Integration of Text Mining and Topic Modeling Packages


[Up] [Top]

Documentation for package ‘textmining’ version 0.0.1

Help Pages

as.tmCorpus Create textmining Corpus
filter_documents Function to filter tagged text
getDoc Function to access documents for textmining objects
getMeta Function to access meta data for textmining objects
make_tabled Function to create tmWordCountsTable object from tmParsed
mallet_prepare Helper function to use mallet topic modelling with tmCorpus
ngram Function to create ngram docs
parse Function to parse tmCorpus. As an outpus we have tmParsed object.
predict predict for 'tmTopicModel' object
predict.jobjRef predict for 'tmTopicModel' object
predict.LDA predict for 'tmTopicModel' object
predict.tmTopicModel predict for 'tmTopicModel' object
setDoc Function to change documents for textmining objects
setMeta Function to access meta data for textmining objects
tabler Helper function for tabelarising documents
terms Function to return the most frequent terms of tmTopicModels
terms.jobjRef Function to return the most frequent terms of tmTopicModels
terms.tmTopicModel Function to return the most frequent terms of tmTopicModels
tmCorpus Function to create tmCorpus
tmMetaData Function to create tmMetaData
tmParsed Function to create tmParsed
tmTaggedCorpus Function to create tmTaggedCorpus
tmTextDocument Function to create single tmTextDocument with meta data. The object can store any from of documents: raw (string), parsed or table of words counts.
tmWordCountsTable Function to create tmWordCountsTable
topic_network Function to plot topic network
topic_table Function to calculate topics and words arrays from the mallet model.
topic_wordcloud Simple wordcloud visualization of the topics.
train train for 'tmCorpus' object
train.DocumentTermMatrix train for 'tmCorpus' object
train.tmCorpus train for 'tmCorpus' object