Package ‘fdaMixed’

September 3, 2019
Type Package

Title Functional Data Analysis in a Mixed Model Framework
Version 0.6
Date 2019-09-03

Description Likelihood based analysis of 1-dimension functional data
in a mixed-effects model framework. Matrix computation are
approximated by semi-explicit operator equivalents with linear
computational complexity. Markussen (2013) <doi:10.3150/11-BEJ389>.

License GPL-2

LazyLoad yes

Imports Formula, Rcpp

LinkingTo Rcpp, ReppArmadillo

Repository CRAN

NeedsCompilation yes

Author Bo Markussen [aut, cre]

Maintainer Bo Markussen <bomar@math.ku. dk>

Date/Publication 2019-09-03 21:30:06 UTC

R topics documented:

fdaMixed-package e e 2
dataTrans e e e 3
fdalm e e 5
findROOLS e e 8
Index 10

2 fdaMixed-package
fdaMixed-package Functional Data Analysis in a Mixed Model Framework
Description
Likelihood based analysis of 1-dimension functional data in a mixed-effets model framework. The
methodology is designed for equidistantly sampled high frequency data, where the needed matrix
computation may be approximated by semi-explicit operator equivalents with linear computational
complexity. Extensions exist for non-equidistantly sampled data, but these have not been imple-
mented.
Details
Package: fdaMixed
Type: Package
Version: 0.5
Date: 2017-03-07
License: GPL-2
LazyLoad: yes
Author(s)
Bo Markussen <bomar@math.ku.dk>
References
Bo Markussen (2013), "Functional data analysis in an operator based mixed model framework",
Bernoulli, vol. 19, pp. 1-17.
Conrad Sanderson (2010), "Armadillo: An open source C++ linear algebra library for fast proto-
typing and computationally intensive experiments", NICTA technical report.
Dirk Eddelbuettel, "Rcpp: Seamless R and C++ Integration with Repp", UseR!, Springer, 2013.
See Also
Implementation done using the package RcppArmadillo. For penalized likelihood analysis of func-
tional data see the packages fda and fda.usc.
Examples

x <- seq(0,2*pi,length.out=200)
y.true <- sin(x)+x
y.obs <- y.true + rnorm(200)

est@ <- fdaLm(y.obs~@,Fright="open",right=2*pi)

dataTrans 3

estl <- fdalLm(y.obs~0+x,Fright="open”,right=2%pi)

plot(x,y.obs,main="Estimating the sum of a line and a curve")
lines(x,y.true,1ty=2)

lines(x,est@$xBLUP[,1,1],col=2)

lines(x,est1$betaHat*x+est1$xBLUP[,1,1],col=3)

legend("topleft”,c("True curve”,"Smooth”,"Line + smooth"”),col=1:3,1ty=c(2,1,1))

dataTrans Scale invariant Box-Cox transformation

Description

Performs forward and backward Box-Cox power transformation including the invariance scaling
based on the geometric mean.

Usage
dataTrans(y, mu, direction = "backward”, geoMean = NULL)
Arguments
y The numeric variable object to be transformed.
mu The power parameter, where zero corresponds to the logarithmic transformation.
direction A character variable. If the lower case of the first letter equals "b" (default),
then the backward transformation is performed. If the lower case of the first
letter equals "f", then the forward transformation is performed.
geoMean If a numeric is stated, then this is taken as the geometric mean of the untrans-
formed observations. If NULL (default), then the geometric mean is computed
from the observation y. The latter is only available for the forward transforma-
tion.
Value

The transformed variable.

Note

This function is intended to be used in conjunction with fdalLm to achieve estimates on the orginal
scale. Thus, the geometric mean of the original observations should be kept in order to have the
correct backtransformation.

Author(s)

Bo Markussen <bomar@math.ku.dk>

4 dataTrans

Examples

Make 3 samples with the following characteristics:
1) length N=500

2) sinusoid form + linear fixed effect + noise
3) exponential transformed

N <- 500

sample.time <- seq(@,2*pi,length.out=N)

z <= c("a","b","c")

X0 <- c(0,10,20)

x1 <- rep(x@,each=N)

y <- c(sin(sample.time),sin(sample.time),sin(sample.time))+x1+rnorm(3*N)

Make exponential-Box-Cox-backtransformation

Scaling with geometric mean requires that we solve the Whiteker function
geoMean <- mean(y)

geoMean <- uniroot(function(x){x*log(x)-geoMean},c(exp(-1), (1+geoMean)*2))$root
y <- dataTrans(y,@,"b", geoMean)

Do fda's with global and marginal fixed effects
Also seek to find Box-Cox transformation with mu=0@

est@ <- fdalLm(y|z~x@,boxcox=1)
est1l <- fdaLm(y|z~x1,boxcox=1)

Panel 1
plot(sample.time,dataTrans(est@$betaHatl, " (Intercept)”J+est@$betaHat[, "x0"],
est@$boxcoxHat,"b",geoMean)/
dataTrans(est@$betaHat[,"” (Intercept)”],est@$boxcoxHat, "b", geoMean),

main="Effect of x (true=1.2)",xlab="time",

ylab="response ratio")
abline(h=dataTrans(est1$betaHat[" (Intercept)”J+est1$betaHat["x1"],

est1$boxcoxHat,"b",geoMean)/
dataTrans(esti$betaHat[" (Intercept)"”],estl1$boxcoxHat,"b",geoMean),col=2)

legend("topleft”,c("marginal”, "global”),pch=c(1,NA),lty=c(NA,1),col=1:2)

Panel 2
plot(sample.time,dataTrans(est@$betaHat[,"” (Intercept)"”]+est@$betaHat[,"x0"],
est@$boxcoxHat,"b",geoMean)-
dataTrans(est@$betaHat[,"” (Intercept)”],est@$boxcoxHat, "b", geoMean),
main="Effect of x (true=1)",6xlab="time",
ylab="response difference")
abline(h=dataTrans(est1$betaHat[" (Intercept)"”J+est1$betaHat["x1"],
est1$boxcoxHat,"b",geoMean)-

fdalLm

dataTrans(est1$betaHat[" (Intercept)"”],est1$boxcoxHat,"b",geoMean),col=2)

legend("bottomleft”,c("marginal”, "global”),pch=c(1,NA),1ty=c(NA,1),col=1:2)

Panel 3

plot(sample.time,est@$xBLUP[,1,1],type="1",
main="Marginal ANOVA",6xlab="time",ylab="x BLUP")

Panel 4

plot(sample.time,est1$xBLUP[,1,1], type="1",
main="Global ANOVA" K xlab="time",ylab="x BLUP")

fdalLm

Linear mixed-effects model for functional data

Description

Fits variance and smoothing parameters, and possibly also Box-Cox transformation, by maximum
restricted likelihood. Estimate fixed parameters, predict random effects, and predict serial correlated
effect at point of maximum restricted likelihood. Linear models for fixed and random effects may
be global or marginal over sample times.

Usage

fdaLm(formula, data, design, boxcox = NULL, G = 1, lambda
= TRUE, K.order

1, nlSearch

=1, D.order = NULL, Fleft = "tied", Fright = "tied",

left = NULL, right = NULL)

Arguments

formula

data

design

boxcox

A multiple formula of the type Y|id ~ fixed|random. Here Y is the response
variable, id is a factor separating the samples, fixed is a linear model for the
fixed effect, and random is a linear model for the random effect.

An optional data frame containing the variables. See details below.

An optional data frame containing the design variables in the specification of
the fixed and the random effects. See details below.

The power parameter in the scale invariant Box-Cox transformation. If NULL
(default), then no transformation is performed. If a numeric value is provided,
then a scale invariant Box-Cox transformation of the response variable is per-
formed. The numeric value is either used as it is (n1Search=FALSE) or as the
starting point for a non-linear optimization (n1Search=TRUE.)

Variance of the random effects. Present implementation only allows for indepen-
dent random effects, i.e. G is scalar. Used depending on n1Search as described
above.

lambda

nlSearch

K.order

D.order

Fleft

Fright

left
right

Details

fdalLm

Start value for the lambda parameter describing the L-operator. Presently the

following forms are implemented: If K.order is odd, then lambda may have

length=1 corresponding to L=-1ambda[1]*D" (2*K.order), or length=2 corre-

sponding to L=-1ambda[1]*D* (2*K.order)+lambdal[2]. If K.order is even,

then 1ambda may have length=1 corresponding to L=-1ambda[1]*D* (2*K.order),

length=2 corresponding to L=-1ambda[1]#D* (2*K.order)+lambda[2]*D*K. order,

or length=3 corresponding to L=-1ambda[1]*D* (2*K.order)+1lambda[2]*D*K. order+lambda[l3].
Used depending on nlSearch as described above. All coefficients must be non-

negative, and the leading coefficient lambda[1] must be strictly positive. Coef-

ficients equal to zero are kept fixed at zero in the non-linear optimization.

If TRUE (default), then a non-linear optimization of the parameters boxcox, G,
lambda is performed (present implementation uses nlminb). If FALSE, then the
initial values of the non-linear parameters are used.

The order of the K-operator.

The requested order of derivatives of the prediction of the serial correlated effect
XBLUP. If NULL (default), then D. order is set to the maximal recommended order
K.order.

Specification of the K. order boundary conditions at the left limit of the sam-
pling interval. Value "tied"” (default) gives bridge-type conditions. Value
"open” shifts up the bridge-type conditions one differential order, hence remov-
ing the restriction on the level (corresponding to the open end of a Brownian
motion). Otherwise arbitrary linear boundary conditions may be specified as a
matrix with dimension (K.order,2*K. order).

Similarly for the K. order boundary conditions at the right limit of the sampling
interval.

Left limit of the sampling interval. If NULL (default), then lef't is set to O.

Right limit of the sampling interval. If NULL (default), then right is set to the
number of sampling points. Thus, the default values of left and right give
sampling distance equal to 1.

The response variable Y is taken from the data frame data (subsidiary the parent environment). If
there is more than one sample, then the responses must be stacked sample-wise on top of each other.
The sample identifier id is sought for in both data frames data and design (subsidiary the parent
environment). The primarily function of the identifier is to decide the number of samples. But if id
is present in both data frames, and if there is more that one sample, then this variable is also used to
match the reponse vector to the design variables (i.e. these need not appear in the same order).

The design variables fixed and random for the fixed and the random effects are taken from the data
frame design (subsidiary the parent environment), subsidiary from the data frame data (subsidiary
the parent environment).

If the number of observations in the design variables equal the total number of response observa-
tions, then a global ANOVA is performed. If the number of observations in the design variables
equal the number of sample points, then a marginal ANOVA is performed.

fdalLm

Value

A list with components

logLik
ANOVA

nlSearch

counts

boxcoxHat

Ghat

lambdaHat

sigmaz2hat
betaHat

uBLUP

xBLUP

condRes

betaVar

Note

Minus twice the log restricted likelihood taken at the estimates.

Specifies whether fixed and random effects were estimated globally (global) or
marginally (marginal).

Specifies whether non-linear optimization was performed (TRUE / FALSE).
Number of computations of the negative log likelihood.

Maximum restricted likelihood estimate for the power parameter in the scale
invariant Box-Cox transformation. Equal to not done if the Box-Cox transfor-
mation is not used.

Maximum restricted likelihood estimate for the variance matrix of the random
effects.

Maximum restricted likelihood estimate for the lambda parameter describing the
L-operator.

Maximum restricted likelihood estimate for the noise variance.

For global ANOVA a vector with estimate for the fixed effect. For marginal
ANOVA a matrix with estimate for the fixed effects.

For global ANOVA a vector with prediction of the random effect. For marginal
ANOVA a matrix with predictions of the random effects.

Array with predictions of serial correlated effects. The dimension is (sample
length,sample numbers,1+D. order).

Matrix of conditional residuals. The dimension is (sample length,sample num-
bers).

Variance matrix of fixed effect estimate.

If the real value of the left most eigenvalues are non-positive, and if the real value of the right most
eigenvalues are non-negative, then the underlying algorithm is numerical stable. This will always
be the situation for the present restriction of the L-operator.

If 1ambda has length=1, then it may also be interpreted as the smoothing parameter in the penalized
likelihood framework.

If D.order is chosen larger than K. order, this number of derivaties are also computed during the
non-linear optimization. This might slow down the computation speed a little bit.

Author(s)

Bo Markussen <bomar@math.ku.dk>

See Also

See also findRoots and dataTrans.

8 findRoots

Examples

x <- seq(0,2*pi,length.out=200)

y.true <- sin(x)+x

y.obs <- y.true + rnorm(200)

est@ <- fdaLm(y.obs~0@,Fright="open",right=2*pi)

estl <- fdalLm(y.obs~0+x,Fright="open”,right=2%pi)

plot(x,y.obs,main="Estimating the sum of a line and a curve")
lines(x,y.true,1ty=2)

lines(x,est@$xBLUP[,1,1],col=2)

lines(x,est1$betaHat*x+est1$xBLUP[,1,1],col=3)

legend("topleft”,c("True curve”,"Smooth”,"Line + smooth”),col=1:3,1ty=c(2,1,1))

Build data frame

test.frame <- data.frame(y=rnorm(50),sample=factor(rep(1:5,each=10)),
x=rep(0:9,times=5),
f=factor(rnorm(50) < 0,labels=c("a","b")),
j=factor(rnorm(50) < 0, labels=c("A","B")))

test.frame$y <- test.frame$y + 2 +

3x(test.frame$f=="a")*test.frame$x + 5x(test.frame$f=="b")xtest.frame$x +

(-10)*(test.frame$j=="A") + 10*(test.frame$j=="B")

This is the model 'y|sample ~ f:x|j' with intercept=2, slopes (3,5),

and random effects (-10,10)

est <- fdalLm(y|sample ~ f:x|0@+j,data=test.frame)

print(est)

findRoots Complex roots of quadratic polynomial

Description

Find complex roots of polynomials in x that are quadratic polynomials in X"k

Usage

findRoots(coefs, k = 1)

Arguments

coefs Coefficients (c_0,c_k,c_2k) of quadratic polynomial in x"k. Also accepts
matrix input (J,3).

k Order of x"k

findRoots 9

Details

It is assumed that c_2k is non-zero, and that at least one of c_0@ and c_k are non-zero (otherwise,
we have a double root, which is not treated by fdaLm in the present implementation). An error is
issued if these assumptions are violated.

Value

A list with components

left The k roots with left most real components
right The k roots with right most real components
Note

This function is intended for internal usage in fdalLm to find eigenvalues. If a robust and stable
method of finding all the complex roots is a polynomial were available, then this could be used in
fdalLm instead enhancing the scope of this function.

Author(s)

Bo Markussen <bomar@math.ku.dk>

References

Solved using Section 5.6 in Press et al, "Numerical Recipies in C", second edition.

Examples

findRoots(c(-1,0,1),1)
findRoots(c(1,-1,1),2)

Index

xTopic inference
fdalLm, 5

+Topic manip
dataTrans, 3

*Topic math
findRoots, 8

*Topic models
fdaMixed-package, 2

*Topic model
fdalLm, 5

+Topic package
fdaMixed-package, 2

dataTrans, 3, 7

fdalLm, 3,5, 9

fdaMixed (fdaMixed-package), 2
fdaMixed-package, 2
findRoots, 7, 8

10

	fdaMixed-package
	dataTrans
	fdaLm
	findRoots
	Index

