Build Dirichlet Process Objects for Bayesian Modelling


[Up] [Top]

Documentation for package ‘dirichletprocess’ version 0.2.2

Help Pages

dirichletprocess-package A flexible package for fitting Bayesian non-parametric models.
BetaMixtureCreate Create a Beta mixing distribution.
ChangeObservations Change the observations of fitted Dirichlet Process.
ClusterComponentUpdate Update the component of the Dirichlet process
ClusterLabelPredict Predict the cluster labels of some new data.
ClusterParameterUpdate Update the cluster parameters of the Dirichlet process.
dirichletprocess A flexible package for fitting Bayesian non-parametric models.
DirichletProcessBeta Dirichlet process mixture of the Beta distribution.
DirichletProcessCreate Create a Dirichlet Process object
DirichletProcessExponential Create a Dirichlet Mixture of Exponentials
DirichletProcessGaussian Create a Dirichlet Mixture of Gaussians
DirichletProcessHierarchicalBeta Create a Hierarchical Dirichlet Mixture of Beta Distributions
DirichletProcessMvnormal Create a Dirichlet mixture of multivariate normal distributions.
DirichletProcessMvnormal2 Create a Dirichlet mixture of multivariate normal distributions with semi-conjugate prior.
DirichletProcessWeibull Create a Dirichlet Mixture of the Weibull distribution
ExponentialMixtureCreate Create a Exponential mixing distribution
Fit Fit the Dirichlet process object
GaussianMixtureCreate Create a Normal mixing distribution
GlobalParameterUpdate Update the parameters of the hierarchical Dirichlet process object.
HierarchicalBetaCreate Create a Mixing Object for a hierarchical Beta Dirichlet process object.
Initialise Initialise a Dirichlet process object
Likelihood Mixing Distribution Likelihood
LikelihoodDP The likelihood of the Dirichlet process object
LikelihoodFunction The Likelihood function of a Dirichlet process object.
MixingDistribution Create a mixing distribution object
Mvnormal2Create Create a multivariate normal mixing distribution with semi conjugate prior
MvnormalCreate Create a multivariate normal mixing distribution
piDirichlet The Stick Breaking representation of the Dirichlet process.
plot.dirichletprocess Plot the Dirichlet process object
plot_dirichletprocess_multivariate Plot the Dirichlet process object
plot_dirichletprocess_univariate Plot the Dirichlet process object
PosteriorClusters Generate the posterior clusters of a Dirichlet Process
PosteriorDraw Draw from the posterior distribution
PosteriorFrame Calculate the posterior mean and quantiles from a Dirichlet process object.
PosteriorFunction Generate the posterior function of the Dirichlet function
PosteriorParameters Calculate the posterior parameters for a conjugate prior.
Predictive Calculate how well the prior predicts the data.
PriorDensity Calculate the prior density of a mixing distribution
PriorDraw Draw from the prior distribution
PriorParametersUpdate Update the prior parameters of a mixing distribution
rats Tumour incidences in rats
StickBreaking The Stick Breaking representation of the Dirichlet process.
UpdateAlpha Update the Dirichlet process concentration parameter.
WeibullMixtureCreate Create a Weibull mixing distribution.
weighted_function_generator Generate a weighted function.