A Toolbox for the Analysis of Categorical Data in Social Sciences, and Especially Geometric Data Analysis


[Up] [Top]

Documentation for package ‘GDAtools’ version 1.4

Help Pages

burt Computes a Burt table
conc.ellipse Adds concentration ellipses to a correspondence analysis graph.
contrib Computes contributions for a correspondence analysis
csMCA Performs a 'class specific' MCA
dichotom Dichotomizes the variables in a data frame
dimcontrib Describes the contributions to axes for MCA and variants of MCA
dimdesc.MCA Describes the dimensions of MCA and variants of MCA
dimeta2 Describes the eta2 of a list of supplementary variables for the axes of MCA and variants of MCA
dimvtest Describes the test-values of a list of supplementary variables for the axes of MCA and variants of MCA
getindexcat Returns the names of the categories in a data frame
homog.test Computes a homogeneity test for a categorical supplementary variable
indsup Computes statistics for supplementary individuals
medoids Computes the medoids of clusters
modif.rate Computes the modified rates of variance of a correspondence analysis
multiMCA Performs Multiple Factor Analysis
Music Music (data)
pem Computes the local and global Percentages of Maximum Deviation from Independance (PEM)
plot.csMCA Plots 'class specific' MCA results
plot.multiMCA Plots Multiple Factor Analysis
plot.speMCA Plots 'specific' MCA results
plot.stMCA Plots 'standardized' MCA results
prop.wtable Transforms a (possibly weighted) contingency table into percentages
speMCA Performs a 'specific' MCA
stMCA Performs a 'standardized' MCA
tabcontrib Displays the categories contributing most to axes for MCA and variants of MCA
Taste Taste (data)
textindsup Adds supplementary individuals to a MCA graph
textvarsup Adds a categorical supplementary variable to a MCA graph
translate.logit Translate logit regression coefficients into percentages
varsup Computes statistics for a categorical supplementary variable
wtable Computes a (possibly weighted) contingency table