mlr3pipelines: Preprocessing Operators and Pipelines for 'mlr3'

Dataflow programming toolkit that enriches 'mlr3' with a diverse set of pipelining operators ('PipeOps') that can be composed into graphs. Operations exist for data preprocessing, model fitting, and ensemble learning. Graphs can themselves be treated as 'mlr3' 'Learners' and can therefore be resampled, benchmarked, and tuned.

Version: 0.4.1
Depends: R (≥ 3.1.0)
Imports: backports, checkmate, data.table, digest, lgr, mlr3 (≥ 0.6.0), mlr3misc (≥ 0.9.0), paradox, R6, withr
Suggests: ggplot2, glmnet, igraph, knitr, lme4, mlbench, bbotk (≥ 0.3.0), mlr3filters (≥ 0.1.1), mlr3learners, mlr3measures, nloptr, quanteda, rmarkdown, rpart, stopwords, testthat, visNetwork, bestNormalize, fastICA, kernlab, smotefamily, evaluate, NMF, MASS, kknn, GenSA, methods, vtreat, future
Published: 2022-05-15
Author: Martin Binder [aut, cre], Florian Pfisterer ORCID iD [aut], Lennart Schneider ORCID iD [aut], Bernd Bischl ORCID iD [aut], Michel Lang ORCID iD [aut], Susanne Dandl [aut]
Maintainer: Martin Binder <mlr.developer at mb706.com>
BugReports: https://github.com/mlr-org/mlr3pipelines/issues
License: LGPL-3
URL: https://mlr3pipelines.mlr-org.com, https://github.com/mlr-org/mlr3pipelines
NeedsCompilation: no
Citation: mlr3pipelines citation info
Materials: README NEWS
CRAN checks: mlr3pipelines results

Documentation:

Reference manual: mlr3pipelines.pdf

Downloads:

Package source: mlr3pipelines_0.4.1.tar.gz
Windows binaries: r-devel: mlr3pipelines_0.4.1.zip, r-release: mlr3pipelines_0.4.1.zip, r-oldrel: mlr3pipelines_0.4.1.zip
macOS binaries: r-release (arm64): mlr3pipelines_0.4.1.tgz, r-oldrel (arm64): mlr3pipelines_0.4.1.tgz, r-release (x86_64): mlr3pipelines_0.4.1.tgz, r-oldrel (x86_64): mlr3pipelines_0.4.1.tgz
Old sources: mlr3pipelines archive

Reverse dependencies:

Reverse depends: NADIA
Reverse imports: mlr3fairness, mlr3fselect, mlr3verse, sense
Reverse suggests: DoubleML, mlr3hyperband, mlr3spatiotempcv, mlr3tuning, mlrintermbo

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mlr3pipelines to link to this page.