Abstract
Resource planning for hospitals under special consideration of the COVID-19 pandemic.
babsim.hospital implements a discrete-event simulation, which uses the simmer package.The simulator requires two types of data:
Included in the package are tools to generate synthetic data, e.g., you can generate simulation and field data to run the simulations. This procedure is described in the paper “Optimization of High-dimensional Simulation Models Using Synthetic Data”.
To demonstrate the usage of real-world data, we have included sample datasets from Germany.
We have included a data sample from the German Robert Koch-Institute (RKI). Please take the following copyright notice under advisement, if you plan to use the RKI data included in the package:
Die Daten sind die „Fallzahlen in Deutschland“ des Robert Koch-Institut (RKI) und stehen unter der Open Data Datenlizenz Deutschland Version 2.0 zur Verfügung. Quellenvermerk: Robert Koch-Institut (RKI), dl-de/by-2-0
Haftungsausschluss: „Die Inhalte, die über die Internetseiten des Robert Koch-Instituts zur Verfügung gestellt werden, dienen ausschließlich der allgemeinen Information der Öffentlichkeit, vorrangig der Fachöffentlichkeit“.
Taken from here.
We have included a data sample from the German DIVI Register. Please take the following copyright notice under advisement. The DIVI data are not open data. The following statement can be found on the DIVI web page: > Eine weitere wissenschaftliche Nutzung der Daten ist nur mit Zustimmung der DIVI gestattet. Therefore, only an example data set, that reflects the structure of the original data from the DIVI register, is included in the babsim.hospital package as icudata.
suppressPackageStartupMessages({
library("SPOT")
library("babsim.hospital")
library("simmer")
library("simmer.plot")
})We need at least version 2.1.8 of SPOT.
packageVersion("SPOT")
%> [1] '2.3.0'babsim.hospitalWe combine data from two different sources:
simData: simulation data, i.e., input data for the simulation. Here, we will use data from the Robert Koch-Institute in Germany.fieldData: real data, i.e., data from the DIVI-Intensivregister. The field data is used to validate the output of the simulation.The babsim.hospital simulator models resources usage in hospitals, e.g., number of ICU beds (\(y\)), as a function of the number of infected individuals (\(x\)). In addition to the number of infections, information about age and gender will be used as simulation input.
We will take a closer look at the required input data in the following sections.
babsim.hospital provides a function to update the (daily) RKI data.
updateRkidataFile("https://www.arcgis.com/sharing/rest/content/items/f10774f1c63e40168479a1feb6c7ca74/data")Users are expected to adapt this function to their local situation.
The downloaded data will be available as rkidata.
Due to data size limits on CRAN, the full dataset is not included in the babsim.hospitalpackage. Instead, we provide a subset of the Robert Koch-Institut dataset with 10,000 observations in the package.
str(babsim.hospital::rkidata)
%> 'data.frame': 45270 obs. of 18 variables:
%> $ FID : int 1 29 50 51 52 91 92 103 144 145 ...
%> $ IdBundesland : int 1 1 1 1 1 1 1 1 1 1 ...
%> $ Bundesland : chr "Schleswig-Holstein" "Schleswig-Holstein" "Schleswig-Holstein" "Schleswig-Holstein" ...
%> $ Landkreis : chr "SK Flensburg" "SK Flensburg" "SK Flensburg" "SK Flensburg" ...
%> $ Altersgruppe : chr "A00-A04" "A00-A04" "A05-A14" "A05-A14" ...
%> $ Geschlecht : chr "M" "W" "M" "M" ...
%> $ AnzahlFall : int 1 1 1 1 1 1 1 1 1 1 ...
%> $ AnzahlTodesfall : int 0 0 0 0 0 0 0 0 0 0 ...
%> $ Refdatum : chr "2020/09/30 00:00:00" "2020/09/26 00:00:00" "2020/09/25 00:00:00" "2020/09/26 00:00:00" ...
%> $ IdLandkreis : int 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 ...
%> $ Datenstand : chr "13.03.2021, 00:00 Uhr" "13.03.2021, 00:00 Uhr" "13.03.2021, 00:00 Uhr" "13.03.2021, 00:00 Uhr" ...
%> $ NeuerFall : int 0 0 0 0 0 0 0 0 0 0 ...
%> $ NeuerTodesfall : int -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 ...
%> $ Meldedatum : chr "2020/09/30 00:00:00" "2020/09/26 00:00:00" "2020/09/21 00:00:00" "2020/09/21 00:00:00" ...
%> $ NeuGenesen : int 0 0 0 0 0 0 0 0 0 0 ...
%> $ AnzahlGenesen : int 1 1 1 1 1 1 1 1 1 1 ...
%> $ IstErkrankungsbeginn: int 0 0 1 1 0 1 0 1 1 0 ...
%> $ Altersgruppe2 : chr "Nicht übermittelt" "Nicht übermittelt" "Nicht übermittelt" "Nicht übermittelt" ...Copyright notice for the data:
Die Daten sind die „Fallzahlen in Deutschland“ des Robert Koch-Institut (RKI) und stehen unter der Open Data Datenlizenz Deutschland Version 2.0 zur Verfügung. Quellenvermerk: Robert Koch-Institut (RKI), dl-de/by-2-0
Haftungsausschluss: „Die Inhalte, die über die Internetseiten des Robert Koch-Instituts zur Verfügung gestellt werden, dienen ausschließlich der allgemeinen Information der Öffentlichkeit, vorrangig der Fachöffentlichkeit“.
The rkidata can be visualized as follows (here region = 0 is Germany, region = 5 is North Rhine-Westphalia, region = 5374 Oberbergischer Kreis, etc.):
p <- ggVisualizeRki(data=babsim.hospital::rkidata, region = 5374)
print(p)Not all the information from the original rkidata data set is required by the babsim.hospital simulator. The function getRkiData() extracts the subset of the raw rkidata required by our simulation, optimization, and analysis:
rki <- getRkiData(rki = rkidata)
str(rki)
%> 'data.frame': 56494 obs. of 7 variables:
%> $ Altersgruppe: chr "A15-A34" "A35-A59" "A15-A34" "A35-A59" ...
%> $ Geschlecht : chr "M" "W" "M" "W" ...
%> $ Day : Date, format: "2020-09-01" "2020-09-01" ...
%> $ IdBundesland: int 1 1 1 1 1 1 1 1 1 1 ...
%> $ IdLandkreis : int 1002 1002 1004 1004 1053 1053 1053 1053 1054 1056 ...
%> $ time : num 0 0 0 0 0 0 0 0 0 0 ...
%> $ Age : num 25 47 25 47 2 25 25 70 25 10 ...As illustrated by the output from above, we use the following data: 1. Altersgruppe: age group (intervals, categories), represented as character string 1. Geschlecht: gender 1. Day: day of the infection 1. IdBundesland: federal state 1. IdLandkreis: county 1. time: number of days (0 = start data). It will be used as arrivalTimes for the simmer simulations. 1. Age: integer representation of Altersgruppe
Similar to the rkidata, which is available online and can be downloaded from the RKI Server, the field data is also available online. It can be downloaded from the DIVI Server as follows, where YYYY-MM-DD should be replaced by the current date, e.g, 2020-10-26.
updateIcudataFile("https://www.divi.de/joomlatools-files/docman-files/divi-intensivregister-tagesreports-csv/DIVI-Intensivregister_YYYY-MM-DD_12-15.csv") Note: The data structures on the DIVI server may change, so it might be necessary to modify the following procedure. Please check the hints on the DIVI web page. Contrary to the updateRkidataFile() function, which downloads the complete historical dataset, the updateIcudataFile() function only downloads data for a single date.
The downloaded data will be available in babsim.hospital as icudata.
Important: The DIVI dataset is not open data. The following statement can be found on the DIVI web page:
Eine weitere wissenschaftliche Nutzung der Daten ist nur mit Zustimmung der DIVI gestattet.
Therefore, only an example data set, that reflects the structure of the original data from the DIVI register, is included in the babsim.hospital package as icudata:
str(babsim.hospital::icudata)
%> 'data.frame': 11886 obs. of 11 variables:
%> $ bundesland : int 1 1 1 1 1 1 1 1 1 1 ...
%> $ gemeindeschluessel : int 1001 1002 1003 1004 1051 1053 1054 1055 1056 1057 ...
%> $ anzahl_meldebereiche : int 3 5 2 1 1 2 3 3 2 1 ...
%> $ faelle_covid_aktuell : int 0 1 0 0 0 0 0 0 1 0 ...
%> $ faelle_covid_aktuell_beatmet: int 0 0 0 0 0 0 0 0 0 0 ...
%> $ anzahl_standorte : int 2 3 2 1 1 2 3 3 2 1 ...
%> $ betten_frei : int 24 116 103 9 13 11 15 17 9 7 ...
%> $ betten_belegt : int 31 113 114 16 41 13 24 35 28 5 ...
%> $ daten_stand : Date, format: "2020-09-01" "2020-09-01" ...
%> $ betten_belegt_nur_erwachsen : int NA NA NA NA NA NA NA NA NA NA ...
%> $ betten_frei_nur_erwachsen : int NA NA NA NA NA NA NA NA NA NA ...The ìcudata can be visualized as follows (region = 0 is Germany, region = 5 is North Rhine-Westphalia, region = 5374 is the Oberbergischer Kreis, etc.)
p <- ggVisualizeIcu(region = 5374)print(p[[1]])print(p[[2]])Note: ICU beds without ventilation can be calculated as faelle_covid_aktuell - faelle_covid_aktuell_beatmet.
The function getIcuBeds() converts the 9 dimensional DIVI ICU dataset icudata (bundesland,gemeindeschluessel,…, daten_stand) into a data.frame with three columns:
bedintensiveBedVentilationDayfieldData <- getIcuBeds(babsim.hospital::icudata)
str(fieldData)
%> 'data.frame': 30 obs. of 3 variables:
%> $ intensiveBed : int 103 103 96 97 97 92 94 100 94 104 ...
%> $ intensiveBedVentilation: int 132 125 127 128 126 126 134 130 133 129 ...
%> $ Day : Date, format: "2020-09-01" "2020-09-02" ...The field data based on icudata uses two bed categories: 1. intensiveBed: ICU bed without ventilation 2. intensiveBedVentilation: ICU bed with ventilation
To run a simulation, the setting must be configured (seed, number of repeats, sequential or parallel evaluation, variable names, dates, etc.)
region = 5374 # Germany, 5315 is Cologne, 5 is NRW
seed = 123
simrepeats = 2
parallel = FALSE
percCores = 0.8
resourceNames = c("intensiveBed", "intensiveBedVentilation")
resourceEval = c("intensiveBed", "intensiveBedVentilation")We can specify the field data based on icudata (DIVI) for the simulation as follows:
FieldStartDate = "2020-09-01"
# Felddaten (Realdaten, ICU):
icudata <- getRegionIcu(data = icudata, region = region)
fieldData <- getIcuBeds(icudata)
fieldData <- fieldData[which(fieldData$Day >= as.Date(FieldStartDate)), ]
rownames(fieldData) <- NULL
icu = TRUE
icuWeights = c(1,1)Next, simulation data (RKI data) can be selected. The simulation data in our example, depend on the field data:
SimStartDate = "2020-08-01"
rkidata <- getRegionRki(data = rkidata, region = region)
simData <- getRkiData(rkidata)
simData <- simData[which(simData$Day >= as.Date(SimStartDate)), ]
## Auch mit fieldData cutten damit es immer das gleiche Datum ist
simData <- simData[as.Date(simData$Day) <= max(as.Date(fieldData$Day)),]
## time must start at 1
simData$time <- simData$time - min(simData$time)
rownames(simData) <- NULLFinally, we combine all field and simulation data into a single list() called data:
data <- list(simData = simData, fieldData = fieldData)Configuration information is stored in the conf list, i.e., conf refers to the simulation configuration, e.g., sequential or parallel evaluation, number of cores, resource names, log level, etc.
conf <- babsimToolsConf()
conf <- getConfFromData(conf = conf,
simData = data$simData,
fieldData = data$fieldData)
conf$parallel = parallel
conf$simRepeats = simrepeats
conf$ICU = icu
conf$ResourceNames = resourceNames
conf$ResourceEval = resourceEval
conf$percCores = percCores
conf$logLevel = 0
conf$w2 = icuWeights
set.seed(conf$seed)The core of the babsim.hospital simulations is based on the simmer package.
It uses simulation parameters, e.g., arrival times, durations, and transition probabilities. There are currently 29 parameters (shown below) that are stored in the list para.
para <- babsimHospitalPara()
str(para)
%> List of 29
%> $ AmntDaysInfectedToHospital : num 9.5
%> $ AmntDaysNormalToHealthy : num 10
%> $ AmntDaysNormalToIntensive : num 5
%> $ AmntDaysNormalToVentilation : num 3.63
%> $ AmntDaysNormalToDeath : num 5
%> $ AmntDaysIntensiveToAftercare : num 7
%> $ AmntDaysIntensiveToVentilation : num 4
%> $ AmntDaysIntensiveToDeath : num 5
%> $ AmntDaysVentilationToIntensiveAfter : num 30
%> $ AmntDaysVentilationToDeath : num 20
%> $ AmntDaysIntensiveAfterToAftercare : num 3
%> $ AmntDaysIntensiveAfterToDeath : num 4
%> $ GammaShapeParameter : num 1
%> $ FactorPatientsInfectedToHospital : num 0.1
%> $ FactorPatientsHospitalToIntensive : num 0.09
%> $ FactorPatientsHospitalToVentilation : num 0.01
%> $ FactorPatientsNormalToIntensive : num 0.1
%> $ FactorPatientsNormalToVentilation : num 0.001
%> $ FactorPatientsNormalToDeath : num 0.1
%> $ FactorPatientsIntensiveToVentilation : num 0.3
%> $ FactorPatientsIntensiveToDeath : num 0.1
%> $ FactorPatientsVentilationToIntensiveAfter: num 0.7
%> $ FactorPatientsIntensiveAfterToDeath : num 1e-05
%> $ AmntDaysAftercareToHealthy : num 3
%> $ RiskFactorA : num 0.0205
%> $ RiskFactorB : num 0.01
%> $ RiskMale : num 1.5
%> $ AmntDaysIntensiveAfterToHealthy : num 3
%> $ FactorPatientsIntensiveAfterToHealthy : num 0.67babsim.hospital simulator requires the specification of
arrivalTimesconfpara for the simulation.babsim.hospital provides the function getRkiRisk() that generates arrivals with associated risks.Risk is based on age (Altersgruppe) and gender (Geschlect):rkiWithRisk <- getRkiRisk(data$simData, para)
head(rkiWithRisk)
%> Altersgruppe Geschlecht Day IdBundesland IdLandkreis time Age
%> 1 A15-A34 M 2020-09-01 5 5374 0 25
%> 2 A15-A34 M 2020-09-01 5 5374 0 25
%> 3 A15-A34 M 2020-09-01 5 5374 0 25
%> 4 A35-A59 M 2020-09-01 5 5374 0 47
%> 5 A35-A59 W 2020-09-01 5 5374 0 47
%> 6 A35-A59 W 2020-09-01 5 5374 0 47
%> Risk
%> 1 0.03946352
%> 2 0.03946352
%> 3 0.03946352
%> 4 0.04917457
%> 5 0.03278305
%> 6 0.03278305time: arrival timeRisk: risk (based on age and gender)babsimHospital.envs.First, we illustrate how to generate plots using the simmer.plot package.
In the following graph, the individual lines are all separate replications. The smoothing performed is a cumulative average.
Besides intensiveBed and intensiveBedVentilation, babsim.hospital also provides information about the number of non-ICU beds. The non-ICU beds are labeled as bed.
Summarizing, babsim.hospital generates output for three bed categories:
bedintensiveBedintensiveBedVentilationresources <- get_mon_resources(envs)
resources$capacity <- resources$capacity/1e5
plot(resources, metric = "usage", c("bed", "intensiveBed", "intensiveBedVentilation"), items = "server")plot(resources, metric = "usage", "bed", items = "server", steps = TRUE)plot(resources, metric = "usage", "intensiveBed", items = "server", steps = TRUE)plot(resources, metric = "usage", "intensiveBedVentilation", items = "server", steps = TRUE)babsim.hospital provides functions for evaluating the quality of the simulation results.babsim.hospital provides a default parameter set, that is based on knowledge from domain experts (doctors, members of COVID-19 crises teams, mathematicians, and many more).fieldEvents <- getRealBeds(data = data$fieldData,
resource = conf$ResourceNames)
res <- getDailyMaxResults(envs = envs, fieldEvents = fieldEvents, conf=conf)
resDefault <- getError(res, conf=conf)The error is 1.0141149.
babsim plots can be generated.p <- plotDailyMaxResults(res)
plot(p)ggplot and plotlycan be used to generate interactive plots.plotly::ggplotly(p) babsim.hospital provides a default parameter set, which can be used for simulations.babsimHospitalPara() provides a convenient way to access the default parameter set:para <- babsimHospitalPara()babsim provides an interface to optimize the parameter values of the simulation model.rkidata and icudata data sets must be available. Please download the data from RKI and DIVI or provide your own simulation and field data!results.library("babsim.hospital")
library("SPOT")
library("simmer")
dir.create("results")
res202010262 <- runoptDirect(
expName = paste0("test_", format(Sys.time(), "%Y_%b.%d_%H.%M_V"), utils::packageVersion("babsim.hospital"),"R"),
region = 5374,
rkiwerte = babsim.hospital::rkidata,
icuwerte = babsim.hospital::icudata,
TrainSimStartDate = Sys.Date() - 10*7,
TrainFieldStartDate = Sys.Date() - 6*7,
TestSimStartDate = Sys.Date() - 8*7,
TestFieldStartDate = Sys.Date() - 4*7,
Overlap = 0,
seed = 101170,
direct = TRUE,
repeats = 1,
funEvals = 40,
funEvalsFactor = 0,
size = 35,
simrepeats = 1,
parallel = TRUE,
percCores = 0.9,
icu = TRUE,
icuWeights = c(1,1),
verbosity=11,
testRepeats = 1,
tryOnTestSet = TRUE
)runopt() runs are stored in the paras.rda file.babsim.hospital provides results from the following regions (towns and counties in Germany):
getParaSet(5374): Oberbergischer KreisgetParaSet(5315): City of ColognegetParaSet(5): North-Rhine WestphaliagetParaSet(0): Germanyrunopt() optimization from above can be used as follows:para <- getBestParameter(getParaSet(5315))
res <- modelResultHospital(para=para,
conf=conf,
data = data)
resOpt <- getError(res, conf=conf)p <- plotDailyMaxResults(res)
print(p)ggplot and plotlycan be used to generate interactive plots.plotly::ggplotly(p)(1-weight) * para + weight * other ensuring that the names etc. of para are preserved.para <- smoothParameter(getBestParameter(getParaSet(5374)),
getBestParameter(getParaSet(5)) )babsim.hospital includes tools to analyze parameter settings.infec: infectedout: transfer out, no hospital requiredhosp: hospitalnormal: normal station, no ICUintens: ICU (without ventilation)vent: ICU ventilatedintafter: intensive aftercare (from ICU with ventilation, on ICU)aftercare: aftercare (from ICU, on normal station)death: patient dieshealthy: recoveredpara <- babsimHospitalPara()
getMatrixP(para = para)
%> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
%> [1,] 0 0.9 0.1 0.0 0.00 0.000 0.0 0.00000 0e+00 0.000
%> [2,] 0 1.0 0.0 0.0 0.00 0.000 0.0 0.00000 0e+00 0.000
%> [3,] 0 0.0 0.0 0.9 0.09 0.010 0.0 0.00000 0e+00 0.000
%> [4,] 0 0.0 0.0 0.0 0.10 0.001 0.0 0.00000 1e-01 0.799
%> [5,] 0 0.0 0.0 0.0 0.00 0.300 0.0 0.60000 1e-01 0.000
%> [6,] 0 0.0 0.0 0.0 0.00 0.000 0.7 0.00000 3e-01 0.000
%> [7,] 0 0.0 0.0 0.0 0.00 0.000 0.0 0.32999 1e-05 0.670
%> [8,] 0 0.0 0.0 0.0 0.00 0.000 0.0 0.00000 0e+00 1.000
%> [9,] 0 0.0 0.0 0.0 0.00 0.000 0.0 0.00000 1e+00 0.000
%> [10,] 0 0.0 0.0 0.0 0.00 0.000 0.0 0.00000 0e+00 1.000visualizeGraph(para=para, option = "P")visualizeGraph(para = para, option = "D")getMatrixD(para = para)
%> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
%> [1,] 0 0 9.5 0 0 0.00 0 0 0 0
%> [2,] 0 0 0.0 0 0 0.00 0 0 0 0
%> [3,] 0 0 0.0 0 0 0.00 0 0 0 0
%> [4,] 0 0 0.0 0 5 3.63 0 0 5 10
%> [5,] 0 0 0.0 0 0 4.00 0 7 5 0
%> [6,] 0 0 0.0 0 0 0.00 30 0 20 0
%> [7,] 0 0 0.0 0 0 0.00 0 3 4 3
%> [8,] 0 0 0.0 0 0 0.00 0 0 0 3
%> [9,] 0 0 0.0 0 0 0.00 0 0 0 0
%> [10,] 0 0 0.0 0 0 0.00 0 0 0 0babsim.hospitalcan be used to simulate scenarios, i.e., possible developments of the pandemic.extendRki() adds new arrival events.data: an already existing data set, i.e., the historyEndDate: last day of the simulated data (in the future)R0: base reproduction values (R0) at the first day of the scenario and at the last day of the scenario. A linear interpolation between these two values will be used, e.g., if R0 = c(1,2) and ten eleven days are specified, the following R0 values will be used: (1.0, 1.1, 1.2, 1.3, …, 1.9,2.0).data <- getRkiData(babsim.hospital::rkidata)
n <- as.integer( max(data$Day)-min(data$Day) )
StartDay <- min(data$Day) + round(n*0.9)
data <- data[which(data$Day >= StartDay), ]
EndDate <- max(data$Day) + 2
dataExt <- extendRki(data = data,
EndDate = EndDate,
R0 = c(0.1, 0.2))extendRki() data extension procedure, a short example is shown below:visualizeRkiEvents(data = data, region=5374)visualizeRkiEvents(data = dataExt, region = 5374)library("rpart")
library("rpart.plot")
library("babsim.hospital")
library("SPOT")
param <- getParaSet(5374)
n <- dim(param)[2] - 1
y <- param[,1]
x <- param[,2:dim(param)[2]]
fitTree <- buildTreeModel(x=x,
y=y,
control = list(xnames = paste0('x', 1:n)))
rpart.plot(fitTree$fit)getParameterNameList(c(24, 25, 3, 10))library("rpart")
library("rpart.plot")
param <- getParaSet(5315)
n <- dim(param)[2] - 1
y <- param[,1]
x <- param[,2:dim(param)[2]]
fitTree <- buildTreeModel(x=x,
y=y,
control = list(xnames = paste0('x', 1:n)))
rpart.plot(fitTree$fit)babsim.hopital uses the R package SPOT (sequential parameter optimization toolbox) to improve parameter settings.SPOT implements a set of tools for model-based optimization and tuning of algorithms (surrogate models, optimizers, DOE).SPOT can be used for sensitivity analysis, which is in important under many aspects, especially:
res <- res202010262[[2]][[1]]
xBest <- res$xbest
n <- length(xBest)
print(xBest)n <- n-1
t(getParameterNameList(1:n))plotModel.plotModel requires two parameter values.GammaShapeParameter (x16) and AmntDaysNormalToHealthy (x2) were chosen.GammaShapeParameter is smaller than the effect of the parameter AmntDaysNormalToHealthy.SPOT::plotModel(res$modelFit, which = c(16,2) ,xlab = c("Modellierungsparameter (Varianz), GammaShapeParameter", "x2: Normalstation zu Genesen (AmntDaysNormalToHealthy)"))A regression-based parameter screening can be performed to discover relevant (and irrelevant) model parameters:
fitLm <- SPOT::buildLM(x=res$x,
y=res$y,
control = list(useStep=TRUE))
summary(fitLm$fit)getParameterName(7)library("rpart")
library("rpart.plot")
fitTree <- buildTreeModel(x=res$x,
y=res$y,
control = list(xnames = paste0('x', 1:n)))
rpart.plot(fitTree$fit)An exponential model with two parameters was chosen to model risk as a function of age and gender: \(r(x) = a\exp(b\,x)\).
age <- c(2,10,25,47,70,90)
risk <- c(0.01,0.07,0.15,0.65,3,12.64)
fit <- nls(risk ~ a * exp( b * age),
start = list(a = 1, b = 0),
control= nls.control(maxiter = 50, tol = 1e-05, minFactor = 1/1024,
printEval = FALSE, warnOnly = FALSE))
print(coef(fit))
%> a b
%> 0.02048948 0.07138200{plot(age,2*risk)
# female:
lines(age, 1* predict(fit, list(x = age)))
# male:
lines(age, 2* predict(fit, list(x = age) ), col ="red")}The full, unmodified RKI data set, can be downloaded from the RKI web page. Once downloaded, it is accessible as rkidataFull.
Note: rkidataFull is a large data set, which is not included in the CRAN version.
dim(babsim.hospital::rkidataFull)The rkidata data set is a subset of the rkidataFull data set. * It contains data from 2020-09-01 until today. * The rkidata subset is used, because the COVID-19 pandemic behavior changed over time. The period from September is sometimes referred to as the second wave. * Note: the full rkidata set is not included in the CRAN version. * The CRAN version includes a smaller data set:
str(babsim.hospital::rkidata)
%> 'data.frame': 45270 obs. of 18 variables:
%> $ FID : int 1 29 50 51 52 91 92 103 144 145 ...
%> $ IdBundesland : int 1 1 1 1 1 1 1 1 1 1 ...
%> $ Bundesland : chr "Schleswig-Holstein" "Schleswig-Holstein" "Schleswig-Holstein" "Schleswig-Holstein" ...
%> $ Landkreis : chr "SK Flensburg" "SK Flensburg" "SK Flensburg" "SK Flensburg" ...
%> $ Altersgruppe : chr "A00-A04" "A00-A04" "A05-A14" "A05-A14" ...
%> $ Geschlecht : chr "M" "W" "M" "M" ...
%> $ AnzahlFall : int 1 1 1 1 1 1 1 1 1 1 ...
%> $ AnzahlTodesfall : int 0 0 0 0 0 0 0 0 0 0 ...
%> $ Refdatum : chr "2020/09/30 00:00:00" "2020/09/26 00:00:00" "2020/09/25 00:00:00" "2020/09/26 00:00:00" ...
%> $ IdLandkreis : int 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 ...
%> $ Datenstand : chr "13.03.2021, 00:00 Uhr" "13.03.2021, 00:00 Uhr" "13.03.2021, 00:00 Uhr" "13.03.2021, 00:00 Uhr" ...
%> $ NeuerFall : int 0 0 0 0 0 0 0 0 0 0 ...
%> $ NeuerTodesfall : int -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 ...
%> $ Meldedatum : chr "2020/09/30 00:00:00" "2020/09/26 00:00:00" "2020/09/21 00:00:00" "2020/09/21 00:00:00" ...
%> $ NeuGenesen : int 0 0 0 0 0 0 0 0 0 0 ...
%> $ AnzahlGenesen : int 1 1 1 1 1 1 1 1 1 1 ...
%> $ IstErkrankungsbeginn: int 0 0 1 1 0 1 0 1 1 0 ...
%> $ Altersgruppe2 : chr "Nicht übermittelt" "Nicht übermittelt" "Nicht übermittelt" "Nicht übermittelt" ...To convert data from the rkidata format, the function getRkiData() can be used. The function generates data that can be used as simmer arrival events, one arrival is listed in each row. Each arrival includes the following information:
Meldedatum)Note: As mentioned earlier, the CRAN package does not include the full RKI dataset. Only a sample is included as rkidata To perform real simulations, the user has to download the full RKI data set as described above.
rkiSimData <- getRkiData(babsim.hospital::rkidata)
str(rkiSimData)
%> 'data.frame': 56494 obs. of 7 variables:
%> $ Altersgruppe: chr "A15-A34" "A35-A59" "A15-A34" "A35-A59" ...
%> $ Geschlecht : chr "M" "W" "M" "W" ...
%> $ Day : Date, format: "2020-09-01" "2020-09-01" ...
%> $ IdBundesland: int 1 1 1 1 1 1 1 1 1 1 ...
%> $ IdLandkreis : int 1002 1002 1004 1004 1053 1053 1053 1053 1054 1056 ...
%> $ time : num 0 0 0 0 0 0 0 0 0 0 ...
%> $ Age : num 25 47 25 47 2 25 25 70 25 10 ...The function getRkiRisk(simData, para) adds a numerical risk value, which is based on Age and Geschlecht to simData data. The parameters RiskFactorA, RiskFactorB, and RiskMale from para are used for the risk calculation.
para <- babsimHospitalPara()
print(para$RiskFactorA)
%> [1] 0.02048948
print(para$RiskFactorB)
%> [1] 0.01
print(para$RiskMale)
%> [1] 1.5
rkiRiskSimData <- getRkiRisk(rkiSimData, para)
str(rkiRiskSimData)
%> 'data.frame': 56494 obs. of 8 variables:
%> $ Altersgruppe: chr "A15-A34" "A35-A59" "A15-A34" "A35-A59" ...
%> $ Geschlecht : chr "M" "W" "M" "W" ...
%> $ Day : Date, format: "2020-09-01" "2020-09-01" ...
%> $ IdBundesland: int 1 1 1 1 1 1 1 1 1 1 ...
%> $ IdLandkreis : int 1002 1002 1004 1004 1053 1053 1053 1053 1054 1056 ...
%> $ time : num 0 0 0 0 0 0 0 0 0 0 ...
%> $ Age : num 25 47 25 47 2 25 25 70 25 10 ...
%> $ Risk : num 0.0395 0.0328 0.0395 0.0328 0.0314 ...babsim.hospital simulator function babsimHospital(), which implements a simmer class, processes arrival events.arrivaldata class can be generrated as follows:arrivalTimes <- data.frame(time = rkiRiskSimData$time, risk = rkiRiskSimData$Risk)
str(arrivalTimes)
%> 'data.frame': 56494 obs. of 2 variables:
%> $ time: num 0 0 0 0 0 0 0 0 0 0 ...
%> $ risk: num 0.0395 0.0328 0.0395 0.0328 0.0314 ...getParameterDataFrame()bounds <- getBounds()
print(bounds)
%> $lower
%> [1] 6.0e+00 7.0e+00 3.0e+00 3.0e+00 3.0e+00 5.0e+00 3.0e+00 3.0e+00 2.5e+01
%> [10] 1.7e+01 2.0e+00 1.0e+00 2.5e-01 5.0e-02 7.0e-02 5.0e-03 7.0e-02 1.0e-04
%> [19] 8.0e-02 2.5e-01 8.0e-02 5.0e-01 1.0e-06 2.0e+00 1.0e-06 1.0e-06 1.0e+00
%> [28] 2.0e+00 5.0e-01
%>
%> $upper
%> [1] 14.0000 13.0000 7.0000 9.0000 7.0000 9.0000 5.0000 7.0000 35.0000
%> [10] 25.0000 5.0000 7.0000 2.0000 0.1500 0.1100 0.0200 0.1300 0.0020
%> [19] 0.1200 0.3500 0.1200 0.9000 0.0100 4.0000 1.1000 0.0625 2.0000
%> [28] 5.0000 0.7500The following R scripts demonstrate, how optimizations runs for the Oberbergische Kreis (OBK), Koeln, and NRW can be started.
Note: runs take several minutes/hours.
library("babsim.hospital")
library("SPOT")
library("simmer")
runoptDirect(
expName = paste0("obk_", format(Sys.time(), "%Y_%b.%d_%H.%M_V"), utils::packageVersion("babsim.hospital"),"R"),
region = 5374,
rkiwerte = babsim.hospital::rkidata,
icuwerte = babsim.hospital::icudata,
TrainSimStartDate = Sys.Date() - 10*7, # 11*7, #10*7, # "2020-09-03",
TrainFieldStartDate = Sys.Date() - 6*7, # 8*7, # "2020-10-03",
#TestSimStartDate = Sys.Date() - 8*7, # 6*7 , #"2020-09-23",
#TestFieldStartDate = Sys.Date() - 4*7, #"2020-10-23",
Overlap = 0,
seed = 101170,
direct = TRUE,
repeats = 1000,
funEvals = 1000,
funEvalsFactor = 0,
size = 250,
simrepeats = 10,
parallel = TRUE,
percCores = 0.9,
icu = TRUE,
icuWeights = c(1,1),
verbosity=11,
testRepeats = 10,
tryOnTestSet = FALSE
)library("babsim.hospital")
library("SPOT")
library("simmer")
runoptDirect(
expName = paste0("koeln_", format(Sys.time(), "%Y_%b.%d_%H.%M_V"), utils::packageVersion("babsim.hospital"),"R"),
region = 5315,
rkiwerte = babsim.hospital::rkidata,
icuwerte = babsim.hospital::icudata,
TrainSimStartDate = Sys.Date() - 10*7, # 10*7, # "2020-09-03",
TrainFieldStartDate = Sys.Date() - 6*7, # "2020-10-03",
# TestSimStartDate = Sys.Date() - 8*7, # 6*7 , #"2020-09-23",
# TestFieldStartDate = Sys.Date() - 4*7, #"2020-10-23",
Overlap = 0,
seed = 101170,
direct = TRUE,
repeats = 1000,
funEvals = 1000,
funEvalsFactor = 0,
size = 250,
simrepeats = 10,
parallel = TRUE,
percCores = 0.9,
icu = TRUE,
icuWeights = c(1,1),
verbosity=11,
testRepeats = 10,
tryOnTestSet = FALSE
)library("babsim.hospital")
library("SPOT")
library("simmer")
runoptDirect(
expName = paste0("nrw_", format(Sys.time(), "%Y_%b.%d_%H.%M_V"), utils::packageVersion("babsim.hospital"),"R"),
region = 5374,
rkiwerte = babsim.hospital::rkidata,
icuwerte = babsim.hospital::icudata,
TrainSimStartDate = Sys.Date() - 10*7, #10*7, # "2020-09-03",
TrainFieldStartDate = Sys.Date() - 6*7, # "2020-10-03",
# TestSimStartDate = Sys.Date() - 8*7, #6*7 , #"2020-09-23",
# TestFieldStartDate = Sys.Date() - 4*7, #"2020-10-23",
Overlap = 0,
seed = 101170,
direct = TRUE,
repeats = 1000,
funEvals = 1000,
funEvalsFactor = 0,
size = 250,
simrepeats = 10,
parallel = TRUE,
percCores = 0.9,
icu = TRUE,
icuWeights = c(1,1),
verbosity=11,
testRepeats = 10,
tryOnTestSet = FALSE
)