mixComp: Estimation of Order of Mixture Distributions
Methods for estimating the order of a mixture model. The approaches considered are
based on the following papers (extensive list of references is available in the vignette):
1. Dacunha-Castelle, Didier, and Elisabeth Gassiat. The estimation of the order of a mixture model. Bernoulli 3, no. 3 (1997): 279-299. <https://projecteuclid.org/download/pdf_1/euclid.bj/1177334456>.
2. Woo, Mi-Ja, and T. N. Sriram. Robust estimation of mixture complexity. Journal of the American Statistical Association 101, no. 476 (2006): 1475-1486. <doi:10.1198/016214506000000555>.
3. Woo, Mi-Ja, and T. N. Sriram. Robust estimation of mixture complexity for count data. Computational statistics & data analysis 51, no. 9 (2007): 4379-4392. <doi:10.1016/j.csda.2006.06.006>.
4. Umashanger, T., and T. N. Sriram. L2E estimation of mixture complexity for count data. Computational statistics & data analysis 53, no. 12 (2009): 4243-4254. <doi:10.1016/j.csda.2009.05.013>.
5. Karlis, Dimitris, and Evdokia Xekalaki. On testing for the number of components in a mixed Poisson model. Annals of the Institute of Statistical Mathematics 51, no. 1 (1999): 149-162. <doi:10.1023/A:1003839420071>.
6. Cutler, Adele, and Olga I. Cordero-Brana. Minimum Hellinger Distance Estimation for Finite Mixture Models. Journal of the American Statistical Association 91, no. 436 (1996): 1716-1723. <doi:10.2307/2291601>.
A number of datasets are included.
1. accidents, from Karlis, Dimitris, and Evdokia Xekalaki. On testing for the number of components in a mixed Poisson model. Annals of the Institute of Statistical Mathematics 51, no. 1 (1999): 149-162. <doi:10.1023/A:1003839420071>.
2. acidity, from Sybil L. Crawford, Morris H. DeGroot, Joseph B. Kadane & Mitchell J. Small (1992) Modeling Lake-Chemistry Distributions: Approximate Bayesian Methods for Estimating a Finite-Mixture Model, Technometrics, 34:4, 441-453. <doi:10.1080/00401706.1992.10484955>.
3. children, from Thisted, R. A. (1988). Elements of statistical computing: Numerical computation (Vol. 1). CRC Press.
4. faithful, from R package "datasets"; Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser. Applied Statistics, 39, 357–365. <https://www.jstor.org/stable/2347385>.
5. shakespeare, from Efron, Bradley, and Ronald Thisted. "Estimating the number of unseen species: How many words did Shakespeare know?." Biometrika 63.3 (1976): 435-447. <doi:10.1093/biomet/63.3.435>.
Version: |
0.1-2 |
Depends: |
R (≥ 3.5.0) |
Imports: |
cluster, boot, expm, matrixcalc, Rsolnp, kdensity |
Suggests: |
knitr, rmarkdown |
Published: |
2021-02-25 |
Author: |
Anja Weigel [aut],
Yulia Kulagina [aut, cre],
Fadoua Balabdaoui [aut, ths],
Lilian Mueller [ctb],
Martin Maechler
[ctb] (package 'nor1mix' as model) |
Maintainer: |
Yulia Kulagina <yulia.kulagina at stat.math.ethz.ch> |
License: |
GPL-3 |
NeedsCompilation: |
no |
CRAN checks: |
mixComp results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=mixComp
to link to this page.