traineR: Predictive Models Homologator
Methods to unify the different ways of creating predictive models and their different predictive formats. It includes
methods such as K-Nearest Neighbors Schliep, K. P. (2004) <doi:10.5282/ubm/epub.1769>, Decision Trees Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone (2017) <doi:10.1201/9781315139470>,
ADA Boosting Esteban Alfaro, Matias Gamez, Noelia García (2013) <doi:10.18637/jss.v054.i02>, Extreme Gradient Boosting Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>,
Random Forest Breiman (2001) <doi:10.1023/A:1010933404324>, Neural Networks Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>,
Support Vector Machines Bennett, K. P. & Campbell, C. (2000) <doi:10.1145/380995.380999>, Bayesian Methods Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995) <doi:10.1201/9780429258411>,
Linear Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Quadratic Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>,
Logistic Regression Dobson, A. J., & Barnett, A. G. (2018) <doi:10.1201/9781315182780> and Penalized Logistic Regression Friedman, J. H., Hastie, T., & Tibshirani, R. (2010) <doi:10.18637/jss.v033.i01>.
Version: |
1.7.4 |
Depends: |
R (≥ 3.5) |
Imports: |
neuralnet (≥ 1.44.2), rpart (≥ 4.1-13), xgboost (≥
0.81.0.1), randomForest (≥ 4.6-14), e1071 (≥ 1.7-0.1), kknn (≥ 1.3.1), dplyr (≥ 0.8.0.1), MASS (≥ 7.3-53), ada (≥
2.0-5), nnet (≥ 7.3-12), stringr (≥ 1.4.0), adabag, glmnet, ROCR, ggplot2, knitr, rmarkdown, rpart.plot |
Published: |
2022-04-29 |
Author: |
Oldemar Rodriguez R. [aut, cre],
Andres Navarro D. [aut],
Ariel Arroyo S. [aut],
Diego Jimenez A. [ctb] |
Maintainer: |
Oldemar Rodriguez R. <oldemar.rodriguez at ucr.ac.cr> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: |
https://www.promidat.com |
NeedsCompilation: |
no |
CRAN checks: |
traineR results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=traineR
to link to this page.