (host-to-host) or gateways
            (gateway-to-gateway), for example, within an enterprise that needs
            to protect the traffic between the networks of two branch
            offices.
         Applicability of these configurations appear in current and new
            networking scenarios. 
	    For example, SD-WAN technologies are
            providing dynamic and on-demand VPN connections between branch
            offices or between branches and Software as a Service (SaaS) 
	    cloud services. Besides, 
	    Infrastructure as a Service (IaaS)
            services providing virtualization environments are deployments that
            often rely on IPsec to provide secure channels between virtual
            instances (host-to-host) and providing VPN solutions for
            virtualized networks (gateway-to-gateway).
         As can be observed in the following, the I2NSF-based
            IPsec management system (for IKE and IKE-less cases)
            exhibits various advantages:
        
          
                    It allows creating IPsec SAs among two NSFs,
                    based only on the application
                    of general flow-based protection policies at the
                    I2NSF User. Thus, administrators can
                    manage all security associations in a
                    centralized point with an abstracted view of the
                    network.
                  
           
                    Any NSF deployed in the system does not need
                    manual configuration, therefore, allowing its
                    deployment in an automated manner.
                   
        
         
           IKE Case
           
             Host-to-Host/Gateway-to-Gateway for the IKE Case
             
          +----------------------------------------+
          |  I2NSF User  (IPsec Management System) | 
          +----------------------------------------+
                    |         
           (1)    Flow-based    I2NSF Consumer-Facing 
               Protection Policy       Interface
                    |                        
          +---------|------------------------------+
          |         |                              |
          |         |   I2NSF Controller           |
          |         V                              |
          |   +--------------+ (2)+--------------+ |
          |   |Translate into|--->|   NETCONF/   | |
          |   |IPsec Policies|    |   RESTCONF   | |
          |   +--------------+    +--------------+ |
          |                          |     |       |
          |                          |     |       |
          +--------------------------|-----|-------+
                                     |     |   
         I2NSF NSF-Facing Interface  |     |
                                     | (3) |   
           |-------------------------+     +---|
           V                                   V
   +----------------------+         +----------------------+
   |       NSF A          |         |        NSF B         |
   | IKEv2/IPsec(SPD/PAD) |         | IKEv2/IPsec(SPD/PAD) |
   +----------------------+         +----------------------+

          
           
                       describes the
                     application of the IKE case when a data packet needs to be
                     protected in the path between NSF A and NSF B:
          
           
	     The I2NSF User defines a general flow-based
                          protection policy (e.g., protect data traffic between
                          NSF A and B). The I2NSF Controller looks
                          for the NSFs involved (NSF A and NSF B).
                         
             The I2NSF Controller generates IKEv2
                           credentials for them and translates the policies
                           into SPD and PAD entries.
                           
             The I2NSF Controller inserts an IKEv2
                           configuration that includes the SPD and PAD
                           entries in both NSF A and NSF B. If some of
                           operations with NSF A and NSF B fail, the
                           I2NSF Controller will stop the process and
                           perform a rollback operation by deleting any
                           IKEv2, SPD, and PAD configuration that had been
                           successfully installed in NSF A or B.
                           
          
            If the previous steps are successful, the flow is
                   protected by means of the IPsec SA established with IKEv2
                   between NSF A and NSF B.
        
         
           IKE-less Case
           
             Host-to-Host/Gateway-to-Gateway for the IKE-less Case
             
        +----------------------------------------+
        | I2NSF User  (IPsec Management System)  | 
        +----------------------------------------+
                  |         
       (1)   Flow-based       I2NSF Consumer-Facing 
          Protection Policy      Interface
                  | 
        +---------|------------------------------+
        |         |                              |
        |         |   I2NSF Controller           |
        |         V                              |
        |  +--------------+ (2) +--------------+ |
        |  |Translate into|---->|   NETCONF/   | |
        |  |IPsec Policies|     |   RESTCONF   | |
        |  +--------------+     +--------------+ |
        |                         |     |        |
        +-------------------------|-----|--------+
                                  |     |
       I2NSF NSF-Facing Interface |     |
                                  | (3) |
           |----------------------+     +--|
           V                               V
  +----------------+             +----------------+
  |     NSF A      |             |     NSF B      |
  | IPsec(SPD/SAD) |             | IPsec(SPD/SAD) |
  +----------------+             +----------------+

          
           
                 describes the
               application of the IKE-less case when a data packet needs to be
               protected in the path between NSF A and NSF B:
          
           
	     The I2NSF User establishes a general flow-based
                  protection policy, and the I2NSF Controller
                  looks for the involved NSFs.
              The I2NSF Controller translates the flow-based security
                  policies into IPsec SPD and SAD entries.
             
               The I2NSF Controller inserts these entries
                  in both NSF A and NSF B IPsec databases (i.e., SPD and
                  SAD). The following text describes how this
                  would happen:
               
                 The I2NSF Controller chooses two random
                       values as SPIs, for example, SPIa1 for the
                       inbound IPsec SA in NSF A and SPIb1 for
                       the inbound IPsec SA in NSF B. The value of
                       the SPIa1  MUST NOT be the same as any inbound
                       SPI in A. In the same way, the value of the
                       SPIb1  MUST NOT be the same as any inbound SPI
                       in B. Moreover, the SPIa1  MUST be used in B
                       for the outbound IPsec SA to A, while SPIb1
                        MUST be used in A for the outbound IPsec SA
                       to B.
                       It also generates fresh cryptographic
                       material for the new inbound/outbound IPsec
                       SAs and their parameters.
                  After that, the I2NSF Controller simultaneously sends
                       the new inbound IPsec SA with SPIa1 and
                       new outbound IPsec SA with SPIb1 to NSF A and the new
                       inbound IPsec SA with SPIb1 and new outbound
                       IPsec SA with SPIa1 to B, together with the
                       corresponding IPsec policies.  
                 Once the I2NSF Controller receives confirmation from
                       NSF A and NSF B, it knows that the IPsec SAs are
                       correctly installed and ready.
              
                Another alternative to this operation is
                     the I2NSF Controller first sends the IPsec
                     policies and new inbound IPsec SAs to A and B.
                     Once it obtains a successful confirmation of
                     these operations from NSF A and NSF B, it
                     proceeds with installing the new outbound
                     IPsec SAs. Even though this procedure may increase the
                     latency to complete the process, no traffic is sent
                     over the network until the IPsec SAs are
                     completely operative. In any case, other
                     alternatives  MAY be possible to implement step 3.
            
             If some of the operations described above fail
               (e.g., NSF A reports an error when the
               I2NSF Controller is trying to install the SPD
               entry, the new inbound or outbound IPsec SAs),
               the I2NSF Controller  MUST perform rollback
               operations by deleting any new inbound or
               outbound IPsec SA and SPD entry that had been
               successfully installed in any of the NSFs 
               (e.g., NSF B) and stop the process. Note that the 
               I2NSF Controller  MAY retry several
               times before giving up.
              Otherwise, if the steps 1 to 3 are successful, the flow
                between NSF A and NSF B is protected by means of the IPsec SAs 
                established by the I2NSF Controller. It is worth mentioning that
                the I2NSF Controller associates a lifetime to the new IPsec SAs.
                When this lifetime expires, the NSF will send a sadb-expire
                notification to the I2NSF Controller in order to start the
                rekeying process.
          
           Instead of installing IPsec policies (in the SPD) and IPsec
      SAs (in the SAD) in step 3 (proactive mode), it is also
      possible that the I2NSF Controller only installs the SPD
      entries in step 3 (reactive mode). In such a case, when a
      data packet requires to be protected with IPsec, the NSF
      that first saw the data packet will send a sadb-acquire
      notification that informs the I2NSF Controller that needs
      SAD entries with the IPsec SAs to process the data
      packet. Again, if some of the operations installing 
      the new inbound/outbound IPsec SAs fail, the I2NSF Controller stops the
      process and performs a rollback operation by deleting any new
      inbound/outbound SAs that had been successfully installed.
        
      
       
         Example of the Rekeying Process in IKE-less Case
         To explain an example of the rekeying process between two
        IPsec NSFs, A and B, assume that SPIa1
        identifies the inbound IPsec SA in A and SPIb1 identifies
        the inbound IPsec SA in B. The rekeying process
         will take the following steps:
         
	   The I2NSF Controller chooses two
                            random values as SPI for the new inbound
                            IPsec SAs, for example, SPIa2 for the
                            inbound IPsec SA in A and SPIb2 for the
                            inbound IPsec SA in B. The value of the
                            SPIa1  MUST NOT be the same as any
                            inbound SPI in A. In the same way, the
                            value of the SPIb1  MUST NOT be the same
                            as any inbound SPI in B. Then,
                            the I2NSF Controller creates an inbound IPsec SA
                            with SPIa2 in A and another inbound IPsec SA in B
                            with SPIb2. It can send this information
                            simultaneously to A and B.
            Once the I2NSF Controller receives
                            confirmation from A and B, the controller knows that
                            the inbound IPsec SAs are correctly installed. Then,
                            it proceeds to send, in parallel to A and B, the
                            outbound IPsec SAs: the outbound IPsec SA
                            to A with SPIb2 and the outbound IPsec SA to B with
                            SPIa2. At this point, the new IPsec SAs are
                            ready.
            Once the I2NSF Controller receives
                            confirmation from A and B that the outbound IPsec
                            SAs have been installed, the I2NSF Controller, in
                            parallel, deletes the old IPsec SAs from A (inbound
                            SPIa1 and outbound SPIb1) and B (outbound SPIa1 and
                            inbound SPIb1).
        
         If some of the operations in step 1 fail (e.g.,
                    NSF A reports an error when the I2NSF Controller is
                    trying to install a new inbound IPsec SA), the
                    I2NSF Controller  MUST perform rollback operations by
                    removing any new inbound SA that had been successfully
                    installed during step 1. 
        
         If step 1 is successful but some of the operations in
                    step 2 fail (e.g., NSF A reports an error when the
                    I2NSF Controller is trying to install the new
                    outbound IPsec SA), the I2NSF Controller  MUST perform
                    a rollback operation by deleting any new outbound SA
                    that had been successfully installed during step 2 and
                    by deleting the inbound SAs created in step 1,
                    in that order.
        
         If the steps 1 and 2 are successful but the step 3
                    fails, the I2NSF Controller will avoid any rollback of
                    the operations carried out in steps 1 and 2, since
                    new and valid IPsec SAs were created and are functional.
                    The I2NSF Controller  MAY reattempt to remove the old
                    inbound and outbound IPsec SAs in NSF A and NSF B several times
                    until it receives a success or it gives up. In the last
                    case, the old IPsec SAs will be removed when their
                    corresponding hard lifetime is reached.
        
      
       
         Example of Managing NSF State Loss in the IKE-less Case
          In the IKE-less case, if the I2NSF Controller detects
                    that an NSF has lost the IPsec state, it could follow the
                    next steps:
        
         
	    The I2NSF Controller  SHOULD delete the old
                            IPsec SAs on the non-failed nodes, established with
                            the failed node. This prevents the non-failed nodes
                            from leaking plaintext.
           If the affected node restarts, the I2NSF
                            Controller configures the new inbound IPsec SAs
                            between the affected node and all the nodes it was
                            talking to. 
            After these inbound IPsec SAs have been
                            established, the I2NSF Controller configures the
                            outbound IPsec SAs in parallel. 
        
         Steps 2 and 3 can be performed at the same time at
                     the cost of a potential packet loss. If this is not
                     critical, then it is an optimization since the number of
                     exchanges between the I2NSF Controller and NSFs is lower.
      
    
     
       Acknowledgements
       
         Authors want to thank  ,  ,  ,  ,
	  ,  ,
          ,  , 
	  ,  ,  ,  ,
	  ,  ,  ,  ,
	  ,  ,  ,  , and all IESG members
         that have reviewed this document for their
         valuable comments.
      
    
     
       Authors' Addresses
       
         University of Murcia
         
           
             Faculty of Computer Science
             Campus de Espinardo S/N
             Murcia
             30100
             Spain
          
           +34 868 88 85 01
           rafa@um.es
        
      
       
         University of Murcia
         
           
             Faculty of Computer Science
             Campus de Espinardo S/N
             Murcia
             30100
             Spain
          
           +34 868 88 85 04
           gabilm@um.es
        
      
       
         University Defense Center
         
           
             Spanish Air Force Academy
             MDE-UPCT
             San Javier
             Murcia
             30720
             Spain
          
           +34 968 18 99 46
           fernando.pereniguez@cud.upct.es
        
      
    
  


